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A graph is planar if it can be embedded on the plane without edge-crossing. A graph is 2-outerplanar if it has a planar embedding such that the subgraph obtained by removing the vertices of the external face is outerplanar (i.e. with all its vertices on the external face). An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented graph H of order k. We prove that every oriented triangle-free planar graph has an oriented chromatic number at most 40, that improves the previous known bound of 47 due to Borodin and Ivanova [Borodin, O. V. and Ivanova, A. O., An oriented colouring of planar graphs with girth at least 4, Sib. Electron. Math. Reports, vol. 2, 239-249, 2005]. We also prove that every oriented 2-outerplanar graph has an oriented chromatic number at most 40, that improves the previous known bound of 67 due to Esperet and Ochem [Esperet, L. and 

Introduction

Oriented graphs are directed graphs without loops nor opposite arcs. For an oriented graph G, we denote by V (G) its set of vertices and by A(G) its set of arcs. For two adjacent vertices u and v, we denote by -→ uv the arc from u to v or simply u ∼ v whenever its orientation is not relevant (therefore, u ∼ v = -→ uv or u ∼ v = -→ vu). The number of vertices of G is the order of G.

An oriented k-coloring of an oriented graph G is a mapping ϕ from V (G) to a set of k colors such that (1) ϕ(u) = ϕ(v) whenever -→ uv is an arc in G, and (2) ϕ(u) = ϕ(x) whenever -→ uv and -→ wx are two arcs in G with ϕ(v) = ϕ(w). In other words, an oriented k-coloring of G is a partition of the vertices of G into k stable sets S 1 , S 2 , . . ., S k such that all the arcs between any pair of stable sets S i and S j have the same direction (either from S i to S j , or from S j to S i ). The oriented chromatic number of an oriented graph, denoted by χ o (G), is defined as the smallest k such that G admits an oriented k-coloring.

Let G and H be two oriented graphs. A homomorphism from G to H is a mapping ϕ : V (G) → V (H) that preserves the arcs:

-----→ ϕ(x)ϕ(y) ∈ A(H) whenever -→ xy ∈ A(G).

An oriented k-coloring of G can be equivalently defined as a homomorphism from G to H, where H is an oriented graph of order k. The existence of such a homomorphism from G to H is denoted by G → H. The vertices of H are called colors, and we say that G is H-colorable. The oriented chromatic number of G can then be defined as the smallest order of an oriented graph H such that G → H. Links between colorings and homomorphisms are presented in more details in the monograph [START_REF] Hell | Graphs and homomorphisms[END_REF] by Hell and Nešetřil.

The notion of oriented coloring introduced by Courcelle [START_REF] Courcelle | The monadic second order-logic of graphs VI : on several representations of graphs by relational structures[END_REF] has been studied by several authors in the last decade and the problem of bounding the oriented chromatic number has been investigated for various graph classes: outerplanar graphs (with given girth) [START_REF] Pinlou | Oriented vertex and arc colorings of outerplanar graphs[END_REF][START_REF] Sopena | The chromatic number of oriented graphs[END_REF], 2-outerplanar graphs [START_REF] Esperet | Oriented coloring of 2-outerplanar graphs[END_REF], planar graphs (with given girth) [START_REF] Borodin | An oriented 7-colouring of planar graphs with girth at least 7[END_REF][START_REF] Borodin | An oriented colouring of planar graphs with girth at least 4[END_REF][START_REF] Borodin | Oriented 5-coloring of sparse plane graphs[END_REF][START_REF] Borodin | On the maximum average degree and the oriented chromatic number of a graph[END_REF][START_REF] Ochem | Oriented colorings of triangle-free planar graphs[END_REF][START_REF] Pinlou | An oriented coloring of planar graphs with girth at least five[END_REF][START_REF] Raspaud | Good and semi-strong colorings of oriented planar graphs[END_REF], graphs with bounded maximum average degree [START_REF] Borodin | Oriented 5-coloring of sparse plane graphs[END_REF][START_REF] Borodin | On the maximum average degree and the oriented chromatic number of a graph[END_REF], graphs with bounded degree [START_REF] Kostochka | Acyclic and oriented chromatic numbers of graphs[END_REF], graphs with bounded treewidth [START_REF] Ochem | Oriented vertex and arc colorings of partial 2-trees[END_REF][START_REF] Sopena | The chromatic number of oriented graphs[END_REF][START_REF] Sopena | Oriented graph coloring[END_REF], and graph subdivisions [START_REF] Wood | Acyclic, star and oriented colourings of graph subdivisions[END_REF].

A graph is planar if it can be embedded on the plane without edge-crossing. The girth of a graph is the length of a shortest cycle.

Theorem 1 gives the current best known bounds on oriented chromatic number of planar graphs.

Theorem 1 [START_REF] Borodin | An oriented 7-colouring of planar graphs with girth at least 7[END_REF][START_REF] Borodin | An oriented colouring of planar graphs with girth at least 4[END_REF][START_REF] Borodin | Oriented 5-coloring of sparse plane graphs[END_REF][START_REF] Borodin | On the maximum average degree and the oriented chromatic number of a graph[END_REF][START_REF] Pinlou | An oriented coloring of planar graphs with girth at least five[END_REF] Let G be a planar graph.

(1) If G has girth at least 12, then χ o (G) ≤ 5 [START_REF] Borodin | Oriented 5-coloring of sparse plane graphs[END_REF] (this bound is tight).
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(2) If G has girth at least 7, then χ o (G) ≤ 7 [START_REF] Borodin | An oriented 7-colouring of planar graphs with girth at least 7[END_REF].

(3) If G has girth at least 6, then χ o (G) ≤ 11 [START_REF] Borodin | On the maximum average degree and the oriented chromatic number of a graph[END_REF]. [START_REF] Borodin | On the maximum average degree and the oriented chromatic number of a graph[END_REF] If G has girth at least 5, then χ o (G) ≤ 16 [START_REF] Pinlou | An oriented coloring of planar graphs with girth at least five[END_REF]. [START_REF] Courcelle | The monadic second order-logic of graphs VI : on several representations of graphs by relational structures[END_REF] If G has girth at least 4, then χ o (G) ≤ 47 [START_REF] Borodin | An oriented colouring of planar graphs with girth at least 4[END_REF]. [START_REF] Esperet | Oriented coloring of 2-outerplanar graphs[END_REF] If G has no girth restriction, then χ o (G) ≤ 80 [START_REF] Raspaud | Good and semi-strong colorings of oriented planar graphs[END_REF].

A graph is 2-outerplarnar if it has a planar embedding such that the subgraph obtained by removing the vertices of the external face is outerplanar (i.e. with all its vertices on the external face).

In 2007, Esperet and Ochem [START_REF] Esperet | Oriented coloring of 2-outerplanar graphs[END_REF] studied the structural properties of 2-outerplanar graphs. By means of these properties, they proved the following:

Theorem 2 [START_REF] Esperet | Oriented coloring of 2-outerplanar graphs[END_REF] Let G be a 2-outerplanar graph. Then χ o (G) ≤ 67.

As mentioned above, if a graph G admits a homomorphism to an oriented graph H of order k, then G has an oriented chromatic number k. Hence, a way to get bounds on the oriented chromatic number of a graph family F is to find a universal target graph H such that, for every graph G ∈ F , we have G → H. Such a result can be obtained if the target graph H has "interesting" structural properties that can be used to prove the existence of the homomorphism; thus an important part of the task is to construct such a target graph. In this paper, we first describe the construction of the graph T 40 in Section 2, an oriented graph on 40 vertices which has very useful properties for oriented coloring of planar graphs.

These structural properties of T 40 allow us to prove that every oriented trianglefree planar graph admits a homomorphism to T 40 ; this gives the following theorem, which improves Theorem 1 [START_REF] Courcelle | The monadic second order-logic of graphs VI : on several representations of graphs by relational structures[END_REF].

Theorem 3 Let G be a triangle-free planar graph. Then χ o (G) ≤ 40.

We also show that every oriented 2-outerplanar graph admits a homomorphism to T 40 ; this allows us to improves Theorem 2.

Theorem 4 Let G be a 2-outerplanar graph. Then χ o (G) ≤ 40.

In the remainder, we use the following notions. The set of vertices (resp. arcs, faces) of a graph G is denoted by V (G) (resp. A(G), F(G)). For a vertex v of a graph G, we denote by d - G (v) its indegree, by d + G (v) its outdegree, and by d G (v) its degree (subscripts are omitted when the considered graph is clearly identified from the context). We denote by N + G (v) the set of outgoing neighbors of v, by N - G (v) the set of incoming neighbors of v and by

N G (v) = N + G (v)∪N - G (v) the set of neighbors of v. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. ≥ k-vertex, ≤ k-vertex). If a vertex u is adjacent to a k-vertex (resp. ≥ k-vertex, ≤ k-vertex) v, then v is a k-neighbor (resp. ≥ k-neighbor, ≤ k-neighbor) of u. A path of length k (i.e.
formed by k edges) is called a k-path. For a face f of a graph G, its length is denoted by d G ( f ) (subscripts are omitted when the considered graph is clearly identified from

the context). If d G ( f ) = k (resp. d G ( f ) ≤ k, d G ( f ) ≥ k), then f is called a k-face (resp. ≤ k-face, ≥ k-face).
If two graphs G and H are isomorphic, we denote it by G ∼ = H. Given a planar graph G with its embedding in the plane and a vertex v of G, we say that a subset {u 1 , u 2 , . . ., u k } of neighbors of v are consecutive if u 1 , u 2 , . . . , u k appear around v consecutively (clockwise or counterclockwise) in G.

The paper is organised as follows. The next section is devoted to the target graph T 40 and some of its properties. We prove Theorem 3 in Section 3 and Theorem 4 in Section 4.

The Tromp graph T 40

In this section, we describe the construction of the target graph T 40 used to prove Theorems 3 and 4 and give some useful properties.

Tromp's construction was proposed by Tromp [17]. Let G be an oriented graph and G ′ be an isomorphic copy of G. The Tromp graph Tr(G) has 2|V (G)| + 2 vertices and is defined as follows:

• V (Tr(G)) = V (G) ∪V (G ′ ) ∪ {∞, ∞ ′ } • ∀u ∈ V (G) : -→ u∞, -→ ∞u ′ , --→ u ′ ∞ ′ , -→ ∞ ′ u ∈ A(Tr(G)) • ∀u, v ∈ V (G), -→ uv ∈ A(G) : -→ uv, -→ u ′ v ′ , -→ vu ′ , -→ v ′ u ∈ A(Tr(G))
Figure 1 illustrates the construction of Tr(G). We can observe that, for every u ∈ V (G) ∪ {∞}, there is no arc between u and u ′ . Such pairs of vertices will be called twin vertices, and we denote by t(u) the twin vertex of u. Remark that t(t(u)) = u. This notion can be extended to sets in a standard way: for a given

W ⊆ V (G), W = {v 1 , v 2 , . . . , v k }, then t(W ) = {t(v 1 ),t(v 2 ), . . . ,t(v k )}.
By construction, the graph Tr(G) satisfies the following property:

∀u ∈ Tr(G) : N + (u) = N -(t(u)) and N -(u) = N + (t(u))
In the remainder, we focus on the specific graph family obtained via the Tromp's construction applied to Paley tournaments. For a prime power p ≡ 3 (mod 4), the Paley tournament QR p is defined as the oriented graph whose vertices are the integers modulo p and such that -→ uv is an arc if and only if vu is a nonzero quadratic residue of p. the bound of Theorem 1(4) has been obtained by proving that all the graphs of the considered class admit a homomorphism to the Tromp graph Tr(QR 7 ).

∞ v u v ′ G ∞ ′ G ′ u ′
Let T 40 = Tr(QR 19 ) be the Tromp graph on 40 vertices obtained from QR 19 . In the remainder of this paper, the vertex set of T 40 is V (T 40 ) = {0, 1, . . ., 18, ∞, 0 ′ , 1 ′ , . . . , 18 ′ , ∞ ′ } where {0, 1, . . ., 18} is the vertex set of the first copy of QR 19 and {0 ′ , 1 ′ , . . . , 18 ′ } is the vertex set of the second copy of QR 19 ; thus, for every u ∈ {0, 1, . . ., 18, ∞}, we have t(u) = u ′ . In addition, for every u ∈ V (T 40 ), we have by construction

|N + T 40 (u)| = |N - T 40 (u)| = 19.
The graph T 40 has remarkable symmetry and some useful properties given below.

Proposition 5 [START_REF] Marshall | Homomorphism bounds for oriented planar graphs[END_REF] For any QR p , the graph Tr(QR p ) is such that:

∀u ∈ V (Tr(QR p )) : N + (u) ∼ = QR p and N -(u) ∼ = QR p
Proposition 6 [START_REF] Marshall | Homomorphism bounds for oriented planar graphs[END_REF] For any QR p , if {a 1 , a 2 , a 3 } and {b 1 , b 2 , b 3 } span triangles t 1 and t 2 respectively in Tr(QR p ) and the map ψ taking a i to b i (1 ≤ i ≤ 3) is an isomorphism t 1 → t 2 , then ψ can be extended to an automorphism of Tr(QR p ).

It is then clear that Tr(QR p ) is vertex-transitive and arc-transitive.

For an oriented graph G and a vertex v, pushing v means reversing the orientation of every arc incident to v.

Proposition 7 (Push Property) Let G be an oriented graph such that G → Tr(QR p ). Then, for any vertex v of G, the graph G ′ obtained from G by pushing v admits a homomorphism to Tr(QR p ).

Proof. Let ϕ be a Tr(QR p )-coloring of G. For every w ∈ V (Tr(QR p )), we have

N + Tr(QR p ) (w) = N - Tr(QR p ) (t(w)) and N - Tr(QR p ) (w) = N + Tr(QR p ) (t(w)). Therefore, the mapping ϕ ′ : V (G ′ ) → V (Tr(QR p )) defined by ϕ ′ (u) = ϕ(u) for all u ∈ V (G ′ ) \ {v} and ϕ ′ (v) = t(ϕ(v)) is clearly a Tr(QR p )-coloring of G ′ . An orientation n-vector is a sequence α = (α 1 , α 2 , . . . , α n ) ∈ {0, 1} n of n elements. Let S = (v 1 , v 2 , . . . , v n ) be a sequence of n (not necessarily distinct) vertices of T 40 .
The vertex u is said to be an α-successor of S if for any i,

1 ≤ i ≤ n, we have -→ uv i ∈ A(T 40 ) whenever α i = 1 and -→ v i u ∈ A(T 40 ) otherwise. For instance, the vertex 3 ′ of T 40 is a (1, 1, 0, 1, 1, 0)-successor of (1, 2, 6 ′ , 1, ∞ ′ , 2 ′ ) since the arcs -→ 3 ′ 1, -→ 3 ′ 2, -→ 6 ′ 3 ′ , --→ 3 ′ ∞ ′ , and -→ 2 ′ 3 ′ belong to A(T 40 ).
If, for a sequence S = (v 1 , v 2 , . . ., v n ) of n vertices of T 40 and an orientation nvector α = (α 1 , α 2 , . . . , α n ), there exist i = j such that v i = v j and α i = α j , then there does not exist any α-successor of S; indeed, T 40 does not contain opposite arcs. In addition, if there exist i = j such that v i = t(v j ) and α i = α j , then there does not exist any α-successor of S; indeed, for any pair of vertices x and y of T 40 with x = t(y), we have

N + T 40 (x) ∩ N + T 40 (y) = / 0 and N - T 40 (x) ∩ N - T 40 (y) = / 0. A sequence S = (v 1 , v 2 , . . ., v n )
of n vertices of T 40 is said to be compatible with an orientation n-vector α = (α 1 , α 2 , . . ., α n ) if and only if for any i = j, we have α i = α j whenever v i = t(v j ), and α i = α j whenever v i = v j . Note that if the n vertices of S induce an nclique subgraph of T 40 (i.e. v 1 , v 2 , . . . , v n are pairwise distinct and induce a complete graph), then S is compatible with any orientation n-vector since a vertex u and its twin t(u) cannot belong together to the same clique.

In the remainder, we say that T 40 has Property P n,k if, for every sequence S of n vertices of T 40 that form an n-clique and any orientation n-vector α which is compatible with S, there exist k α-successors of S.

Proposition 8 If, for a fixed α = (α 1 , α 2 , . . ., α n ), every n-clique S of T 40 admits k α-successors, then there exist k α ′ -successors of S for every

α ′ = (α ′ 1 , α ′ 2 , . . . , α ′ n ).
Proof. Assume that every n-clique admit k α-successors. Let S = (u 1 , u 2 , . . . , u n ) be a n-clique of T 40 and α ′ = (α ′ 1 , α ′ 2 , . . . , α ′ n ) be an orientation n-vector. Then let

S ′ = (v 1 , v 2 , . . ., v n ) defined such that v i = u i if α ′ i = α i and v i = t(u i ) otherwise.
Due to the structure of T 40 (i.e. if x ∼ y belongs to A(T 40 ), then t(x) ∼ y, x ∼ t(y) and t(x) ∼ t(y) belongs to A(T 40 )), S ′ is an n-clique of T 40 . By hypothesis, S ′ admits k α-successors w 1 , w 2 , . . . , w k . Since --→ yt(x) ∈ A(T 40 ) if -→ xy ∈ A(T 40 ), we clearly have that w i is an α ′ -successor of S for every i. It is obvious that QR 19 has properties P 1,9 (for every vertex u of QR 19 , we have |N + (u)| = |N -(u)| = 9). Borodin et al. [START_REF] Borodin | On the maximum average degree and the oriented chromatic number of a graph[END_REF] proved that QR 19 has properties P 2,4 and P 3,1 . We will show in the remainder of this proof that if QR 19 has properties P n-1,k , then T 40 have property P n,k , that will complete the proof.

Suppose that QR 19 has property P n-1,k and let α = (α 1 , α 2 , . . ., α n ) be a given orientation n-vector. Let S = (u 1 , u 2 , . . . , u n-1 , w) be a induced n-clique of T 40 . If α n = 0, we define

S ′ = (v 1 , v 2 , . . ., v n-1 , w) such that v i = u i if -→ u i w and v i = t(u i ) if -→ wu i . Hence, S ′ is an n-clique of T 40 such that S i v i ⊆ N -(w). By Proposition 5, N -(w) = K 19 ∼ = QR 19 ,
and therefore the (n -1)-clique S ′′ = (v 1 , v 2 , . . . , v n-1 ) belongs to K 19 . Then by Property P n-1,k of QR 19 , there exist k

(α ′ 1 , α ′ 2 , . . . , α ′ n-1 )-successors x 1 , x 2 , . . . , x k of S ′′ in K 19 , with α ′ i = α i (resp. α ′ i = 1 -α i ) if u i = v i (resp. u i = t(v i ))
. The x i 's are clearly in-neighbors of w and hence, they are (α ′ 1 , α ′ 2 , . . ., α ′ n-1 , α n )successors S ′ , and thus there exist k α-successors of S. Proportion 8 allows us to conclude.

The case α n = 1 would be treated similarly: We would have chosen

S ′ = (v 1 , v 2 , . . . , v n-1 , w) is such a way that S i v i ⊆ N + (w).

Proof of Theorem 3

In this section, we prove Theorem 3, that is, every oriented triangle-free planar graph G admits a homomorphism to T 40 .

Recall that Borodin et al. [START_REF] Borodin | An oriented colouring of planar graphs with girth at least 4[END_REF] proved that every oriented triangle-free planar graph G admits a homomorphism to QR 47 . This proof was only published in Russian. Our proof is highly inspired from the above-mentioned paper. Indeed, our list of forbidden configurations is designed to fit with Borodin's discharging procedure up to a slight modification in Rule (R3).

Let us define the partial order . Let n 3 (G) be the number of ≥ 3-vertices in G. For any two graphs G 1 and G 2 , we have G 1 ≺ G 2 if and only if at least one of the following conditions hold:

• |V (G 1 )| < |V (G 2 )| and n 3 (G 1 ) ≤ n 3 (G 2 ). • n 3 (G 1 ) < n 3 (G 2 ).
Note that the partial order is well-defined and is a partial linear extension of the induced subgraph poset.

Let H be a hypothetical minimal counterexample to Theorem 3 according to ≺. We first prove that H does not contain a set of ten configurations listed in Lemma 10. Then, using a discharging procedure, we show that an oriented triangle-free planar graph contains at least one of the ten configurations of Lemma 10, contradicting the fact that H is a triangle-free planar graph.

1 ≤ k ≤ 39 v ′ 1 v ′ k v v k v 1 (a) C2 v ′ k v 1 v k v v 2 v ′ 2 2 ≤ k ≤ 19 (b) C3 3 ≤ k ≤ 10 v ′ k v 1 v v k v 3 v 2 v ′ 3 (c) C4 v v 1 v 3 v 2 (d) C5 v 1 v 2 v 3 v v 4 v ′ 4 4 ≤ k ≤ 6 v k v ′ k (e) C6
Fig. 2. Configurations C2-C6.

Structural properties of H

In the following, H is a triangle-free planar graph given with its embedding in the plane. A weak 7-vertex u in H is a 7-vertex adjacent to four 2-vertices v 1 , . . ., v 4 and three ≥ 3-vertices w 1 , w 2 , w 3 in such a way that the sequence of neighbors of v appear as v 1 , w 1 , v 2 , w 2 , v 3 , w 3 , v 4 (clockwise or counterclockwise).

Lemma 10

The graph H does not contain the following configurations: The drawing conventions for a configuration C contained in a graph G are the following. If u and v are two vertices of C, then they are adjacent in G if and only if they are adjacent in C. Moreover, the neighbors of a white vertex in G are exactly its neighbors in C, whereas a black vertex may have neighbors outside of C. Two or more black vertices in C may coincide in a single vertex in G, provided they do not share a common white neighbor. Finally, an edge will represent an arc with any of its two possible orientations. Configurations (C2)-(C10) are depicted in Figures 2 and3.

(C1) a ≤ 1-vertex; (C2) a k-vertex adjacent to k 2-vertices for 2 ≤ k ≤ 39; (C3) a k-vertex adjacent to (k -1) 2-vertices for 2 ≤ k ≤ 19; (C4) a k-vertex adjacent to (k -2) 2-vertices for 3 ≤ k ≤ 10; (C5) a 3-vertex; (C6) a k-vertex adjacent to (k -3) 2-vertices for 3 ≤ k ≤ 6; ( 
Let G be an oriented graph, v be a k-vertex with N(v) = {v 1 , v 2 , . . . , v k } and α be an orientation k-vector such that α i = 0 whenever -→ v i v ∈ A(G) and α i = 1 otherwise. Let ϕ be a T 40 -coloring of G \ {v} and S = (ϕ(v 1 ), ϕ(v 2 ), . . ., ϕ(v k )). Recall that a necessary condition to have α-successors of S is that α must be compatible with S, that is for any pair of vertices v i and v j , ϕ(v i ) = ϕ(v j ) whenever α i = α j and ϕ(v i ) = t(ϕ(v j )) whenever α i = α j . Hence, every vertex v j forbids one color for

each vertex v i , i ∈ [1, k], i = j. We define f ϕ v i (v j ) to be the forbidden color for v i by ϕ(v j ) (i.e. f ϕ v i (v j ) = ϕ(v j ) whenever α i = α j and f ϕ v i (v j ) = t(ϕ(v j )) whenever α i = α j ). Therefore, α is compatible with S if and only if we have ϕ(v i ) = f ϕ v i (v j ) for every pair i, j, 1 ≤ i < j ≤ k. Note that if ϕ(v i ) = f ϕ v i (v j ), then we necessarily have ϕ(v j ) = f ϕ v j (v i ).
For each configuration, we suppose that H contains it and we consider a trianglefree reduction H ′ such that H ′ ≺ H; therefore, by minimality of H, H ′ admits a T 40 -coloring ϕ. We will then show that we can choose ϕ so that it can be extended to H by Proposition 9, contradicting the fact that H is a counterexample.

In the remainder, if H contains a configuration, then H * will denote the graph obtained from H be removing all the white vertices from this configuration.

Proof of Configuration (C1). Trivial.

Proof of Configuration (C2).

Suppose that H contains the configuration depicted in Figure 2(a) and let ϕ be a T 40 -coloring of 

H * . Let F = { f ϕ v (v ′ 1 ), . . . , f ϕ v (v ′ k )}

Proof of Configuration (C4).

Suppose that H contains the configuration depicted in Figure 2(c) and let ϕ be a T 40 -coloring of H ′ = H \ {v 3 , . . ., v k }. Then, we clearly have ϕ(v 1 ) = f ϕ v 1 (v 2 ) since v is colored in H ′ . Therefore, by Property P 2,9 , there exist an

T 40 -coloring ϕ ′ of H ′ so that ϕ ′ (v) / ∈ { f ϕ ′ v (v ′ 3 ), . . ., f ϕ ′ v (v ′ k )}.
The coloring ϕ ′ can be extended to H.

Proof of Configuration (C5).

Suppose that H contains the configuration depicted in Figure 2(d). Let H ′ be the graph obtained from H * by adding, for every 1 ≤ i < j ≤ 3, a 2-path joining v i to v j with the same orientation as the path 

[v i , v, v j ] in H. Since Configurations (C1)-(C4) are forbidden, d H (v i ) ≥ 3 for 1 ≤ i ≤ 3; we thus have H ′ ≺ H since n 3 (H ′ ) = n 3 (H) -1, and H ′ is clearly triangle-free. Any T 40 -coloring ϕ of H ′ induces a coloring of H * such that ϕ(v i ) = f ϕ v i (v j ) for any i, j, 1 ≤ i < j ≤ 3. Then Property P 3,4 allows us to extend ϕ to H. y x u v w (a) C7 x w u v (b) C8 v k v 1 0 ≤ k ≤ 5 (c) C9 0 ≤ k ≤ 3 v 1 v k (d) C10
v i ) = f ϕ v i (v j ), for all 1 ≤ i ≤ j ≤ 3, since v is colored in H ′ . Therefore, by Property P 3,4 , there exists a T 40 -coloring ϕ ′ of H ′ such that ϕ ′ (v) / ∈ { f ϕ ′ v (v ′ 4 ), . . ., f ϕ ′ v (v ′ k )}.
Proof of Configuration (C7). Suppose that H contains the configuration depicted in Figure 3(a). Let H ′ be the graph obtained from H * by adding a 2-path uv ′ w between u and w such that uv ′ w is directed if and only if uvw is not directed. We have that

H ′ ≺ H since |V (H ′ )| = |V (H)| -1 and n 3 (H ′ ) = n 3 (H).
Due to the orientations of the 2-paths uv ′ w and uvw, any T 40 -coloring ϕ of H ′ ensures that ϕ(u) = ϕ(w) and ϕ(u) = t(ϕ(w)). The coloring ϕ can be extended to H.

Proof of Configuration (C8).

Suppose that H contains the configuration depicted in Figure 3(b). Let H ′ be the graph obtained from H * by adding an edge between u and w. We have that

H ′ ≺ H since |V (H ′ )| = |V (H)| -2 n 3 (H ′ ) = n 3 (H). Since Configuration ( 
C7) is forbidden, the vertices u and w are at distance at least 3 in H * and H ′ is therefore triangle-free. Any T 40 -coloring ϕ of H ′ ensures that ϕ(u) = ϕ(w) and ϕ(u) = t(ϕ(w)). The coloring ϕ can be extended to H.

Proof of Configurations (C9) and (C10).

To prove that these two configurations are forbidden in a minimal counterexample to Theorem 3, a computer check is needed. Indeed, Properties P 1,19 , P 2,9 , P 3,4 and P 4,1 are not sufficient.

A computer check allows us to show that for any compatible color assignment on the black vertices (i.e. any two black vertices at distance 2 in the configuration get compatible colors) and any orientation of the arcs, the white vertices can be colored. Therefore, that shows that H does not contain any of these two configurations. In what follows, we will define discharging rules (R1), (R2), and (R3) and redistribute weights accordingly. Once the discharging is finished, a new weight function ω * is produced. However, the total sum of weights is fixed by the discharging rules.

Nevertheless, we can show that ω * (v) ≥ 0 for every x ∈ V (H) ∪ F(H). This leads to the following obvious contradiction:

0 ≤ ∑ v∈V (H) ω * (v) + ∑ f ∈F(H) ω * ( f ) = ∑ v∈V (H) ω(v) + ∑ f ∈F(H) ω( f ) < 0.
Therefore, no such counterexample H exists.

The discharging rules are defined as follows:

(R1) Each ≥ 4-vertex gives 1 to its 2-neighbors. (R2) Each ≥ 5-face ...axb... such that a and b are 2-vertices gives 1 (resp. 1 2 ) to x if x is a weak 7-vertices (resp. is not a weak 7-vertex). (R3) Each ≥ 5-face f = ...awxyb..., such that a, b, x are 2-vertices and w, y are weak 7-vertices, either receives 1 2 from the vertex z if wxyz is a 4-face, or receives 1 from the ≥ 5-face f ′ = ...cwxyd... if c, d are ≥ 4-vertices.

The discharging rules are illustrated in Figure 4: white disks (resp. black disks, black squares) are 2-vertices (resp. ≥ 4-vertices, weak 7-vertices).

Fig. 1 .

 1 Fig. 1. The Tromp graph Tr(G).

Proposition 9

 9 The graph T 40 has Properties P 1,19 , P 2,9 , P 3,4 , and P 4,1 . Proof. By Proposition 5, we have |N + (u)| = |N -(u)| = 19 for every vertex u of T 40 ; therefore T 40 has Property P 1,19 .

  C7) two vertices u and v linked by three distinct 2-paths whose the internal vertex of two of them is a 2-vertex; (C8) two vertices u and v linked by two distinct 2-paths whose the internal vertex them is a 2-vertex; (C9) a 4-face wxyz such that x is 2-vertex, w and y are weak 7-vertices, and z is a k-vertex adjacent to (k -3) 2-vertices for 3 ≤ k ≤ 8; (C10) a 4-face wxyz such that x is 2-vertex, w and y are weak 7-vertices, and z is a k-vertex adjacent to (k -4) 2-vertices for 4 ≤ k ≤ 7;

  be the set of forbidden colors for v. Any T 40 -coloring of H * can be extended to H since |F| ≤ 39.Proof of Configuration (C3).Suppose that H contains the configuration depicted in Figure2(b) and let ϕ be a T 40 -coloring ofH * . Let F = { f ϕ v (v ′ 1 ), . . ., f ϕ v (v ′ k )} be the set of forbidden colors for v. By Property P 1,19 , ϕ can be extended to H since |F| ≤ 18.

Fig. 3 .

 3 Fig. 3. Configurations C7-C10. Proof of Configuration (C6). Suppose that H contains the configuration depicted in Figure 2(e). Let ϕ be a T 40 -coloring of H ′ = H \ {v 4 , . . . , v k }. Then, we clearly have ϕ(v i ) = f

Fig. 4 .

 4 Fig. 4. Discharging rules
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For all vertices v, ω * (v) ≥ 0

In the following, d ≥4 (v) denotes the number of neighbors of v with degree at least 4. In the same way, d 2 (v) denotes the number of neighbors of v with degree exactly 2. Then it is clear that, for every vertex v of H, we have d(v) = d ≥4 (v) + d 2 (v) since H contains neither vertices of degree at most 1 by (C1), nor 3-vertices by (C5).

Let v be a k-vertex of H. Therefore, k = d ≥4 (v)+d 2 (v). Recall that the initial charge of v is ω(v) = k -4.

• if d ≥4 (v) = 0, then d 2 (v) = k ≥ 40 by (C2). By (R1), v gives k × 1. By (C8), v is incident to k ≥ 5-faces, and therefore v receives k × 1 2 by (R2). Hence,

By (C8), v is incident to (k -2) ≥ 5-faces whose each gives 1 2 to v by (R2). Moreover, v is adjacent to at most one weak 7-vertex and therefore (R3) does not apply. Hence,

By (C8), v is incident to (k -4) ≥ 5-faces whose each gives 1 2 to v by (R2). Moreover, by (R3), v gives at most 1 2 since v is adjacent to at most two weak 7-vertices. Hence,

Suppose that the three ≥ 4-neighbors are consecutive. By (C8), v is incident to (k -4) ≥ 5-faces whose each gives 

Suppose that two ≥ 4-neighbors are consecutive. By (C8), v is incident to (k -5) ≥ 5-faces whose each gives 1 2 to v by (R2). Moreover, by (R3), v gives at most 1 2 if and only if

Suppose that none of the ≥ 4-neighbors are consecutive. By (C8), v is incident to (k -6) ≥ 5-faces whose each gives 

Suppose that (R3) does not apply. Then, ω * (v) ≥ ω(v) -(k -4) = 0. Suppose now that (R3) applies: it applies at most twice (otherwise, it would imply that a weak 7-vertex had three consecutive 2-neighbors). Moreover, by (C10), we have

Suppose first that (R3) applies only once; then v gives 1 2 to the corresponding 12 4-face. Moreover, by (R2), v receives k-7 2 . Hence,

2 -1 2 ≥ 0. Suppose now that (R3) applies twice; then v gives 2 × 1 2 to the corresponding 4-faces. Moreover, by (R2), v receives k-6 2 . Hence,

Thus, for every v ∈ V (H), we have ω * (v) ≥ 0 once the discharging is finished.

For all faces

If f is incident to one 2-vertex, then only (R3) may apply and hence

If f is adjacent to two 2-vertices x and z, either the common neighbor y of x and z is weak 7-vertex either it is not. By (R2), f gives at most 1, and hence

If f is incident to one 2-vertex, then only (R3) may apply and hence ω * ( f

Suppose that f is incident to two 2-vertex x and z. If x and z has a common neighbor y, by (R2), f gives at most 1, and hence ω * (v) ≥ ω( f ) -1 = 0. If x and z has no common neighbor, then only (R3)may apply at most twice. Hence,

2 by (R2). Moreover, f receives at least 1 2 by (R3).Hence, ω * (v) ≥ ω( f ) -5 2 + 1 2 = 0. If f is incident to three weak 7-vertices, then f gives 3 × 1 by (R2). Moreover, f receives at least 3 × 1 2 by (R3). Hence,

• Suppose finally that k ≥ 7, and assume that (R2) applies n times and (R3) applies m times. It is clear that f gives weights by (R2) to at most k 2 vertices: hence, n ≤ k 2 . Moreover, we can easily check that we have 2n + 3m ≤ k. With these

Fig. 5. Unavoidable configuration in a 2-outerplanar graph containing neither a ≤ 3-vertex, nor two adjacent 4-vertices constraints, we have n

Thus, for every f ∈ F(H), we have ω * (v) ≥ 0 once the discharging is finished, that complete the proof.

Proof of Theorem 4

In this section, we prove Theorem 4, that is every oriented 2-outerplanar graph G admits a homomorphism to T 40 .

Esperet and Ochem [START_REF] Esperet | Oriented coloring of 2-outerplanar graphs[END_REF] proved the following structural theorem for 2-outerplanar graphs.

Theorem 11 [START_REF] Esperet | Oriented coloring of 2-outerplanar graphs[END_REF] Let G be a 2-outerplanar graph. Then G contains either a ≤ 3vertex, or two adjacent 4-vertices, or the configuration depicted in Figure 5.

Moreover, the class of 2-outerplanar graphs is a minor-closed graph class.

To prove Theorem 4, we will consider a minimal counterexample and prove that it cannot contain one of the configuration described in Theorem 11, a contradiction.

Let H be a hypothetical minimal counterexample (with respect to the minor order) to Theorem 4.

• It is trivial to show that H does not contain a 1-vertex.

• Suppose that H contains a 2-vertex v adjacent to u 1 and u 2 . Let H ′ be the graph obtained from H by contracting the arc u 1 v. By minimality of H, the graph H ′ admits a T 40 -coloring ϕ, and since u 1 and u 2 are adjacent in H ′ , ϕ(u 1 ) = ϕ(u 2 ) and ϕ(u 1 ) = t(ϕ(u 2 )). By P 2,9 , ϕ can be extended to H, a contradiction. • Suppose that H contains a 3-vertex v adjacent to u 1 , u 2 , and u 3 . If v is a sink, let H ′ = H; otherwise, let H ′ be the graph obtained from H by pushing u 1 and/or u 2 and/or u 3 in such a way that v becomes a sink in H ′ (i.e. -→

. By the Push Property (Proposition 7), the graph H ′ is clearly a minimal counterexample to Theorem 4 since H ′ is T 40 -colorable if and only of H does.

Suppose first that the subgraph induced by u 1 , u 2 , and u 3 in

Fig. 6. Reduction of the configuration depicted in Figure 5 sink, say u 1 . Then, let H ′′ be the graph obtained from H ′ by contracting -→ u 1 v. By minimality of H ′ , the graph H ′′ admits a T 40 -coloring ϕ. Since --→ u 2 u 1 , --→ u 3 u 1 ∈ A(H ′′ ), then either the three vertices ϕ(u 1 ), ϕ(u 2 ), ϕ(u 3 ) form a 3-clique in T 40 or they form a 2-clique in T 40 with ϕ(u 2 ) = ϕ(u 3 ) (recall that N + (u) ∩N + (t(u)) = / 0 for every u of T 40 ). By P 3,4 , the coloring ϕ can be extended to H ′ . Suppose now that the subgraph induced by u 1 , u 2 , and u 3 in H ′ does not contain a sink; then, u 1 , u 2 , u 3 form a directed cycle. Let H ′′ = H ′ \ {v}. By minimality of H ′ , the graph H ′′ admits a T 40 -coloring ϕ. It is clear that ϕ(u 1 ), ϕ(u 2 ) and ϕ(u 3 ) form a 3-clique in T 40 . By P 3,4 , the coloring ϕ can be extended to H ′ . Therefore, by the Push Property (Proposition 7), H admits a T 40 -coloring, a contradiction.

• Suppose that H contains two adjacent 4-vertices u and v and let Therefore, H does not contain any of the configurations described in Theorem 11, a contradiction that proves Theorem 4.