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Polynomial-time algorithms for scheduling
problem for coupled-tasks in presence of

treatment tasks

G. Simonin, R. Giroudeau and J.-C. König 1,2

LIRMM, 161 rue Ada,34392 Montpellier Cedex 5, France, UMR 5056

Abstract

We consider the problem to schedule n coupled-tasks in presence of treatment tasks.
This work is motivated by the problem of data acquisition for a torpedo. In such
context, we developp a O(nlog(n)) polynomial-time algorithm for a specific coupled-
tasks scheduling problem.
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1 Introduction

In this paper, we present the problem of data acquisition according to incom-
patibility constraints in a submarine torpedo. The torpedo is used in order to
make cartography, topology studies, temperature measures and many other
tasks in the water. The aim of this torpedo is to collect and process a set of
data as soon as possible on a mono processor. In this way, it possesses few
sensors, a mono processor and two types of tasks which must be scheduled: Ac-
quisition and Treatment tasks. First, the acquisition tasks A = {A1, . . . , An}
can be assigned to coupled-tasks introduced by [6], indeed the torpedo sen-
sors emit a wave which propagates in the water in order to collect the data.
Each acquisition task Ai has two sub-tasks, the first ai represents the send
of an echo, and bi its response. For a better reading, we will denote the pro-
cessing time of each sub-task ai and bi. Between the sub-tasks, there is an
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incompressible idle time Li which represents the spread of the echo in the
water.

Second, treatment tasks T = {T1, . . . , Tn} are obtained from acquisition
tasks, indeed after the return of the echo, various calculations will be executed
from gathered information. These tasks are preemptive and have precedence
constraints with the acquisition tasks. In this paper, we will study the prob-
lem where every acquisition task have a precedence relation with only one
treatment task (a Ti after a Ai).

At last, there exists incompatibility constraints between acquisition tasks,
due to the fact that some acquisition tasks cannot be processed at the same
time as another task. In order to represent this constraint, a compatibility
graph Gc = (A, Ec) is introduced, where A is the set of coupled-tasks and
Ec represents the incompatibility constraints (i.e. the ability to perform two
coupled-tasks into each other). At least one sub-task of Ai may be executed
during the idle time of another task Aj (see example in Figure 1).

A1A2 A3

a1 b1a2 b2 a3 b3

L1

L2 L3

Compatibility graph

Figure 1. Example of incompatibility constraints with L1 = 3, L2 =L3 =2

The aim of this problem is to produce a shortest schedule (i.e. to min-
imize the completion time of the last processed task) denoted by Cmax,
in presence of precedence constraints between acquisition tasks and treat-
ment tasks. In scheduling theory, a problem is categorized by its ma-
chine environment, job characteristic and objective function. So using the
notation scheme α|β|γ proposed by [4], this problem will be defined as
1|prec, (ai, Li, bi) ∪ (τi, pmtn), Gc|Cmax.

3 .

Our work consists in measuring the impact of the treatment tasks on the
complexity and approximation of scheduling problems with coupled-tasks on
a mono processor. This paper is focusing on the limit between the polynomi-
ality and the NP-completeness of our problem, when the treatment tasks are
introduced.

The complexity of the scheduling problem, with coupled-tasks and a com-
plete compatibility graph 4 , has been investigated first by [5], [3], [2] and

3 prec (resp. pmtn) represents the precedence constraints between A et T (resp. the
preemtivity of the treatment tasks)
4 Note that the lack of compatibility graph is equivalent to a fully connected graph. In this
way, all the tasks may be compatible with each other.



[1]. Nevertheless, in this article we study a different problem in which treat-
ment tasks are introduced. By comparing the results of [5] and our results,
we can measure the impact of the treatment taks on this kind of problem.
In such context, several results [7] have been recently obtained according to
coupled-tasks parameters. In the following, we consider the specific problem
Π = 1|prec, (ai = Li = p, bi) ∪ (τi, pmtn), complete − Gc|Cmax, where p ∈ IN∗.
We give a polynomial-time algorithm in order to solve the problem Π.

2 Computational complexity

In this section we consider the following assumption: Let K = {Ai =
(ai, Li, bi)|bi ≤ p} and S = A\K be two sets of tasks. It is clear that if
Ai and Aj ∈ S then the edge (Ai, Aj) /∈ Gc. Hereafter, Gc is called a complete
graph if and only if the set of tasks K induces a clique, the set of tasks S
induces an independent set and ∀x ∈ K, ∀y ∈ S, we have {x, y} ∈ Gc.

2.1 Π:1|prec, (ai =Li =p, bi)∪(τi, pmnt), complete − Gc|Cmax

We add the treatment tasks τK
i (resp. τS

i ) for a task Ai = (ai = Li = p, bi) ∈ K
(resp. Ai = (ci = Li = p, di) ∈ S) in this problem. Let O be a schedule. We
deduce from O a matching M of Gc in follows: if Ai and Aj are overlapped
then {i, j} ∈ M . If the subtask ai is executed before aj , Ai (resp. Aj) is called
the first-task (resp. second-task) of the pair. Notice that a first-task is an
element of K. The edges of M are partitioned into two subsets: K − K or
K − S. The tasks, which are not matched, are denoted as isolated tasks.

We can suppose without lost of generality that there exists an optimal
solution for which the followings proprieties are true:

Lemma 2.1 We may suppose that if τS
i > τS

j then Si is processed before Sj.

Proof A contrario, we have τS
i < τS

j . By swapping the two tasks of S, the
length may be decreased (see Figure 2).
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Figure 2. First and second configuration by swapping
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In the same way as previously, we suppose that if Ki and Sj are second-
tasks, and if τK

i > τS
j (resp. τS

j > τK
i ) then Ki is processed before Sj (resp.



Sj before Ki) as second-task 5 . Moreover, if Ki and Kj are two first-tasks and
if bi + τK

i > bj + τK
j , thus we may suppose that Ki is processed before Kj as

first-task.

Lemma 2.2 We may suppose that the isolated tasks of S are processed at the
end of the schedule.

Proof A contrario, we can suppose that a task S1 is executed before K −S2.
Let τS

1 (resp. τS
2 ) be the duration of the treatment of S1 (resp. S2)
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Figure 3. Second configuration where α′ = min(p− b, α) (resp. β′ = min(p− b, β))
is the sequential time in the first slot, and α′′ = α − α′ (resp. β′′ = β − β′) is the
sequential time not executed in the first slot

We have Cmax(case1) = 2p + d + 3p + d′ + β1. By swapping the edge
K − S2 by K − S1, we obtain Cmax(case2) = 3p + d + 2p + d′ + β2.

If α′′ = 0 : β ′ = 0, β ′′ = β and so β2 = τS
2 . Since β1 ≥ τS

2 , we have
β2 ≤ β1. Else α′ = p − b ⇒ β ′ = 0, α′′ = α − α′ = (α − p) + b ⇒ α′′ ≤ b
⇒ β ′′ ≥ β ⇒ β2 ≤ β1. 2

Lemma 2.3 There exists a maximal (resp. maximum) matching M associ-
ated to an optimal solution for any graph Gc (complete graph Gc).

Proof First, we give the maximal matching result. A contrario, we have two
isolated tasks A1 and A2 with (A1, A2) ∈ E (remark: min(b1, b2) ≤ p).
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Figure 4. First and second configuration

From the first (resp. second) configuration (see Figure 4), we have
Cmax(case1) = 4p+|O|+b1+b2 (resp. Cmax(case2) = 3p+|O|+b1+|α′′|+|β|).
Let D = Cmax(case1)− Cmax(case2)= p + b2 − β − α′′. We have two cases,
first α′′ = 0 ⇒ α = α′: since β ≤ p, then D ≥ 0. Second case, α′ = p − b2 ⇒

5 We have the same result with two second tasks of K : Ki and Kj .



α′′ = α−α′ = α−p+ b2. We obtain D = p+ b2 −β−α+ p− b2 = 2p−β−α,
or α ≤ p and β ≤ p, so D ≥ 0. This finishes the first proof.

Now, we give the maximum matching result. We consider a maximal
matching (not a maximum matching) that leads an optimal solution. Thus,
there exists two isolated tasks processed. These tasks are in S (maximal
matching), and at least two K-tasks are matched each other (maximum match-
ing). From the previous results, we suppose that between the two isolated
S-tasks and the nearest pair K −K, there exists a block, denoted by O, com-
posed by k edges of type K − S, k ≥ 0 (see Figure 5). Let αi be the slots
created by the k + 1 pairs and the two isolated tasks numbered by 1 to k + 3.
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Figure 5. First and second configuration

We have Cmax(case1) = T + p + b2 + β1, where T = 3(k + 2)p +
∑k+2

i=1 di.
We transform the first configuration ((K−S)k+1 S S β2) to the second con-
figuration ((K−S)k+2 β2). By hypothesis, the length of the schedule cannot
be better.

Let α′

i be the slots created by the k+2 pairs numbered by 1 to k+2. The se-
quential time is Cmax(case2)=T+β2. Therefore, Cmax(case2)−Cmax(case1)=
β2−p−b2−β1. Moreover, we have α1 = α′

1, β1 ≥ τS
k+2.

We suppose that the tasks are sorted in following way: b1+τK
1 ≥ b2+τK

2 ≥
b3 + τK

3 ≥ . . . ≥ bk+2 + τK
k+2 and τS

1 ≥ τS
2 ≥ τS

3 ≥ . . . ≥ τS
k+2.

Several cases exist:

(i) there is no idle time in α′

i (i > 2), so ∃i > 2 such that α′

i < p − bi

⇒ bi+τK
i +τS

i−1 < p ⇒ β2 = τS
k+2 since ∀j > i, bj+τK

j +τS
j−1 < p; therefore

there exists an idle slot ⇒ β2 ≤ β1 ⇒ Cmax(case2)≤ Cmax(case1)

(ii) ∀i > 2 α′

i = p − bi and α′

2 = p − b2 then the number of idle time in the
second configuration is at most the number of idle time in the first config-
uration Cmax(case2)≤ Cmax(case1). Indeed, in the second configuration
the processor rate is 100% from the time 3p (the unique idle time in the
second configuration occurs when b1 + α1 < p, but this idle time occurs
too in the first configuration).

(iii) there is no idle time excepted in α′

2, ∀i > 2 α′

i = p − bi et α′

2 < p − b2,



then β2 ≤ β1 + p − (b2 + α′

2) ≤ β1 + p ⇒ Cmax(case2)≤ Cmax(case1)

In the three cases, the second configuration is equivalent or better than
the first configuration. 2

Theorem 2.4 The problem admits a polynomial-time algorithm with com-
plexity O(nlog(n)).

Proof

Using the previous discussion, we design a polynomial-time algorithm.
From the Lemma 2.3, we know that it is sufficient to find a maximum match-
ing. We may suppose that a maximum matching leads to an optimal solution.
We have the following relations:

• b1 + τK
1 ≥ b2 + τK

2 ≥ b3 + τK
3 ≥ . . . ≥ bk+2 + τK

k+2

• τS
1 ≥ τS

2 ≥ τS
3 ≥ . . . ≥ τS

k+2

• If |K| ≤ |S|, the tasks Ai of K (resp. of S) are sorted in non-increasing
order according to bi + τi (resp. τi). It is sufficient to matched the first
element of K with the first element of S. When K = ∅, it is sufficient to
schedule sequentially the S-tasks remaining.

• If |K| > |S|, without lost of generality, we suppose in follows that |V | =
K + S = 2n. By Lemma 2.3, there exists a perfect matching giving an
optimal solution. Let P the set of n first-tasks, it is easy to create a better
schedule:

K

D

S

K1

P

Figure 6. Illustration of the partition of Gc

The algorithm consists first in sorting in non-increasing order the n
first-tasks according to bi + τi, and next in sorting the n second-tasks D
according to τi. We obtain P1, P2, . . . , Pn (resp. D1, D2, . . . , Dn)). We execute
{P1, D1}, after {P2, D2} etc . . .

We can deduce the length of the schedule according to the type of schedule:

(i) if there exists an idle time after the first slot, the length is 3pn+
∑

Ai∈D bi+
τ ′

n, where τ ′

n is the execution time of the treatment task Dn.



(ii) if there exists an idle time in the first slot, the length is
∑

Ai∈D∪P (bi +
τi) + (2n + 1)p − (b1 + τ1), where (b1 + τ1) concerns P1,

(iii) if there is no idle time: the algorithm is optimal and the length is∑
Ai∈D∪P (bi + τi) + 2pn.

We have S ⊆ D. We denote by K2 the set of n − |S| tasks of K which
minimizes bi. Consider D = S ∪ K2 and P = K − K2. First, we have three
types of schedule: min{

∑
Ai∈D bi}, (b1 + τ1) et τ ′

n.

This algorithm allows to obtain a scheduling with min{
∑

Ai∈D bi}. Accord-
ing to the type of scheduling (i), if the task, with the minimum τi, is in D and
if there exists an idle slot after slot 1, the algorithm is necessarily optimal.
Indeed

∑
Ai inD bi is minimal over all possible D and τ ′

n also.

Otherwise, we suppose that the task, with the minimum τi, is in P and
that there exists on the slot n an idle time γ > 0. The only possibility to
improve the schedule is to reduce τ ′

n. Let X be the set of tasks P such that
τi ≤ τ ′

n. Consider the task Ai which maximizes bi in K2, and ∀Aj ∈ X we
exchange Ai with Aj. We kept the best scheduling (it may be that one we
had already). Note that this scheduling allows to obtain a scheduling with
min{

∑
Ai inD bi + τi}.

If the best scheduling possess on the slot n an idle time γ > 0, then the
scheduling is optimal. Otherwise, we may be in the scheduling type (ii), and
the only way to improve the scheduling would be to reduce the inactivity of
the first slot. Let Y the set of tasks K2 such that τ ′

i + bi > τ1 + b1 and Ak the
task of P that minimizes bi. ∀Aj ∈ Y we exchange Ak with Aj. We kept the
best scheduling (it may be that one we had already) is necessarily optimal.

For the complexity of this algorithm, it depends essentially of the first
matching. Thus the algorithm gives an optimal solution in time O(n log(n)).
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Figure 7. Counter-example



If Gc is relaxed, there exists an instance for which a maximum matching
does not lead to an optimal solution (see Figure 7).

3 Conclusion

In this article, we design a O(nlog(n)) polynomial-time algorithm for coupled-
tasks scheduling problem in presence of treatment tasks. This work is moti-
vated by the problem of data acquisition for a torpedo. Moreover, we exhibit
an example, for a non-complete compatibility graph, for which a maximum
matching does not lead to an optimal solution. Thus, we show by exhibit
an example the limit of using maximum matching for solving coupled-tasks
scheduling problem.
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