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Abstract

A graph is planar if it can be embedded on the plane without edge-crossing. A graph is
2-outerplanar if it has a planar embedding such that the subgraph obtained by removing
the vertices of the external face is outerplanar (i.e. with all its vertices on the external
face). An orientedk-coloring of an oriented graphG is a homomorphism fromG to an
oriented graphH of orderk. We prove that every oriented triangle-free planar graph has an
oriented chromatic number at most 40, that improves the previous known bound of 47 due
to Borodin and Ivanova [Borodin, O. V. and Ivanova, A. O.,An oriented colouring of planar
graphs with girth at least 4, Sib. Electron. Math. Reports, vol. 2, 239-249, 2005]. We also
prove that every oriented 2-outerplanar graph has an oriented chromatic number at most 40,
that improves the previous known bound of 67 due to Esperet and Ochem [Esperet, L. and
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1 Introduction

Oriented graphs are directed graphs without loops nor opposite arcs. For an oriented
graphG, we denote byV(G) its set of vertices and byA(G) its set of arcs. For two
adjacent verticesu andv, we denote by−→uv the arc fromu to v or simply u ∼ v
whenever its orientation is not relevant (therefore,u∼ v = −→uv or u∼ v = −→vu). The
number of vertices ofG is theorder of G.

An oriented k-coloringof an oriented graphG is a mappingϕ from V(G) to a
set of k colors such that(1) ϕ(u) 6= ϕ(v) whenever−→uv is an arc inG, and (2)
ϕ(u) 6= ϕ(x) whenever−→uv and−→wx are two arcs inG with ϕ(v) = ϕ(w). In other
words, an orientedk-coloring ofG is a partition of the vertices ofG into k stable
setsS1,S2, . . . ,Sk such that all the arcs between any pair of stable setsSi andSj have
the same direction (either fromSi to Sj , or from Sj to Si). Theoriented chromatic
numberof an oriented graph, denoted byχo(G), is defined as the smallestk such
thatG admits an orientedk-coloring.

Let G andH be two oriented graphs. Ahomomorphismfrom G to H is a mapping

ϕ : V(G) →V(H) that preserves the arcs:
−−−−−→
ϕ(x)ϕ(y) ∈ A(H) whenever−→xy∈ A(G).

An orientedk-coloring ofG can be equivalently defined as a homomorphism from
G to H, whereH is an oriented graph of orderk. The existence of such a homomor-
phism fromG to H is denoted byG→ H. The vertices ofH are calledcolors, and
we say thatG is H-colorable. The oriented chromatic number ofG can then be de-
fined as the smallest order of an oriented graphH such thatG→ H. Links between
colorings and homomorphisms are presented in more details in the monograph [7]
by Hell and Nešetřil.

The notion of oriented coloring introduced by Courcelle [5]has been studied by
several authors in the last decade and the problem of bounding the oriented chro-
matic number has been investigated for various graph classes: outerplanar graphs
(with given girth) [13,15], 2-outerplanar graphs [6], planar graphs (with given
girth) [1–4,10,12,14], graphs with bounded maximum average degree [3,4], graphs
with bounded degree [8], graphs with bounded treewidth [11,15,16], and graph
subdivisions [18].

A graph isplanar if it can be embedded on the plane without edge-crossing. The
girth of a graph is the length of a shortest cycle.

Theorem 1 gives the current best known bounds on oriented chromatic number of
planar graphs.

Theorem 1 [1–4,12] Let G be a planar graph.

(1) If G has girth at least 12, thenχo(G) ≤ 5 [3] (this bound is tight).
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(2) If G has girth at least 7, thenχo(G) ≤ 7 [1].
(3) If G has girth at least 6, thenχo(G) ≤ 11 [4].
(4) If G has girth at least 5, thenχo(G) ≤ 16 [12].
(5) If G has girth at least 4, thenχo(G) ≤ 47 [2].
(6) If G has no girth restriction, thenχo(G) ≤ 80 [14].

A graph is2-outerplarnar if it has a planar embedding such that the subgraph
obtained by removing the vertices of the external face is outerplanar (i.e. with all
its vertices on the external face).

In 2007, Esperet and Ochem [6] studied the structural properties of 2-outerplanar
graphs. By means of these properties, they proved the following:

Theorem 2 [6] Let G be a 2-outerplanar graph. Thenχo(G) ≤ 67.

As mentioned above, if a graphG admits a homomorphism to an oriented graph
H of order k, thenG has an oriented chromatic numberk. Hence, a way to get
bounds on the oriented chromatic number of a graph familyF is to find a universal
target graphH such that, for every graphG ∈ F , we haveG → H. Such a result
can be obtained if the target graphH has “interesting” structural properties that
can be used to prove the existence of the homomorphism; thus an important part
of the task is to construct such a target graph. In this paper,we first describe the
construction of the graphT40 in Section 2, an oriented graph on 40 vertices which
has very useful properties for oriented coloring of planar graphs.

These structural properties ofT40 allow us to prove that every oriented triangle-
free planar graph admits a homomorphism toT40; this gives the following theorem,
which improves Theorem 1(5).

Theorem 3 Let G be a triangle-free planar graph. Thenχo(G) ≤ 40.

We also show that every oriented 2-outerplanar graph admitsa homomorphism to
T40; this allows us to improves Theorem 2.

Theorem 4 Let G be a 2-outerplanar graph. Thenχo(G) ≤ 40.

In the remainder, we use the following notions. The set of vertices (resp. arcs, faces)
of a graphG is denoted byV(G) (resp.A(G), F(G)). For a vertexv of a graphG,
we denote byd−

G(v) its indegree, by d+
G(v) its outdegree, and bydG(v) its degree

(subscripts are omitted when the considered graph is clearly identified from the
context). We denote byN+

G (v) the set of outgoing neighbors ofv, by N−
G (v) the set

of incoming neighbors ofv and byNG(v) = N+
G (v)∪N−

G (v) the set of neighbors ofv.
A vertex of degreek (resp. at leastk, at mostk) is called ak-vertex(resp.≥k-vertex,
≤k-vertex). If a vertexu is adjacent to ak-vertex (resp.≥k-vertex,≤k-vertex)v,
thenv is ak-neighbor(resp.≥k-neighbor,≤k-neighbor) of u. A path of lengthk (i.e.
formed byk edges) is called ak-path. For a facef of a graphG, its length is denoted
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by dG( f ) (subscripts are omitted when the considered graph is clearly identified
from the context). IfdG( f ) = k (resp.dG( f ) ≤ k, dG( f ) ≥ k), then f is called a
k-face(resp.≤k-face, ≥k-face). If two graphsG andH are isomorphic, we denote
it by G∼= H. Given a planar graphG with its embedding in the plane and a vertex
v of G, we say that a subset{u1,u2, . . . ,uk} of neighbors ofv areconsecutiveif
u1,u2, . . . ,uk appear aroundv consecutively (clockwise or counterclockwise) inG.

The paper is organised as follows. The next section is devoted to the target graph
T40 and some of its properties. We prove Theorem 3 in Section 3 andTheorem 4 in
Section 4.

2 The Tromp graph T40

In this section, we describe the construction of the target graphT40 used to prove
Theorems 3 and 4 and give some useful properties.

Tromp’s constructionwas proposed by Tromp [17]. LetG be an oriented graph and
G′ be an isomorphic copy ofG. The Tromp graphTr(G) has 2|V(G)|+2 vertices
and is defined as follows:

• V(Tr(G)) = V(G)∪V(G′)∪{∞,∞′}

• ∀u∈V(G) : −→u∞,
−→
∞u′,

−−→
u′∞′,

−→
∞′u∈ A(Tr(G))

• ∀u,v∈V(G),−→uv∈ A(G) : −→uv,
−→
u′v′,

−→
vu′,

−→
v′u∈ A(Tr(G))

Figure 1 illustrates the construction ofTr(G). We can observe that, for everyu∈
V(G)∪{∞}, there is no arc betweenu andu′. Such pairs of vertices will be called
twin vertices, and we denote byt(u) the twin vertex ofu. Remark thatt(t(u)) = u.
This notion can be extended to sets in a standard way: for a given W ⊆ V(G),
W = {v1,v2, . . . ,vk}, thent(W) = {t(v1), t(v2), . . . , t(vk)}.

By construction, the graphTr(G) satisfies the following property:

∀u∈ Tr(G) : N+(u) = N−(t(u)) andN−(u) = N+(t(u))

In the remainder, we focus on the specific graph family obtained via the Tromp’s
construction applied to Paley tournaments. For a prime power p ≡ 3 (mod 4),
the Paley tournament QRp is defined as the oriented graph whose vertices are
the integers modulop and such that−→uv is an arc if and only ifv− u is a non-
zero quadratic residue ofp. For instance, the Paley tournamentQR19 has vertex
setV(QR19) = {0,1, . . . ,18} and−→uv∈ A(QR19) wheneverv−u≡ r (mod 19) for
r ∈ {1,4,5,6,7,9,11,16,17}. Note that the bounds of Theorems 1(2) and 1(3),
have been obtained by proving that all the graphs of the considered classes admit
a homomorphism to the Paley tournamentsQR7 andQR11, respectively. Moreover,
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Fig. 1. The Tromp graphTr(G).

the bound of Theorem 1(4) has been obtained by proving that all the graphs of the
considered class admit a homomorphism to the Tromp graphTr(QR7).

Let T40 = Tr(QR19) be the Tromp graph on 40 vertices obtained fromQR19. In the
remainder of this paper, the vertex set ofT40 isV(T40) = {0,1, . . . ,18, ∞,0′,1′, . . . ,18′,∞′}
where{0,1, . . . ,18} is the vertex set of the first copy ofQR19 and{0′,1′, . . . ,18′}
is the vertex set of the second copy ofQR19; thus, for everyu ∈ {0,1, . . . ,18,∞},
we havet(u) = u′. In addition, for everyu ∈ V(T40), we have by construction
|N+

T40
(u)|= |N−

T40
(u)|= 19. The graphT40 has remarkable symmetry and some use-

ful properties given below.

Proposition 5 [9] For any QRp, the graph Tr(QRp) is such that:

∀u∈V(Tr(QRp)) : N+(u) ∼= QRp and N−(u) ∼= QRp

Proposition 6 [9] For any QRp, if {a1,a2,a3} and {b1,b2,b3} span triangles t1
and t2 respectively in Tr(QRp) and the mapψ taking ai to bi (1 ≤ i ≤ 3) is an
isomorphism t1 → t2, thenψ can be extended to an automorphism of Tr(QRp).

It is then clear thatTr(QRp) is vertex-transitive and arc-transitive.

For an oriented graphG and a vertexv, pushing vmeans reversing the orientation
of every arc incident tov.

Proposition 7 (Push Property) Let G be an oriented graph such that G→Tr(QRp).
Then, for any vertex v of G, the graph G′ obtained from G by pushing v admits a
homomorphism to Tr(QRp).

Proof. Let ϕ be aTr(QRp)-coloring of G. For everyw ∈ V(Tr(QRp)), we have
N+

Tr(QRp)
(w) = N−

Tr(QRp)
(t(w)) and N−

Tr(QRp)
(w) = N+

Tr(QRp)
(t(w)). Therefore, the

mappingϕ′ : V(G′)→V(Tr(QRp)) defined byϕ′(u) = ϕ(u) for all u∈V(G′)\{v}
andϕ′(v) = t(ϕ(v)) is clearly aTr(QRp)-coloring ofG′. 2

An orientation n-vectoris a sequenceα = (α1,α2, . . . ,αn) ∈ {0,1}n of n elements.
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Let S= (v1,v2, . . . ,vn) be a sequence ofn (not necessarily distinct) vertices ofT40.
The vertexu is said to be anα-successor of Sif for any i, 1 ≤ i ≤ n, we have
−→uvi ∈ A(T40) wheneverαi = 1 and−→viu∈ A(T40) otherwise. For instance, the vertex

3′ of T40 is a (1,1,0,1,1,0)-successor of(1,2,6′,1,∞′,2′) since the arcs
−→
3′1,

−→
3′2,

−→
6′3′,

−−→
3′∞′, and

−→
2′3′ belong toA(T40).

If, for a sequenceS= (v1,v2, . . . ,vn) of n vertices ofT40 and an orientationn-
vectorα = (α1,α2, . . . ,αn), there existi 6= j such thatvi = v j andαi 6= α j , then
there does not exist anyα-successor ofS; indeed,T40 does not contain opposite
arcs. In addition, if there existi 6= j such thatvi = t(v j) andαi = α j , then there
does not exist anyα-successor ofS; indeed, for any pair of verticesx andy of T40

with x= t(y), we haveN+
T40

(x)∩N+
T40

(y) = /0 andN−
T40

(x)∩N−
T40

(y) = /0. A sequence
S= (v1,v2, . . . ,vn) of n vertices ofT40 is said to becompatiblewith an orientation
n-vectorα = (α1,α2, . . . ,αn) if and only if for anyi 6= j, we haveαi 6= α j whenever
vi = t(v j), andαi = α j whenevervi = v j . Note that if then vertices ofSinduce ann-
clique subgraph ofT40 (i.e.v1,v2, . . . ,vn are pairwise distinct and induce a complete
graph), thenS is compatible with any orientationn-vector since a vertexu and its
twin t(u) cannot belong together to the same clique.

In the remainder, we say thatT40 hasProperty Pn,k if, for every sequenceS of
n vertices ofT40 that form ann-clique and any orientationn-vector α which is
compatible withS, there existk α-successors ofS.

Proposition 8 If, for a fixedα = (α1,α2, . . . ,αn), every n-clique S of T40 admits k
α-successors, then there exist kα′-successors of S for everyα′ = (α′

1,α
′
2, . . . ,α

′
n).

Proof. Assume that everyn-clique admitk α-successors. LetS= (u1,u2, . . . ,un)
be an-clique ofT40 andα′ = (α′

1,α
′
2, . . . ,α

′
n) be an orientationn-vector. Then let

S′ = (v1,v2, . . . ,vn) defined such thatvi = ui if α′
i = αi andvi = t(ui) otherwise.

Due to the structure ofT40 (i.e. if x∼ y belongs toA(T40), thent(x) ∼ y, x∼ t(y)
andt(x)∼ t(y) belongs toA(T40)), S′ is ann-clique ofT40. By hypothesis,S′ admits

k α-successorsw1,w2, . . . ,wk. Since
−−→
yt(x) ∈ A(T40) if −→xy∈ A(T40), we clearly have

thatwi is anα′-successor ofS for everyi. 2

Proposition 9 The graph T40 has Properties P1,19, P2,9, P3,4, and P4,1.

Proof. By Proposition 5, we have|N+(u)| = |N−(u)| = 19 for every vertexu of
T40; thereforeT40 has PropertyP1,19.

It is obvious thatQR19 has propertiesP1,9 (for every vertexu of QR19, we have
|N+(u)|= |N−(u)|= 9). Borodin et al. [4] proved thatQR19 has propertiesP2,4 and
P3,1. We will show in the remainder of this proof that ifQR19 has propertiesPn−1,k,
thenT40 have propertyPn,k, that will complete the proof.
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Suppose thatQR19 has propertyPn−1,k and letα = (α1,α2, . . . ,αn) be a given orien-
tationn-vector. LetS= (u1,u2, . . . ,un−1,w) be a inducedn-clique ofT40. If αn = 0,
we defineS′ = (v1,v2, . . . ,vn−1,w) such thatvi = ui if −→uiw andvi = t(ui) if −→wui .
Hence,S′ is ann-clique ofT40 such that

S

i vi ⊆ N−(w). By Proposition 5,N−(w) =
K19

∼= QR19, and therefore the(n− 1)-clique S′′ = (v1,v2, . . . ,vn−1) belongs to
K19. Then by PropertyPn−1,k of QR19, there existk (α′

1,α
′
2, . . . ,α

′
n−1)-successors

x1,x2, . . . ,xk of S′′ in K19, with α′
i = αi (resp.α′

i = 1−αi) if ui = vi (resp.ui = t(vi)).
The xi ’s are clearly in-neighbors ofw and hence, they are(α′

1,α
′
2, . . . ,α

′
n−1,αn)-

successorsS′, and thus there existk α-successors ofS. Proportion 8 allows us to
conclude.

The caseαn = 1 would be treated similarly: We would have chosenS′ =(v1,v2, . . . ,vn−1,w)
is such a way that

S

i vi ⊆ N+(w). 2

3 Proof of Theorem 3

In this section, we prove Theorem 3, that is, every oriented triangle-free planar
graphG admits a homomorphism toT40.

Recall that Borodin et al. [2] proved that every oriented triangle-free planar graph
G admits a homomorphism toQR47. This proof was only published in Russian.
Our proof is highly inspired from the above-mentioned paper. Indeed, our list of
forbidden configurations is designed to fit with Borodin’s discharging procedure
up to a slight modification in Rule (R3).

Let us define the partial order�. Let n3(G) be the number of≥3-vertices inG.
For any two graphsG1 andG2, we haveG1 ≺ G2 if and only if at least one of the
following conditions hold:

• |V(G1)| < |V(G2)| andn3(G1) ≤ n3(G2).
• n3(G1) < n3(G2).

Note that the partial order� is well-defined and is a partial linear extension of the
induced subgraph poset.

Let H be a hypothetical minimal counterexample to Theorem 3 according to≺. We
first prove thatH does not contain a set of ten configurations listed in Lemma 10.
Then, using a discharging procedure, we show that an oriented triangle-free planar
graph contains at least one of the ten configurations of Lemma10, contradicting
the fact thatH is a triangle-free planar graph.
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v3 v2
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v2

v3 v
v4 v′4

4≤ k≤ 6

vk v′k

(e) C6

Fig. 2. ConfigurationsC2–C6.

3.1 Structural properties of H

In the following,H is a triangle-free planar graph given with its embedding in the
plane. Aweak7-vertex uin H is a 7-vertex adjacent to four 2-verticesv1, . . . ,v4

and three≥3-verticesw1,w2,w3 in such a way that the sequence of neighbors ofv
appear asv1,w1,v2,w2,v3,w3,v4 (clockwise or counterclockwise).

Lemma 10 The graph H does not contain the following configurations:

(C1) a≤1-vertex;
(C2) a k-vertex adjacent to k2-vertices for2≤ k≤ 39;
(C3) a k-vertex adjacent to(k−1) 2-vertices for2≤ k≤ 19;
(C4) a k-vertex adjacent to(k−2) 2-vertices for3≤ k≤ 10;
(C5) a3-vertex;
(C6) a k-vertex adjacent to(k−3) 2-vertices for3≤ k≤ 6;
(C7) two vertices u and v linked by three distinct2-paths whose the internal vertex

of two of them is a2-vertex;
(C8) two vertices u and v linked by two distinct2-paths whose the internal vertex

them is a2-vertex;
(C9) a4-face wxyz such that x is 2-vertex, w and y are weak7-vertices, and z is a

k-vertex adjacent to(k−3) 2-vertices for3≤ k≤ 8;
(C10) a4-face wxyz such that x is 2-vertex, w and y are weak7-vertices, and z is a

k-vertex adjacent to(k−4) 2-vertices for4≤ k≤ 7;

The drawing conventions for aconfiguration Ccontained in a graphG are the fol-
lowing. If u andv are two vertices ofC, then they are adjacent inG if and only if
they are adjacent inC. Moreover, the neighbors of awhitevertex inG are exactly
its neighbors inC, whereas ablackvertex may have neighbors outside ofC. Two or
more black vertices inC may coincide in a single vertex inG, provided they do not
share a common white neighbor. Finally, an edge will represent an arc with any of
its two possible orientations. Configurations(C2)–(C10) are depicted in Figures 2
and 3.

Let G be an oriented graph,v be ak-vertex withN(v) = {v1,v2, . . . ,vk} andα be
an orientationk-vector such thatαi = 0 whenever−→viv∈ A(G) andαi = 1 otherwise.
Let ϕ be aT40-coloring ofG\ {v} andS= (ϕ(v1),ϕ(v2), . . . ,ϕ(vk)). Recall that a
necessary condition to haveα-successors ofS is thatα must be compatible with
S, that is for any pair of verticesvi andv j , ϕ(vi) 6= ϕ(v j) wheneverαi 6= α j and

8



ϕ(vi) 6= t(ϕ(v j)) wheneverαi = α j . Hence, every vertexv j forbids one color for
each vertexvi , i ∈ [1,k], i 6= j. We definef ϕ

vi (v j) to be the forbidden color forvi

by ϕ(v j) (i.e. f ϕ
vi (v j) = ϕ(v j) wheneverαi 6= α j and f ϕ

vi (v j) = t(ϕ(v j)) whenever
αi = α j ). Therefore,α is compatible withS if and only if we haveϕ(vi) 6= f ϕ

vi (v j)
for every pairi, j, 1≤ i < j ≤ k. Note that ifϕ(vi) 6= f ϕ

vi (v j), then we necessarily
haveϕ(v j) 6= f ϕ

v j (vi).

For each configuration, we suppose thatH contains it and we consider a triangle-
free reductionH ′ such thatH ′ ≺ H; therefore, by minimality ofH, H ′ admits a
T40-coloringϕ. We will then show that we can chooseϕ so that it can be extended
to H by Proposition 9, contradicting the fact thatH is a counterexample.

In the remainder, ifH contains a configuration, thenH∗ will denote the graph ob-
tained fromH be removing all the white vertices from this configuration.

Proof of Configuration (C1). Trivial. 2

Proof of Configuration (C2). Suppose thatH contains the configuration depicted
in Figure 2(a) and letϕ be aT40-coloring ofH∗. Let F = { f ϕ

v (v′1), . . . , f ϕ
v (v′k)} be

the set of forbidden colors forv. Any T40-coloring ofH∗ can be extended toH since
|F| ≤ 39. 2

Proof of Configuration (C3). Suppose thatH contains the configuration depicted
in Figure 2(b) and letϕ be aT40-coloring ofH∗. Let F = { f ϕ

v (v′1), . . . , f ϕ
v (v′k)} be

the set of forbidden colors forv. By PropertyP1,19, ϕ can be extended toH since
|F| ≤ 18. 2

Proof of Configuration (C4). Suppose thatH contains the configuration depicted
in Figure 2(c) and letϕ be aT40-coloring ofH ′ = H \{v3, . . . ,vk}. Then, we clearly
haveϕ(v1) 6= f ϕ

v1(v2) sincev is colored inH ′. Therefore, by PropertyP2,9, there

exist anT40-coloringϕ′ of H ′ so thatϕ′(v) /∈ { f ϕ′

v (v′3), . . . , f ϕ′

v (v′k)}. The coloring
ϕ′ can be extended toH. 2

Proof of Configuration (C5). Suppose thatH contains the configuration depicted
in Figure 2(d). LetH ′ be the graph obtained fromH∗ by adding, for every 1≤ i <
j ≤ 3, a 2-path joiningvi to v j with the same orientation as the path[vi ,v,v j ] in
H. Since Configurations(C1)–(C4) are forbidden,dH(vi) ≥ 3 for 1≤ i ≤ 3; we
thus haveH ′ ≺ H sincen3(H ′) = n3(H)−1, andH ′ is clearly triangle-free. Any
T40-coloringϕ of H ′ induces a coloring ofH∗ such thatϕ(vi) 6= f ϕ

vi (v j) for any i, j,
1≤ i < j ≤ 3. Then PropertyP3,4 allows us to extendϕ to H. 2

9
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Fig. 3. ConfigurationsC7–C10.

Proof of Configuration (C6). Suppose thatH contains the configuration depicted
in Figure 2(e). Letϕ be aT40-coloring ofH ′ = H \ {v4, . . . ,vk}. Then, we clearly
haveϕ(vi) 6= f ϕ

vi (v j), for all 1≤ i ≤ j ≤ 3, sincev is colored inH ′. Therefore, by

PropertyP3,4, there exists aT40-coloringϕ′ of H ′ such thatϕ′(v) /∈{ f ϕ′

v (v′4), . . . , f ϕ′

v (v′k)}.
2

Proof of Configuration (C7). Suppose thatH contains the configuration depicted
in Figure 3(a). LetH ′ be the graph obtained fromH∗ by adding a 2-pathuv′w
betweenu andw such thatuv′w is directed if and only ifuvw is not directed. We
have thatH ′ ≺ H since |V(H ′)| = |V(H)| − 1 andn3(H ′) = n3(H). Due to the
orientations of the 2-pathsuv′w anduvw, any T40-coloring ϕ of H ′ ensures that
ϕ(u) 6= ϕ(w) andϕ(u) 6= t(ϕ(w)). The coloringϕ can be extended toH. 2

Proof of Configuration (C8). Suppose thatH contains the configuration depicted
in Figure 3(b). LetH ′ be the graph obtained fromH∗ by adding an edge between
u andw. We have thatH ′ ≺ H since|V(H ′)| = |V(H)|−2 n3(H ′) = n3(H). Since
Configuration(C7) is forbidden, the verticesu andw are at distance at least 3 inH∗

andH ′ is therefore triangle-free. AnyT40-coloringϕ of H ′ ensures thatϕ(u) 6= ϕ(w)
andϕ(u) 6= t(ϕ(w)). The coloringϕ can be extended toH. 2

Proof of Configurations (C9) and (C10). To prove that these two configurations
are forbidden in a minimal counterexample to Theorem 3, a computer check is
needed. Indeed, PropertiesP1,19, P2,9, P3,4 andP4,1 are not sufficient.

A computer check allows us to show that for any compatible color assignment on
the black vertices (i.e. any two black vertices at distance 2in the configuration get
compatible colors) and any orientation of the arcs, the white vertices can be colored.
Therefore, that shows thatH does not contain any of these two configurations.2
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(a) R1

1

≥5-face

(b) R2

1
2

≥5-face

(c) R2

1
2

≥5-face

(d) R3

≥5-face

≥5-face

1

(e) R3

Fig. 4. Discharging rules

3.2 Discharging procedure

To complete the proof of Theorem 3, we use a discharging procedure. We define
the weight functionω by ω(x) = d(x)−4 for everyx∈V(H)∪F(H). SinceH is a
planar graph, we have by Euler formula (|V(H)|− |A(H)|+ |F(H)| = 2):

∑
v∈V(H)

ω(v)+ ∑
f∈F(H)

ω( f ) = ∑
v∈V(H)

(d(v)−4)+ ∑
f∈F(H)

(d( f )−4) = −2 < 0.

In what follows, we will define discharging rules (R1), (R2),and (R3) and redis-
tribute weights accordingly. Once the discharging is finished, a new weight function
ω∗ is produced. However, the total sum of weights is fixed by the discharging rules.
Nevertheless, we can show thatω∗(v) ≥ 0 for everyx∈ V(H)∪F(H). This leads
to the following obvious contradiction:

0≤ ∑
v∈V(H)

ω∗(v)+ ∑
f∈F(H)

ω∗( f ) = ∑
v∈V(H)

ω(v)+ ∑
f∈F(H)

ω( f ) < 0.

Therefore, no such counterexampleH exists.

The discharging rules are defined as follows:

(R1) Each≥4-vertex gives 1 to its 2-neighbors.
(R2) Each≥5-face...axb... such thata andb are 2-vertices gives 1 (resp.1

2) to x if
x is a weak 7-vertices (resp. is not a weak 7-vertex).

(R3) Each≥5-face f = ...awxyb..., such thata,b,x are 2-vertices andw,y are weak
7-vertices, either receives12 from the vertexz if wxyzis a 4-face, or receives
1 from the≥5-face f ′ = ...cwxyd... if c,d are≥4-vertices.

The discharging rules are illustrated in Figure 4: white disks (resp. black disks,
black squares) are 2-vertices (resp.≥4-vertices, weak 7-vertices).

11



3.2.1 For all vertices v,ω∗(v) ≥ 0

In the following,d≥4(v) denotes the number of neighbors ofv with degree at least 4.
In the same way,d2(v) denotes the number of neighbors ofv with degree exactly 2.
Then it is clear that, for every vertexv of H, we haved(v) = d≥4(v)+d2(v) since
H contains neither vertices of degree at most 1 by(C1), nor 3-vertices by(C5).

Let v be ak-vertex ofH. Therefore,k= d≥4(v)+d2(v). Recall that the initial charge
of v is ω(v) = k−4.

• if d≥4(v) = 0, thend2(v) = k ≥ 40 by (C2). By (R1),v givesk×1. By (C8), v
is incident tok ≥5-faces, and thereforev receivesk× 1

2 by (R2). Hence,ω∗(v) =

ω(v)−k+ k
2 ≥ 16.

• if d≥4(v) = 1, thend2(v) = k−1 ≥ 19 by (C3). By (R1), v gives(k−1)×1.
By (C8), v is incident to(k− 2) ≥5-faces whose each gives12 to v by (R2).
Moreover,v is adjacent to at most one weak 7-vertex and therefore (R3) does not
apply. Hence,ω∗(v) = ω(v)− (k−1)+ k−2

2 ≥ 6.
• if d≥4(v) = 2, thend2(v) = k− 2 ≥ 9 by (C4). By (R1), v gives (k− 2)× 1.

By (C8), v is incident to(k− 4) ≥5-faces whose each gives12 to v by (R2).
Moreover, by (R3),v gives at most12 sincev is adjacent to at most two weak
7-vertices. Hence,ω∗(v) = ω(v)− (k−2)+ k−4

2 − 1
2 ≥ 1.

• if d≥4(v) = 3, thend2(v) = k−3≥ 4 by (C5) and(C6). In each case, by (R1),v
gives(k−3)×1.

� Suppose that the three≥4-neighbors are consecutive. By(C8), v is incident to
(k−4) ≥5-faces whose each gives1

2 to v by (R2). Moreover, by (R3),v gives
at most 2× 1

2 if and only if d2(v) ≥ 6, that impliesk ≥ 9 by (C9). Hence, if
k ≤ 8, ω∗(v) = ω(v)− (k−3)+ k−4

2 ≥ 1
2; if k ≥ 9, ω∗(v) = ω(v)− (k−3)+

k−4
2 −2 · 1

2 ≥ 1
2.

� Suppose that two≥4-neighbors are consecutive. By(C8), v is incident to(k−
5) ≥5-faces whose each gives1

2 to v by (R2). Moreover, by (R3),v gives at
most 1

2 if and only if d2(v) ≥ 6, that impliesk ≥ 9 by (C9). Hence, ifk ≤ 8,
ω∗(v) = ω(v)−(k−3)+ k−5

2 ≥ 0; if k≥ 9,ω∗(v) = ω(v)−(k−3)+ k−5
2 − 1

2 ≥
1
2.

� Suppose that none of the≥4-neighbors are consecutive. By(C8), v is incident
to (k− 6) ≥5-faces whose each gives1

2 to v by (R2) if d(v) ≥ 8 or gives 1
to v by (R2) if d(v) = 7 (i.e. v is a weak 7-vertex). Moreover, (R3) does not
apply. Hence, ifd(v) = 7,ω∗(v) = ω(v)−(k−3)+1= 0; if d(v)≥ 8, ω∗(v) =
ω(v)− (k−3)+ k−6

2 ≥ 0.
• If d≥4(v) = 4, thend2(v) = k−4. By (C1), v gives(k−4)×1.

Suppose that (R3) does not apply. Then,ω∗(v) ≥ ω(v)− (k−4) = 0. Suppose
now that (R3) applies: it applies at most twice (otherwise, it would imply that a
weak 7-vertex had three consecutive 2-neighbors). Moreover, by (C10), we have
d2(v) ≥ 4, that impliesk≥ 8.

� Suppose first that (R3) applies only once; thenv gives 1
2 to the corresponding

12



4-face. Moreover, by (R2),v receivesk−7
2 . Hence,ω∗(v) = ω(v)− (k−4)+

k−7
2 − 1

2 ≥ 0.
� Suppose now that (R3) applies twice; thenv gives 2× 1

2 to the corresponding
4-faces. Moreover, by (R2),v receivesk−6

2 . Hence,ω∗(v) = ω(v)− (k−4)+
k−6

2 −2× 1
2 ≥ 0.

• Suppose finally thatd≥4(v)≥ 5. By (C1), v gives(k−d≥4(v))×1. Moreover, by

(R3), v gives at most12 ×
⌊

d≥4(v)
2

⌋

. Hence,ω∗(v) ≥ ω(v)− (k−d≥4(v))− 1
2 ×

⌊

d≥4(v)
2

⌋

≥ 0.

Thus, for everyv∈V(H), we haveω∗(v) ≥ 0 once the discharging is finished.

3.2.2 For all faces f ,ω∗( f ) ≥ 0

Let f be ak-face ofH. SinceH is triangle-free, thenk ≥ 4. Recall that the initial
charge off is ω( f ) = k−4.

• If k = 4, then no rule applies. Hence,ω∗( f ) = ω( f ) = 0
• If k = 5, thenf is incident to at most two 2-vertices by(C3). If f has no incident

2-vertices, thenω∗(v) ≥ ω( f ) = 1.
If f is incident to one 2-vertex, then only (R3) may apply and hence ω∗( f ) ≥

ω( f )−1 = 0.
If f is adjacent to two 2-verticesx andz, either the common neighbory of

x andz is weak 7-vertex either it is not. By (R2),f gives at most 1, and hence
ω∗(v) ≥ ω( f )−1 = 0.

• If k= 6, thenf is incident to at most three 2-vertices by(C3). If f has no incident
2-vertices, thenω∗(v) ≥ ω( f ) = 2.

If f is incident to one 2-vertex, then only (R3) may apply and hence ω∗( f ) ≥
ω( f )−1 = 1.

Suppose thatf is incident to two 2-vertexx andz. If x andz has a common
neighbory, by (R2), f gives at most 1, and henceω∗(v) ≥ ω( f )−1 = 0. If x
andz has no common neighbor, then only (R3)may apply at most twice. Hence,
ω∗(v) ≥ ω( f )−2×1 = 0

Finally, suppose thatf is adjacent to three 2-vertices.
� If f is incident to at most one weak 7-vertex, thenf gives at most 1×1+2×

1
2 = 2 by (R2). Hence,ω∗(v) ≥ ω( f )−2 = 0.

� If f is incident to two weak 7-vertices, thenf gives 2×1+1× 1
2 = 5

2 by (R2).
Moreover, f receives at least12 by (R3).Hence,ω∗(v) ≥ ω( f )− 5

2 + 1
2 = 0.

� If f is incident to three weak 7-vertices, thenf gives 3×1 by (R2). Moreover,
f receives at least 3× 1

2 by (R3). Hence,ω∗(v) ≥ ω( f )−3+3× 1
2 = 1

2.
• Suppose finally thatk≥ 7, and assume that (R2) appliesn times and (R3) applies

m times. It is clear thatf gives weights by (R2) to at most
⌊ k

2

⌋

vertices: hence,
n≤

⌊

k
2

⌋

. Moreover, we can easily check that we have 2n+3m≤ k. With these

13



v3

u4

v1 v2

v4

u1

u2

u3

Fig. 5. Unavoidable configuration in a 2-outerplanar graph containing neither a≤3-vertex,
nor two adjacent 4-vertices

constraints, we haven+ m = n+2n+3m
3 ≤

⌊ k
2 ⌋+k

3 , which implies thatn+ m≤
k−4 whenk≥ 7. Hence,ω∗(v) ≥ ω( f )−n−m≥ 0.

Thus, for everyf ∈ F(H), we haveω∗(v)≥ 0 once the discharging is finished, that
complete the proof.

4 Proof of Theorem 4

In this section, we prove Theorem 4, that is every oriented 2-outerplanar graphG
admits a homomorphism toT40.

Esperet and Ochem [6] proved the following structural theorem for 2-outerplanar
graphs.

Theorem 11 [6] Let G be a2-outerplanar graph. Then G contains either a≤3-
vertex, or two adjacent4-vertices, or the configuration depicted in Figure 5.

Moreover, the class of 2-outerplanar graphs is a minor-closed graph class.

To prove Theorem 4, we will consider a minimal counterexample and prove that it
cannot contain one of the configuration described in Theorem11, a contradiction.

Let H be a hypothetical minimal counterexample (with respect to the minor order)
to Theorem 4.

• It is trivial to show thatH does not contain a 1-vertex.
• Suppose thatH contains a 2-vertexv adjacent tou1 andu2. Let H ′ be the graph

obtained fromH by contracting the arcu1v. By minimality of H, the graphH ′

admits aT40-coloringϕ, and sinceu1 andu2 are adjacent inH ′, ϕ(u1) 6= ϕ(u2)
andϕ(u1) 6= t(ϕ(u2)). By P2,9, ϕ can be extended toH, a contradiction.

• Suppose thatH contains a 3-vertexv adjacent tou1, u2, andu3. If v is a sink, let
H ′ = H; otherwise, letH ′ be the graph obtained fromH by pushingu1 and/oru2

and/oru3 in such a way thatv becomes a sink inH ′ (i.e.−→u1v,−→u2v,−→u3v∈ A(H ′)).
By the Push Property (Proposition 7), the graphH ′ is clearly a minimal coun-
terexample to Theorem 4 sinceH ′ is T40-colorable if and only ofH does.

Suppose first that the subgraph induced byu1, u2, andu3 in H ′ contains a

14



v4

u1

u2

u3

u4

Fig. 6. Reduction of the configuration depicted in Figure 5

sink, sayu1. Then, letH ′′ be the graph obtained fromH ′ by contracting−→u1v.
By minimality of H ′, the graphH ′′ admits aT40-coloringϕ. Since−−→u2u1,

−−→u3u1 ∈
A(H ′′), then either the three verticesϕ(u1),ϕ(u2),ϕ(u3) form a 3-clique inT40 or
they form a 2-clique inT40 with ϕ(u2) = ϕ(u3) (recall thatN+(u)∩N+(t(u))= /0
for everyu of T40). By P3,4, the coloringϕ can be extended toH ′.

Suppose now that the subgraph induced byu1, u2, andu3 in H ′ does not con-
tain a sink; then,u1,u2,u3 form a directed cycle. LetH ′′ = H ′ \ {v}. By mini-
mality of H ′, the graphH ′′ admits aT40-coloringϕ. It is clear thatϕ(u1),ϕ(u2)
andϕ(u3) form a 3-clique inT40. By P3,4, the coloringϕ can be extended toH ′.

Therefore, by the Push Property (Proposition 7),H admits aT40-coloring, a
contradiction.

• Suppose thatH contains two adjacent 4-verticesu andv and letH ′ = H \ {−→uv}.
Let u1,u2,u3 (resp.v1,v2,v3) denote the three neighbors ofu (resp.v) distinct
from v (resp.u). By minimality ofH, H ′ admits aT40-coloringϕ. Then, erase the
colors ofu andv. By P3,4, we can coloru to getϕ(u) /∈

S

i=1,2,3 f ϕ
u (vi). Then by

P4,1, there exist an available color to extendϕ to H, a contradiction.
• Suppose thatH contains the configuration depicted in Figure 5. LetH ′ be the

graph obtained fromH by contracting the arcu1v1, v3v4 andu3v2: we get the
graphH ′ depicted in Figure 6. By minimality ofH, H ′ admits aT40-coloringϕ.
By P3,4, we can chooseϕ(v3) /∈ { f ϕ

v3(u1), f ϕ
v3(v4), f ϕ

v3(u3)}. Then, byP4,1, we can
colorv1 andv2, a contradiction.

Therefore,H does not contain any of the configurations described in Theorem 11,
a contradiction that proves Theorem 4.
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