
HAL Id: lirmm-00527915
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00527915

Submitted on 20 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel Definition and Algorithm for Chaining Fragments
with Proportional Overlaps

Raluca Uricaru, Alban Mancheron, Eric Rivals

To cite this version:
Raluca Uricaru, Alban Mancheron, Eric Rivals. Novel Definition and Algorithm for Chaining Frag-
ments with Proportional Overlaps. RECOMB-CG: Comparative Genomics, Oct 2010, Ottawa,
Canada. pp.161-172, �10.1007/978-3-642-16181-0_14�. �lirmm-00527915�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00527915
https://hal.archives-ouvertes.fr


1

Novel definition and algorithm for chaining

fragments with proportional overlaps

Raluca Uricaru, Alban Mancheron, Eric Rivals

LIRMM, CNRS and Université de Montpellier 2, Montpellier, France,
{uricaru, mancheron, rivals}@lirmm.fr

Abstract. Chaining fragments is a crucial step in genome alignment.
Existing chaining algorithms compute a maximum weighted chain with
no overlaps allowed between adjacent fragments. In practice, using local
alignments as fragments, instead of MEMs, generates frequent overlaps
between fragments, due to combinatorial reasons and biological factors,
i.e. variable tandem repeat structures that differ in number of copies be-
tween genomic sequences. In this paper, in order to raise this limitation,
we formulate a novel definition of a chain, allowing overlaps proportional
to the fragments lengths, and exhibit an efficient algorithm for com-
puting such a maximum weighted chain. We tested our algorithm on a
dataset composed of 694 genome couples and accounted for significant
improvements in terms of coverage, while keeping the running times be-
low reasonable limits.

1 Introduction

In biology, genome comparison is used for gene annotation, phylogenetic stud-
ies, and even vaccine design [12, 2, 7]. Many bioinformatics programs for whole
genome comparison involve a fragment chaining step, which seeks to maximize
the total length of the chained fragments (eg, [6]). Given the set of n shared ge-
nomic intervals, i.e. fragments, the Maximum Weighted Chain problem (MWC)
is solved in O(n log n) time by dynamic programming when overlaps between ad-
jacent fragments are forbidden [10, 1]. Alternatively, Felsner et al. showed that
this problem is a special case of the Maximum Weighted Independent Set prob-
lem in a trapezoid graph, which they solve by a sweep line algorithm over an
equivalent box order representation of the graph [5]. These algorithms [1, 5] can
be extended to handle fixed length overlap between adjacent fragments, but this
is not sufficient to deal with the large differences in fragment length obtained even
with small bacterial genomes [14]. Moreover, with those definitions the weight
does not account for overlaps. An O(n log n) time algorithm for the MWC with
Fixed Length Overlap problem was designed and used for mapping spliced RNAs
on a genome [13], but the fixed bound on overlaps remains a limitation. To raise
this limitation, we formulate the MWC with Proportional Length Overlap prob-
lem (MWC-PLO) and exhibit the first chaining algorithms allowing for overlaps
that are proportional to the fragment lengths, and whose chain weight function
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accounts for overlap. Following Felsner et al., we use the box representation of
a trapezoid graph and adapt the sweep line paradigm to this problem.

Small overlaps are often due to equality over a few base pairs at fragment ends
due to randomness, since the alphabet has only four letters. Biological structures
like tandem repeats (TR) that vary in number of copy units generate overlaps
that are large relatively to the fragments involved. To illustrate this case, let
u, v, w be words and assume the sequences of two genomes Ga, Gb are Ga = uvvw

and Gb = uvvvw, i.e. contains a variable TR of motif v. Then, uvv generates a
local alignment between Ga and Gb, as well as vvw, but both fragments overlap
over v in both Ga and Gb. As v can be arbitrary large compared to u or w,
proportional overlaps are needed to accomodate such cases.

The paper is organised as follows. Section 2 presents the chaining problem
without overlaps, Section 3 define it with proportional overlaps and set the dy-
namic programming setup and algorithm that solve it. In Section 4 we exhibit
a sweep line algorithm for this question, proves its correctness and complexities,
while we study its performances in Section 5, and conclude in Section 6.

2 Preliminaries

Boxes are axis parallel hyper-rectangles in R
k, where each genome is associated

with one axis. For simplicity, we consider the two dimensional case where k = 2,
i.e. comparing two genomes. The length on a genome of the fragment associated
with a box is the projection of that box on the corresponding axis.

Let α ∈ {1, 2} index the axis, and for any point x ∈ R
2 let Pα(x) denote

its projection on axis α. Let I be an interval of R and I be a set of disjoint
intervals of R; we denote by |I| the length of I and by |I| the sum of the lengths
of intervals in I. Let B be a box of R

2. The upper, resp. lower, corner of B

is denoted by u(B), resp. l(B). By extension, the interval corresponding to the
projection of B on axis α is denoted Pα(B). Let < denote the classical dominance
order between points of R

2.

Definition 1 (Overlap free box dominance order). Let Bx, By be two boxes
of R

2. We say that By dominates Bx, denoted Bx ≪ By, if l(By) dominates
u(Bx) in R

2. If neither Bx dominates By, nor By dominates Bx, then Bx and
By are incomparable.

Felsner et al. showed how to transform a trapezoid graph into a box order,
i.e. a set of boxes equipped with the dominance order ≪ such that pairs of
incomparable boxes are in one-to-one correspondance with trapezoid pairs linked
by edges of the graph. Hence, the Maximum Weighted Independent Set problem
in a trapezoid graph is equivalent to the MWC problem in the corresponding
box order [5]. Given an order, recall that a chain is a set of mutually comparable
elements, and a maximal element in a set is one with no other element dominating
it. Each chain has exactly one maximal element.
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3 A novel tolerance definition for the maximum weighted

chain problem in a box order

To formulate a MWC with Proportional Length Overlap problem (MWC-PLO)
in our framework, we need to redefine the dominance order to accept overlaps
that are proportional to the boxes’ projection lengths, and to propose a weight
function that truly measures the coverage on each genome. By coverage, it is
generally meant the total length of the genomic intervals covered by the selected
fragments [9]. This requires that the chain weight counts only once a subinterval
covered by several overlapping fragments.

Let r ∈ [0, 1[ represent the maximal allowed overlap ratio between any two
boxes.

Definition 2 (r tolerant dominance order). Let Bu and Bv two boxes. Bv

dominates Bu on axis α in this tolerant dominance order, denoted by Bu≪r,αBv,
if and only if

Pα(u(Bu)) − Pα(l(Bv)) ≤ r min(|Pα(Bu)| , |Pα(Bv)|).

Now, we denote by Bu ≪r Bv the fact that Bv dominates Bu if and only if for
each α ∈ {1, 2} Bu ≪r,α Bv.

It can be easily shown that the dominance between boxes implies the dom-
inance between their upper, resp. lower, corners. Moreover, this tolerant domi-
nance order is transitive (Proof in Appendix).

Property 1. Let Bt, Bu two boxes such that Bt≪rBu. Then l(Bt) < l(Bu) and
u(Bt) < u(Bu).

Property 2. The dominance order ≪r is transitive.

From Property 1, one deduces the following corollary, which will help to
compute efficiently the weight of overlapping boxes in a chain.

Corollary 1. Let Bt, Bu, Bv be three boxes such that Bt ≪r Bu ≪r Bv. Then:
(Bt ∩ Bv) ⊂ (Bu ∩ Bv).

We define the weight of a box as the sum of lengths of its projections on all
axis, and the weight of a chain of boxes as the sum of the coverages on each axis.

Definition 3 (Weight of a box, of a chain). Let B be a box and α ∈ [1, 2]. Its

weight on axis α is wα(B) := |Pα(B)|, and its weight is w(B) :=
∑2

α=1 wα(B).
Let m ∈ N and C := (B1≪r . . .≪rBm) be a chain of m boxes. The weight of C

on axis α, denoted Wα(C), is

Wα(C) :=

∣

∣

∣

∣

∣

m
⋃

i=1

Pα(Bi)

∣

∣

∣

∣

∣

,

while its weight is W (C) :=
∑2

α=1 Wα(C).
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Note also that the weight of a box only depends on the endpoints of its projection
on each axis, and hence, can be computed in constant time. Clearly, it can be
easily seen that

Wα(C) = wα(Bm) +

m−1
∑

j=1

∣

∣

∣

∣

∣

∣

Pα(Bj) \
m
⋃

l=j+1

Pα(Bl)

∣

∣

∣

∣

∣

∣

= wα(Bm) +

m−1
∑

j=1

|Pα(Bj) \ Pα(Bj+1)| by Corollary 1. (1)

The following easy property will also prove useful.

Property 3. Let Bt, Bu two boxes such that Bt≪rBu. Then

– Bt ∩ Bu is an, eventually empty, axis parallel rectangle of R
2, and

– for α ∈ [1, 2], |Pα(Bt) \ Pα(Bu)| = |Pα(Bt) \ Pα(Bt ∩ Bu)| = wα(Bt) −
wα(Bt ∩ Bu).

Now, we can define the MWC-PLO problem. Let n ∈ N, and B′ := {B2, . . . Bn−1}
be the set of input boxes. For convenience, we add two dummy boxes, B1, Bn,
such that for all 1 < i < n: B1≪rBi≪rBn. Additionally, we set w(B1) =
w(Bn) := 0. Now, the input consists in B := {B1, . . . , Bn}.

Definition 4 (MWC with Proportional Length Overlap). Let r ∈ [0, 1[, n ∈ N,
and B := {B1, . . . , Bn} a set of boxes. The MWC with Proportional Length
Overlap problem is to find in B, according to the dominance order ≪r, the chain
C that ends in Bn and whose weight W (C) is maximal.

The notation of r, B, and W (C) are valid throughout the paper. For any 1 ≤ i ≤
n, let us denote by Ci the set of chains ending in Bi, and by W (Bi) the weight
of the maximal weighted chain in Ci (not to be confounded with w(Bi)). From
now on, all the considered boxes belong to B unless otherwise specified.

3.1 A dynamic programming framework

Let us show that MWC-PLO can be solved by a dynamic programming al-
gorithm. Equation 1 suggests a recurrence equation to compute W (Bi), with
W (B1) = 0 and for all 1 < i ≤ n:

W (Bi) = max
Bj : Bj≪rBi

W (Bj) +

2
∑

α=1

|Pα(Bi) \ Pα(Bj)| . (2)

Obviously, this implies that for all 1 ≤ j < n the value of W (Bj) will be reused
for computing W (Bi) for every box Bi such that Bj≪rBi. Thus, MWC-PLO
consists of overlapping subproblems, which suits to the framework of dynamic
programming [4, chap. 15]. However, it is correct to use Equation 2 only if
our problem satisfies the condition of optimal substructures [4, chap. 15]. In
Theorem 1, we show this is true (Proof in Appendix).
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Theorem 1 (Optimality of substructures). Let m, i1, . . . , im be integers be-
longing to [1, n], and let D := (Bi1 , . . . , Bim

) be an optimal weighted chain among
the chains in Cim

. Thus, D′ := (Bi1 , . . . , Bim−1
) is an optimal weighted chain

among those in Cim−1
.

The MWC with Proportional Length Overlap can thus be solved by a dy-
namic programming algorithm, which uses two n-element arrays: W [.] and Pred[.]
to store for all 1 ≤ i ≤ n resp. the values of W (Bi) and the predecessor of Bi in
an optimal weighted chain ending in Bi. This algorithm takes O(n2) time and
O(n) space; in Section 4 we prove a more efficient algorithm for MWC-PLO.

Theorem 2. A dynamic programming algorithm (Algorithm DP) solves the MWC
with Proportional Length Overlap problem in O(n2) time and O(n) space.

4 A sweep line algorithm for MWC with Proportional Length

Overlap

Here, we exhibit a sweep line algorithm for the MWC with Proportional Length
Overlap problem (see Algorithm 1), prove it and study its complexity.

4.1 Outline of the algorithm

Following Felsner et al., we give a sweep line algorithm in which a vertical line
sweeps the boxes in the plane by increasing x-coordinates of their corners, stop-
ping at the lower left and upper right corners of each box. To avoid visiting
all possible predecessors as in the O(n2) dynamic programming algorithm when
computing the best chain ending in Bx, we maintain a set, A, of active boxes
that can compete for being the optimal predecessor in that chain. But as pre-
decessors can overlap Bx, this computation involves several steps, meaning that
W [Bx] and Pred[Bx] can be updated several times before getting their final
value; this differs from the previous algorithm.

Let P be an array containing the 2n points corresponding to l() and u()
corners of the n boxes in B. Points in P are ordered on their x-coordinates; among
the points having identical x-coordinates, lower corners are placed before upper
corners. For each point, we store to which box and to which corner it corresponds
to. In Algorithm 1, the main loop sweeps the points of P and processes in a
different manner lower (lines 8-11) and upper corners (lines 12-24). We say a box
Bx is open when the sweep line is located between l(Bx) and u(Bx) inclusive,
closed when the line has passed u(Bx), and future when it lies before l(Bx).
These states are exclusive of each other, and partition at each moment B in
three disjoint sets (see Figure 1a). All open boxes at each point are kept in a
set O (lines 9, 13). The weight of a chain ending in, say Bi, and passing by a
predecessor of Bi, Bx, can only be computed when Bx is closed (when W [Bx]
has reached its final value). If P1(u(Bx)) < P1(l(Bi)) then this can be done when
stopping at l(Bi) (lines 10-11), while if Bx overlaps Bi on x-axis, then this is
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done when stopping at u(Bx), and in the same time for all open boxes having Bx

as predecessor (lines 14-18). These two cases partition the possible predecessors
of Bi according to the location of their upper corners in two areas Ab(Bi) and
Ao(Bi) (cf. Figure 1b).

p
closed boxes

open boxes

B1

B2

B3

future boxes

(a)

Bi
r%

Bj
Bk

Ab(Bi) Ao(Bi)
Bl

(b)

Fig. 1: (a) Example of boxes in each disjoint set forming a partition of B, when sweeping
a point p. (b) Partition of the search space of possible predecessors of Bi, according
to the location of their upper corners, in two areas Ab(Bi) and Ao(Bi). Ab(Bi) and
Ao(Bi) partition the rectangle delimited by a dashed line: Ab(Bi) is at left from the
line, and Ao(Bi) at its right.

As above mentioned, we maintain in A the set of interesting predecessors for
all future boxes. Boxes in A are active boxes. Hence, once closing a box (stopping
at its upper corner), we test whether it should be turned active and inserted in
A (lines 19-21). The current box, Bi, is inserted only if we cannot find a better
predecessor in A. Afterwards, if Bi has been added, currently active boxes are
investigated to determine if they are less interesting than Bi, in which case they
are deleted from A (lines 22-24). Active boxes are consulted when opening a
box Bi, for computing the best chain ending in Bi with a predecessor in Ab(Bi)
(lines 10-11).

4.2 Correctness of the Algorithm

For 1 ≤ i ≤ n, we show that W [Bi] and Pred[Bi] stores the weight and the
predecessor of Bi in a maximum weighted chain ending in Bi. First, several
simple invariants emerge from Algorithm 1. I1: At any point, the set O contains
all open boxes. I2: Both W [Bi] and Pred[Bi] they store their final values once
u(Bi) has been processed, since they are not altered after that point. I3: Hence,
at any point all active boxes (i.e. boxes in A), which are closed boxes, satisfy
I2. For conciseness, as W [Bi] and Pred[Bi] are computed jointly, from now on
we deal only with W [Bi]. Since potential predecessors of Bi are partitioned in

Uricaru et al., LIRMM, Univ. Montpellier 2 - CNRS, Research report # 10-032, pp. 1–14, 2010.
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Algorithm 1: MWC Tolerance Box Order (P)

Data: r ∈ [0, 1[, B a set of n boxes, P an array with the 2n box corners
Result: W a vector of weights, with W [Bn] the weight of the best chain in B,

Pred a vector containing the previous boxes in the chain
begin1

sort on x coordinate(P);2

A ←− B1;3

W [B1]←− 0;4

Pred[B1]←− null;5

O ←− ∅;6

foreach p ∈ P in ascending order on x-coordinate do7

if p is a lower corner ( i.e. ∃Bi : p = l(Bi)) then8

O ←− O ∪ {Bi};9

Pred[Bi]←− arg max
Bj≪rBi,Bj∈A

(W [Bj ] +
2

P

α=1

|Pα(Bi) \ Pα(Bj)|);
10

W [Bi]←−W [Pred[Bi]] +
2

P

α=1

|Pα(Bi) \ Pα(Pred[Bi])|;
11

else /* p is an upper corner, i.e. ∃Bi : p = u(Bi) */12

O ←− O \ {Bi};13

foreach Bk ∈ O with Bi≪rBk do14

wk ←−W [Bi] +
2

P

α=1

|Pα(Bk) \ Pα(Bi)|);
15

if wk > W [Bk] then16

W [Bk]←− wk;17

Pred[Bk]←− Bi;18

B ←− arg max
u(Bj)<u(Bi),Bj∈A

(W [Bj ]);
19

if W [Bi] ≥W [B] or |P2(Bi)| > |P2(B)| then20

A ←− A∪ {Bi};21

foreach Bk ∈ A with P2(u(Bk)) > P2(u(Bi)) do22

if W [Bk] < W [Bi] and (|P2(Bk)| < |P2(Bi)| or23

P2(l(Bk)) > P2(u(Bi))) then

A ←− A \ {Bk};24

traceback(Pred[Bn]);25

end26

Uricaru et al., LIRMM, Univ. Montpellier 2 - CNRS, Research report # 10-032, pp. 1–14, 2010.
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Ab(Bi) (Figure 2a) and Ao(Bi) (Figure 2b), we will prove two invariants: I4:
partial optimality over Ab(Bi) at lower corners, and I5: optimality at upper
corners.

I4: partial optimality over Ab(Bi) at lower corners We show that after processing
l(Bi), W [Bi] stores the weight of a maximum weighted chain ending in Bi with
predecessor in Ab(Bi). Given line 10, this is equivalent to showing that no better
chain ending in Bi passes through a potential predecessor that does not belong
to A at that point, which we prove by contradiction. While processing l(Bi), A
contains a subset of boxes in Ab(Bi), but obviously none from Ao(Bi). Let B be a
closed box of B \A such that B≪rBi and w(Bi)−w(B ∩ Bi) + W [B] > W [Bi],
in other words, B makes a better predecessor for Bi than those in A. From
B≪rBi, we get

P2(u(B)) − P2(l(Bi)) ≤ r min(|P2(B)| , |P2(Bi)|) . (3)

As only two possibilities exist for B not belonging to A, we distinguish two
exclusive cases.

B was not turned active when sweeping u(B) (lines 19-21). B did not satisfy the
condition on line 20. Let B′ := arg max

Bj∈A:u(Bj)<u(B)

(W [Bj ]). Our hypothesis means

that u(B′) < u(B) and

W [B] < W [B′] (4)

|P2(B)| ≤ |P2(B
′)| . (5)

For B does not overlap Bi and u(B′) < u(B), we have B′ does not overlap
Bi on the x-axis. From u(B′) < u(B), we get P2(u(B′)) < P2(u(B)); this with
equations 3 and 5 yields

P2(u(B′)) − P2(l(Bi)) < P2(u(B)) − P2(l(Bi))

≤ r min(|P2(B)| , |P2(Bi)|)

≤ r min(|P2(B
′)| , |P2(Bi)|) . (6)

Equation 6 and B′ not overlapping Bi on the x-axis imply B′≪rBi. Finally,
from equations 4, 5, and u(B′) < u(B) we obtain:

W [B] +

2
∑

α=1

(wα(Bi) − wα(Bi ∩ B)) < W [B′] +

2
∑

α=1

(wα(Bi) − wα(Bi ∩ B′)),

and thus B′ makes a better predecessor for Bi than B, a contradiction.

B was inactivated when sweeping u(Bk) for some box Bk ending before l(Bi)
(lines 22-24). The hypothesis means that B was deleted from A for it satisfied
P2(u(Bk)) < P2(u(B)), W [B] < W [Bk], and at least one of the conditions (a)
|P2(B)| < |P2(Bk)| or (b) P2(u(Bk)) < P2(l(B)).

Uricaru et al., LIRMM, Univ. Montpellier 2 - CNRS, Research report # 10-032, pp. 1–14, 2010.
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a) As above (see Eq. 6), from Equation 4, from |P2(B)| < |P2(Bk)|, and
P2(u(Bk)) < P2(u(B)), we get

P2(u(Bk)) − P2(l(Bi)) < r min(|P2(Bk)| , |P2(Bi)|) . (7)

Moreover, as Bk does not overlap Bi on x-axis, we obtain Bk≪rBi. As
P2(u(Bk)) < P2(u(B)), Bk and B do not overlap Bi on x-axis, and W [B] <

W [Bk], we finally derive

W [B] +

2
∑

α=1

|Pα(Bi) \ Pα(B)|) < W [Bk] +

2
∑

α=1

|Pα(Bi) \ Pα(Bk)|) . (8)

b) By hypothesis, we know that P2(u(Bk)) < P2(l(B)) < P2(l(Bi)), and since
neither Bk nor B overlap Bi on the x-axis, we directly obtain Bk ≪ Bi

(Bi ∩ Bk = ∅). Thus, W [B] < W [Bk] also implies Equation 8.

With either condition (a) or (b), Bk makes a better predecessor for Bi than
B, a contradiction.

Finally, after processing l(Bi), W [Bi] stores the weight of a maximum weighted
chain ending in Bi with predecessor in Ab(Bi), which concludes the proof of I4.

Bi
r%

B2

B3Ab(Bi)

B1

(a)

Bi
r%Bk

B'
B

(b)

Fig. 2: (a) When the sweep line passes l(Bi), Pred[Bi] is a partial optimum on the set
of possible predecessors of Bi lying in Ab(Bi). In the example, B3 is the best current
predecessor of Bi. (b) When the sweep line passes u(Bk), Pred[Bi] is a partial optimum
on the set of possible predecessors of Bi from Ab(Bi) ∪ {B ∈ Ao(Bi)/P1(u(B)) <
P1(u(Bk))}.

I5: optimality at upper corners. We show that after processing u(Bi), W [Bi]
stores W (Bi) (a mwc with a predecessor in Ab(Bi)∪Ao(Bi)). As all predecessors
of Bi are closed, let us denote by B, the right most predecessor of Bi on the
x-axis: B := arg maxBj≪rBi

(P1(u(Bj))).

Uricaru et al., LIRMM, Univ. Montpellier 2 - CNRS, Research report # 10-032, pp. 1–14, 2010.
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1. If u(B) ∈ Ab(Bi) then all predecessors of Bi are contained in Ab(Bi). Hence,
this situation was handled when processing l(Bi), and Invariant I4 regarding
the partial optimality at lower corners, ensures that W [Bi] stores W (Bi).

2. If u(B) ∈ Ao(Bi), W [Bi] has been correctly updated (lines 14-18), while Bi

was open, when sweeping u(Bk) for each box Bk ∈ B such that Bk≪rBi and
u(Bk) ∈ Ao(Bi).

Hence, all predecessors of Bi have been taken into account, and W [Bi] stores
W (Bi). This concludes the proof of I5, and closes the correctness proof.

4.3 Time and space analysis

Obviously, the sets O and A contain at most n boxes, and thus require to-
gether with arrays Pred[.] and W [.], O(n) space. We use balanced binary search
trees (BST) to store A and O, with boxes at the leaves ordered on P2(u(.)),
resp. P1(l(.)). Hence, the amortized time needed for all insertions, deletions,
and rebalancing is O(n log n). However, looking for the active boxes that can be
deleted at each execution of the outer loop (lines 22-24) may force us to exam-
ine all boxes in A. As this is the more complex operation in the outer loop, we
obtain an O(n2) worst case time complexity. Algorithm 1 maintains the subset
of potential predecessors in A instead of searching through the whole box set
as in Algorithm DP. The experimental running times observed when performing
694 whole genome comparisons show that, with this difference yields substantial
improvements: Algorithm 1 takes seconds or, sometimes, minutes, where Algo-
rithm DP, which is truly quadratic, takes minutes or hours, and even days, for
values of n ranging from 71 to 1, 000, 000 fragments.

5 Results

An issue is whether allowing for overlaps improves the chain weight (here, the
genome coverage) when comparing genomes, and at which computational cost.
To investigate this issue, we compared the running times and coverages obtained
without (using Chainer) and with proportional overlaps (using Algorithm 1) on
694 pairwise genome comparisons. Our comparison set consists in all pairwise
genome comparisons of strains of the same bacteria (intra-species comparisons)
as of Jan 2010: it comprises 346 different genomes from 87 species retrieved from
Genome Reviews database [8]. First, we searched for local alignments between
genome pairs using YASS with default parameters [11]. The output local align-
ments are the fragments given as input to the chaining step, for which we ran in
parallel Chainer and Algorithm 1, with the weight of a fragment on each genome
being the length of the aligned sequence. We authorized overlaps measuring up
to 10% of the fragments’ lengths (r = 0.1). Hence, the total chain weight, i.e.
the sum of the chained fragments lengths minus the overlaps, computed by the
chaining step gives the genome coverage, which we report as a percentage of
the genome length. Of course as both chaining algorithms provide an optimal
solution in their setup, the coverage with overlaps is larger than without overlaps.

Uricaru et al., LIRMM, Univ. Montpellier 2 - CNRS, Research report # 10-032, pp. 1–14, 2010.



Chaining fragments with proportional overlaps 11

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●

0
1
0

2
0

3
0

4
0

5
0

6
0

c
o
v
e
ra

g
e
%

 d
if
fe

re
n
c
e
s

(a)

0
5

1
0

1
5

2
0

ru
n
n
in

g
 t

im
e
s
 i
n
 s

e
c
o
n
d
s

(b)

Fig. 3: (a) Differences in coverage obtained on bacterial genome comparisons between
our algorithm and the classical chaining. The difference expresses which percentage of
the genomes are additionally covered when allowing for overlaps. The results presented
in a box-and-whiskers plot show the improvement in coverage brought by the accep-
tance of overlaps in the chain: in 50% of the cases it covers 15% more of the genomes.
(b) Running times in seconds of our algorithm: in 75% of the cases the algorithm needs
less than 10 seconds.
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Figure 3a plots the difference of coverages between both algorithms (e.g., a
value of 10 meaning that chaining with overlaps covers 10% of the genome more
than without overlaps). The box-and-whiskers plot shows that the improvement
has a median of 15% and reaches values up to 60%. Since bacterial genomes
have a median length of 2.8 Mbp, a difference of one percent means at least 28
Kbp of additionally aligned sequences. Knowing that in average 87% of these
genomes are coding and bacterial genes are 1 Kbp long [15], 15% more coverage
will involve 420 additional genes compared to a solution without overlaps.

Chainer takes < 1 s. in average and at most 17 s. We plot the running times
of Algorithm 1 in Figure 3b: below 10 seconds in 75% of the comparisons, and
between 3 and 54 minutes in only 30 cases (those having up to one million input
fragments). Thus, allowing for overlaps improves the coverage significantly at a
reasonable cost.

A biological question regards the causes of such overlaps. For example, when
comparing strains CP000046 and BA000018 of S. aureus the classical chaining
results in a coverage of 65%, where Algorithm 1 yields a 94% coverage. In fact,
the chain obtained without allowing overlaps is interrupted by 17 holes of more
than 10 kbp each. For 14 of these holes, at least one large fragment (average size
37 kbp) was not included in the chain, because of an overlap with an adjacent
fragment on one or both genomes. All overlaps measure between 1 bp and 1.8
kbp in length (average at 218 bp). This example shows that overlaps’ lengths
cannot be easily bounded by a constant. Large overlaps are due to variable
tandem repeat structures that differ in number of copies between the strains.
Correctly aligning such structures without breaking the region in two overlapping
fragments requires a more general alignment model and specific algorithms [3].

6 Conclusion

To fulfil new needs in computational biology, we extended the classical frame-
work of Maximum Weighted Chain by authorizing overlap between fragments in
the computed chain, and formalized the Maximum Weighted Chain with Propor-
tional Length Overlap problem where overlaps are proportional to the fragment
lengths. Difficulties arise from the fact that the weights of overlaps are deduced
from the chain weight. We exhibited the first two algorithms for this problem,
which both solve it in quadratic time in function of the number of fragments.
Experiments on real data sets show that i/ overlaps improve significantly the
coverage of genomes (median of 15%), ii/ our sweep line algorithm outperforms
the truly quadratic dynamic programming solution in practice. However, the
study of the average time complexity of the sweep line algorithm remains open.
Comparing with fixed overlaps, as well investigating the robustness with respect
to ratio of allowed overlaps are future lines of research.
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A Additional proofs

Proof (Proof of Property 2(transitivity of ≪r)). Let Bt, Bu, Bv be three boxes
such that Bt ≪r Bu and Bu ≪r Bv. We will show that Bt ≪r Bv. Let α ∈ {1, 2}.
By hypothesis and from Property 1, we obtain both l(Bt) < l(Bu) < l(Bv) and
u(Bt) < u(Bu) < u(Bv). From these we get both

Pα(u(Bt)) − Pα(l(Bv)) < Pα(u(Bt)) − Pα(l(Bu)) ≤ r min(|Pα(Bt)| , |Pα(Bu)|),
(9)

and

Pα(u(Bt)) − Pα(l(Bv)) < Pα(u(Bu)) − Pα(l(Bv)) ≤ r min(|Pα(Bu)| , |Pα(Bv)|) .

(10)
When combined, these equations imply

Pα(u(Bt)) − Pα(l(Bv)) ≤ r min(|Pα(Bt)| , |Pα(Bu)| , |Pα(Bv)|)

≤ r min(|Pα(Bt)| , |Pα(Bv)|)),

and hence Bt≪rBv.

Proof (Proof of Theorem 1 (Optimality of substructures)). By hypothesis, Equa-
tion 1 and Property 3, one has

W (D) = W (Bim
)

= w(Bim
) +

im−1
∑

j=i1

∑

α

|Pα(Bj) \ Pα(Bj+1)|

= w(Bim
) − w(Bim

∩ Bim−1
) + w(Bim−1

) +

im−2
∑

j=i1

∑

α

|Pα(Bj) \ Pα(Bj+1)|

= w(Bim
) − w(Bim

∩ Bim−1
) + W (D′) .

We proceed by contradiction and assume that E′, rather than D′, is an optimal
weighted chain ending in Bim−1

, i.e. W (E′) > W (D′). Consider the chain E :=
D′ ∪ {Bim

}. By the same reasoning as above, one has

W (E) = w(Bim
) − w(Bim

∩ Bim−1
) + W (E′),

and hence, W (E) > W (Bim
), contradicting the hypothesis that D is an optimal

weighted chain ending in Bim
. MWC-PLO satisfies the condition of substruc-

tures’ optimality.
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