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Abstract

A graph is planar if it can be embedded on the plane withoueexgssing. A graph is
2-outerplanar if it has a planar embedding such that therapbgobtained by removing
the vertices of the external face is outerplanar (i.e. withts vertices on the external
face). An orientedk-coloring of an oriented grapts is a homomorphism front to an
oriented grapiH of orderk. We prove that every oriented triangle-free planar grapgham
oriented chromatic number at most 40, that improves thequewknown bound of 47 due
to Borodin and Ivanova [Borodin, O. V. and Ivanova, A. 8n,oriented colouring of planar
graphs with girth at least 4Sib. Electron. Math. Reports, vol. 2, 239-249, 2005]. o al
prove that every oriented 2-outerplanar graph has an edesttromatic number at most 40,
that improves the previous known bound of 67 due to EspeeCainem [Esperet, L. and
Ochem, POriented colouring of 2-outerplanar graphform. Process. Lett., vol. 101(5),
215-219, 2005].
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1 Introduction

Oriented graphs are directed graphs without loops nor ofgoass. For an oriented
graphG, we denote by (G) its set of vertices and b&(G) its set of arcs. For two
adjacent verticesi andv, we denote byuv the arc fromu to v or simplyu ~ v
whenever its orientation is not relevant (therefare; v = v or u ~ v = vt)). The
number of vertices o6 is theorder of G.

An oriented k-coloringof an oriented grapl® is a mappingp from V(G) to a
set ofk colors such thatl) ¢(u) # ¢(v) whenevertv is an arc inG, and (2)
¢ (u) # d(x) wheneveriv andwx are two arcs inG with ¢(v) = ¢(w). In other
words, an oriente#f-coloring of G is a partition of the vertices db into k stable
setsS;, S, ..., Scsuch that all the arcs between any pair of stableSetsdS; have
the same direction (either fro to S, or from §j to §). Theoriented chromatic
numberof an oriented graph, denoted lgy(G), is defined as the smallelstsuch
thatG admits an orientefd-coloring.

Let G andH be two oriented graphs. Aomomorphisnfrom G to H is a mapping
¢ :V(G) — V(H) that preserves the aras(x)d(y) € A(H) wheneveXy € A(G).

An orientedk-coloring of G can be equivalently defined as a homomorphism from
GtoH, whereH is an oriented graph of ord&r The existence of such a homomor-
phism fromG to H is denoted byG — H. The vertices oH are calleccolors and

we say that is H-colorable. The oriented chromatic numbeG€tan then be de-
fined as the smallest order of an oriented griipbuch thatG — H. Links between
colorings and homomorphisms are presented in more datai®imonograph [7]
by Hell and Nesetfil.

The notion of oriented coloring introduced by Courcelle als been studied by
several authors in the last decade and the problem of bogiticknoriented chro-
matic number has been investigated for various graph dassgerplanar graphs
(with given girth) [13,15], 2-outerplanar graphs [6], pdangraphs (with given
girth) [1-4,10,12,14], graphs with bounded maximum averdegree [3,4], graphs
with bounded degree [8], graphs with bounded treewidthlA1,6], and graph
subdivisions [18].

A graph isplanar if it can be embedded on the plane without edge-crossing. The
girth of a graph is the length of a shortest cycle.

Theorem 1 gives the current best known bounds on orientemhtic number of
planar graphs.

Theorem 1 [1-4,12] Let G be a planar graph.

(1) If G has girth at least 12, thex,(G) < 5 [3] (this bound is tight).



(2) If G has girth at least 7, thego(G) < 7 [1].

(3) If G has girth at least 6, theg,(G) < 11[4].

(4) If G has girth at least 5, thex(G) < 16[12].

(5) If G has girth at least 4, thex(G) < 47[2].

(6) If G has no girth restriction, thego(G) < 80[14].

A graph is2-outerplarnarif it has a planar embedding such that the subgraph
obtained by removing the vertices of the external face iemlanar (i.e. with all
its vertices on the external face).

In 2007, Esperet and Ochem [6] studied the structural pt@seof 2-outerplanar
graphs. By means of these properties, they proved the fwipw

Theorem 2 [6] Let G be a 2-outerplanar graph. The(G) < 67.

As mentioned above, if a grapgh admits a homomorphism to an oriented graph
H of orderk, thenG has an oriented chromatic numderHence, a way to get
bounds on the oriented chromatic number of a graph fahilg to find a universal
target graptH such that, for every grap € #, we haveG — H. Such a result
can be obtained if the target graphhas “interesting” structural properties that
can be used to prove the existence of the homomorphism; thim@ortant part

of the task is to construct such a target graph. In this papefirst describe the
construction of the graplyg in Section 2, an oriented graph on 40 vertices which
has very useful properties for oriented coloring of planapds.

These structural properties @fp allow us to prove that every oriented triangle-
free planar graph admits a homomorphisnijg this gives the following theorem,
which improves Theorem 1(5).

Theorem 3 Let G be a triangle-free planar graph. Thgg(G) < 40.

We also show that every oriented 2-outerplanar graph adaitsmomorphism to
Tao; this allows us to improves Theorem 2.

Theorem 4 Let G be a 2-outerplanar graph. Theg(G) < 40.

In the remainder, we use the following notions. The set diees (resp. arcs, faces)
of a graphG is denoted by (G) (resp.A(G), F(G)). For a vertex of a graphG,
we denote bydg (v) its indegree by dZ (v) its outdegreeand bydg(v) its degree
(subscripts are omitted when the considered graph is glédehtified from the
context). We denote bMZ (v) the set of outgoing neighbors wfby Ng (v) the set
of incoming neighbors of and byNg(v) = N£ (V) UNg (V) the set of neighbors of

A vertex of degred (resp. at least, at mosk) is called a&k-vertex(resp.=k-vertex
<k-vertey. If a vertexu is adjacent to &-vertex (resp=k-vertex, <k-vertex)v,
thenvis ak-neighbor(resp.Zk-neighbor <k-neighboj of u. A path of lengttk (i.e.
formed byk edges) is called le-path For a facef of a graphG, its length is denoted



by dg(f) (subscripts are omitted when the considered graph is glégehtified
from the context). Ifds(f) = k (resp.dg(f) <k, dg(f) > k), thenf is called a
k-face(resp.=k-facg “k-facg. If two graphsG andH are isomorphic, we denote
it by G = H. Given a planar grap&® with its embedding in the plane and a vertex
v of G, we say that a subséuy, up,...,ux} of neighbors ofv are consecutivef
Up,U,...,Ux appear around consecutively (clockwise or counterclockwise)dn

The paper is organised as follows. The next section is dduotéhe target graph
Ta0 and some of its properties. We prove Theorem 3 in Section Jardrem 4 in
Section 4.

2 The Tromp graph Tyo

In this section, we describe the construction of the targaplyT,o used to prove
Theorems 3 and 4 and give some useful properties.

Tromp’s constructionvas proposed by Tromp [17]. L& be an oriented graph and
G’ be an isomorphic copy db. The Tromp grapfr(G) has 2V (G)| + 2 vertices
and is defined as follows:

« V(TH(G)) =V(G) UV () U fen, o)
e YUcV(G): u_o’o,oou’,u’oo’,oo’ueA(Trg))

e YuveV(G),uve A(G): W,LT\/,\T!,\/U c A(Tr(G))

Figure 1 illustrates the construction ©f(G). We can observe that, for eveayc
V(G)U{e}, there is no arc betweanandu’. Such pairs of vertices will be called
twin vertices and we denote by(u) the twin vertex ofu. Remark that(t(u)) = u.
This notion can be extended to sets in a standard way: forendv C V(G),
W = {v1,Vo,..., W}, thent(W) = {t(v1),t(v2),...,t(Vk)}.

By construction, the graphr(G) satisfies the following property:

Yue Tr(G) : N"(u) = N~ (t(u)) andN~ (u) = NT (t(u))

In the remainder, we focus on the specific graph family oletivia the Tromp’s
construction applied to Paley tournaments. For a prime pgwe 3 (mod 4),

the Paley tournament QRis defined as the oriented graph whose vertices are
the integers modul@ and such thafiv is an arc if and only ifv — u is a non-
zero quadratic residue gf. For instance, the Paley tournamé)R;g has vertex
setV(QRyg) = {0,1,...,18} anduv € A(QRyg) whenevev —u=r (mod 19 for

r € {1,4,5,6,7,9,11,16,17}. Note that the bounds of Theorems 1(2) and 1(3),
have been obtained by proving that all the graphs of the densil classes admit

a homomorphism to the Paley tourname@&; andQRy 1, respectively. Moreover,



Fig. 1. The Tromp grapfir(G).

the bound of Theorem 1(4) has been obtained by proving thtteagraphs of the
considered class admit a homomorphism to the Tromp gfapQRy;).

Let T40 = Tr(QRyg) be the Tromp graph on 40 vertices obtained filQRyo. In the
remainder of this paper, the vertex seTgfisV (Ts0) = {0,1,...,18, 0,0, 1’ ..., 18 '}
where{0,1,...,18} is the vertex set of the first copy @Rig and{0’,1’,...,18}

is the vertex set of the second copy@Ryg; thus, for everyu € {0,1,...,18 o},

we havet(u) = U'. In addition, for everyu € V(Ta0), we have by construction
|NT+40(u)| = [Np,,(U)| = 19. The graplT4 has remarkable symmetry and some use-
ful properties given below.

Proposition 5 [9] For any QR,, the graph T(QR) is such that:
YU € V(Tr(QRp)) : N*(u) = QRy and N (u) 2 QR,

Proposition 6 [9] For any QR,, if {ai,ap,az} and {by,by,b3} span triangles t
and b respectively in T{QR,) and the map) taking g to ly (1 <i < 3)is an
isomorphism¢ — t», theny can be extended to an automorphism ofQR;).

It is then clear thal r(QRy) is vertex-transitive and arc-transitive.

For an oriented grap& and a vertex, pushing vmeans reversing the orientation
of every arc incident te.

Proposition 7 (Push Property) Let G be an oriented graph such that&Tr(QR,).
Then, for any vertex v of G, the grapH @btained from G by pushing v admits a
homomorphism to TORy).

Proof. Let ¢ be aTr(QRy)-coloring of G. For everyw € V(Tr(QRy)), we have
Nﬁ(QRp)(w) = Nr(or,) (tW)) @nd Ny o 1 (W) = Nﬁ(QRp)(t(w)). Therefore, the
mappingd’ : V(G') — V(Tr(QRy)) defined byd’(u) = ¢(u) forallue V(G') \ {v}
andd’(v) =t(¢(v)) is clearly aTr(QRy)-coloring of G. O

An orientation n-vectois a sequence = (a1,02,...,0p) € {0,1}" of n elements.



Let S= (v1,Va,...,Vn) be a sequence of (not necessarily distinct) vertices ©fo.
The vertexu is said to be am-successor of & for any i, 1 <i < n, we have
UV € A(T40) Wwheneven; = 1 andvitii € A(T4o) otherwise. For instance, the vertex

3’ of T4o is a(l 1,0,1,1,0)-successor of1,2,6,1, ' 2') since the arc§’l 3’2
6’3’ 3’oo’ and2’3’ belong toA(Tyo).

If, for a sequenceS = (v1,Va,...,Vn) Of n vertices of 4o and an orientatiom-
vectora = (0,002, ...,0n), there exisi # j such that; = vj anda; # aj, then
there does not exist ary-successor 0§, indeed, T4 does not contain opposite
arcs. In addition, if there exist# j such thatv, = t(vj) anda; = aj, then there
does not exist ang-successor 08, indeed, for any pair of verticesandy of Tyg
with x=t(y), we havel\lem(x) N Nﬁo(y) = 0 andNy, (X) NNy, (y) = 0. A sequence
S=(v1,V2,...,Vn) Of nvertices ofT4g is said to becompatiblewith an orientation
n-vectora = (a,0p,...,dap) if and only if for anyi # j, we haven; # o whenever
v =t(vj), anda;j = aj whenevew; = vj. Note that if then vertices ofSinduce am-
clique subgraph of4q (i.e.v1, Vo, ..., Vv, are pairwise distinct and induce a complete
graph), therSis compatible with any orientatiom-vector since a vertey and its
twin t(u) cannot belong together to the same clique.

In the remainder, we say thdko hasProperty R if, for every sequencé of
n vertices ofT4o that form ann-cligue and any orientation-vector a which is
compatible withS, there exisk a-successors db.

Proposition 8 If, for a fixeda = (a1,dy,...,dn), every n-clique S of4f admits k
a-successors, then there existksuccessors of S for evemy = (a’,a5,...,ap).

Proof. Assume that everp-cligue admitk a-successors. Les= (uz,uy,...,Un)
be an-clique of Tqg anda’ = (a’,a5,...,ay) be an orientatiom-vector. Then let
S = (v1,V2,...,Vn) defined such that; = u; if af = a; andv; = t(u;) otherwise.
Due to the structure Ofyg (i.e. if X ~ y belongs toA(Tao), thent(x) ~y, X ~ t(y)
andt(x) ~t(y) belongs tA(T40)), S is ann-clique of T40. By hypothesisS admits
K a-successorg/i;, Wo, . .., W. SinceyTx)) € A(Tq0) if Xy € A(T40), we clearly have
thatw; is ana’-successor o for everyi. O

Proposition 9 The graph 1o has Properties P1g, P> o, P34, and B 1.

Proof. By Proposition 5, we haviN™ (u)| = [N~ (u)| = 19 for every vertexu of
Tao; thereforeTso has Property 1o.

It is obvious thatQRyg has propertie®; g (for every vertexu of QRy9, we have
IN*(u)| = [N~ (u)| = 9). Borodin et al. [4] proved th&R;o has propertieB, 4 and
P 1. We will show in the remainder of this proof that@R; ¢ has propertie®, 1 k,

thenTso have property, i, that will complete the proof.



Suppose tha@Ryg has property,_1 x and leta = (ay,ay,...,an) be a given orien-
tationn-vector. LetS= (uy, Uy, ...,un—_1,W) be a inducea-clique of Tso. If a, =0,
we defineS = (v1,Vo,...,Vh_1,W) such thaty; = u; if Gw andy;, = t(u;) if Wg.
Hence S is ann-clique of T4o such thatJ; vi € N~ (w). By Proposition 5N~ (w) =
K19 = QRyg, and therefore thén — 1)-clique S’ = (v1,Vvo,...,vn_1) belongs to
K1ie. Then by Propertyp,_1 k of QRyg, there exisk (a’,as,...,a;_,)-successors
X1,X2,..., % Of S"in K1g, with of = i (resp.a = 1—a) if uj =V (resp.uj =t(v)).
The x’s are clearly in-neighbors of and hence, they ar@, 0, ...,a;,_;,0n)-
successors, and thus there exist a-successors o8. Proportion 8 allows us to
conclude.

The cas@,, = 1 would be treated similarly: We would have cho&es: (vi, V2, ..., Vh_1,W)
is such away that)vi CNT(w). O

3 Proof of Theorem 3

In this section, we prove Theorem 3, that is, every orienteohgle-free planar
graphG admits a homomorphism G.

Recall that Borodin et al. [2] proved that every orientedrigle-free planar graph
G admits a homomorphism tQR47. This proof was only published in Russian.
Our proof is highly inspired from the above-mentioned papeteed, our list of
forbidden configurations is designed to fit with Borodin’satiarging procedure
up to a slight modification in Rule (R3).

Let us define the partial ordet. Let n3(G) be the number of 3-vertices inG.
For any two graph§&; andGy,, we haveG; < G if and only if at least one of the
following conditions hold:

o [V(G1)| < |V(Gz)| andn3(G1) < n3(Gy).
o N3(Gy) <n3(Gy).

Note that the partial ordex is well-defined and is a partial linear extension of the
induced subgraph poset.

LetH be a hypothetical minimal counterexample to Theorem 3 ategto <. We
first prove thatH does not contain a set of ten configurations listed in Lemma 10
Then, using a discharging procedure, we show that an odérigagle-free planar
graph contains at least one of the ten configurations of Leh®yaontradicting
the fact thaH is a triangle-free planar graph.



1<k<39 2<k<19 3<k<10 Vi 4<k<6
W v " W v v W v vs v . Ve
(a) C2 (b) C3 (c) C4 (d) C5 (e) C6

Fig. 2. Configuration€£2-C6.
3.1 Structural properties of H

In the following,H is a triangle-free planar graph given with its embeddinda t
plane. Aweak7-vertex uin H is a 7-vertex adjacent to four 2-vertices...,vs
and three>3-verticeswy, W», ws in such a way that the sequence of neighborg of
appear asp, W, Vo, Wa, V3, W3, V4 (clockwise or counterclockwise).

Lemma 10 The graph H does not contain the following configurations:

(C1) a=1-vertex;

(C2) ak-vertex adjacent toZvertices for2 < k < 39;

(C3) ak-vertex adjacent tgk — 1) 2-vertices for2 < k < 19;

(C4) ak-vertex adjacent ttk — 2) 2-vertices for3 < k < 10;

(C5) a3-vertex;

(C6) a k-vertex adjacent tgk — 3) 2-vertices for3 < k < 6;

(C7) two vertices u and v linked by three disti@gbaths whose the internal vertex
of two of them is 2-vertex;

(C8) two vertices u and v linked by two distirkepaths whose the internal vertex
them is a2-vertex;

(C9) a4-face wxyz such that x is 2-vertex, w and y are weéakrtices, and z is a
k-vertex adjacent tok — 3) 2-vertices for3 < k < §;

(C10) a4-face wxyz such that x is 2-vertex, w and y are weakrtices, and z is a

k-vertex adjacent tok — 4) 2-vertices fod < k < 7;

The drawing conventions for@nfiguration Ccontained in a grapt are the fol-
lowing. If u andv are two vertices o€, then they are adjacent @ if and only if
they are adjacent i@. Moreover, the neighbors ofwahite vertex inG are exactly
its neighbors irC, whereas #&lackvertex may have neighbors outside®fTwo or
more black vertices i€ may coincide in a single vertex @, provided they do not
share a common white neighbor. Finally, an edge will repreae arc with any of
its two possible orientations. Configuratiof@2)—(C10) are depicted in Figures 2
and 3.

Let G be an oriented grapl,be ak-vertex withN(v) = {v1,vo,..., v} anda be
an orientatiork-vector such thatt; = 0 whenever;v € A(G) anda; = 1 otherwise.
Let ¢ be aTso-coloring of G\ {v} andS= (¢(v1),d(v2),...,d(w)). Recall that a
necessary condition to hawvesuccessors of is thata must be compatible with
S that is for any pair of verticeg; andvj, ¢(vi) # ¢(vj) whenevern; # a; and



d(vi) #t(d(vj)) wheneven; = aj. Hence every vertey; forbids one color for
each verte>v., ie[LK,i#j We deﬁnef\,I (vj) to be the forbidden color fov;
by ¢(vj) (i.e. f\‘,?(v,) ¢(vj) whenevem; # a; and f\,I (vj) =t(d(vj)) whenever
a; = aj). Thereforeqa is compatible withSif and onIy if we have:p(v.) # fv (vj)
for every pairi, j, 1 <i < j < k. Note that if$p(v;) # fv, (vj), then we necessarily

haved (v;) # ().

For each configuration, we suppose thatontains it and we consider a triangle-
free reductiorH’ such thatH’ < H; therefore, by minimality oH, H’ admits a
Tao-coloringd. We will then show that we can choogeso that it can be extended
to H by Proposition 9, contradicting the fact thatis a counterexample.

In the remainder, iH contains a configuration, thé#* will denote the graph ob-
tained fromH be removing all the white vertices from this configuration.

Proof of Configuration (C1). Trivial. O

Proof of Configuration (C2). Suppose thatl contains the conflguratlon depicted
in Figure 2(a) and lep be aTyo-coloring of H*. LetF = {fv( e ( )} be
the set of forbidden colors far Any T4o-coloring ofH* can be extended td since
IF|<39. O

Proof of Configuration (C3). Suppose thatl contains the conflguratlon depicted
in Figure 2(b) and le$ be aTso-coloring of H*. Let F = {fv( 1)y ¢( Vi) } be
the set of forbidden colors far. By PropertyP; 19, ¢ can be extended td since
IF|<18. O

Proof of Configuration (C4). Suppose that contains the configuration depicted
in Figure 2(c) and lep be aTso-coloring ofH' =H\ {vs,...,w}. Then, we clearly
haved(v1) # f\‘,bl(vz) sincev is colored inH’. Therefore, by Propert#, o, there

exist anTao-coloring ¢’ of H' so that¢’(v) ¢ {f\‘,p/(\/g), e £ (Vi) }. The coloring
¢’ can be extended td. O

Proof of Configuration (C5). Suppose that contains the configuration depicted
in Figure 2(d). LetH’ be the graph obtained from* by adding, for every K i <

j <3, a 2-path joiningy; to v; with the same orientation as the pathv,vj] in
H. Since Configuration§C1)—(C4) are forbiddengdy(vi) > 3 for 1<i < 3; we
thus haveH’ < H sinceng(H’) = ng(H) — 1, andH’ is clearly tnangle -free. Any
T4o-coloring¢ of H’ induces a coloring dfl * such thath(v;) # f\,I (vj) for anyi, j,
1<i< j<3.Then Propertys4 allows usto exteng toH. O
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Fig. 3. Configuration€7-C10.

Proof of Configuration (C6). Suppose that contains the configuration depicted
in Figure 2(e). Leth be aTyp-coloring of H' = H \ {v4,...,w}. Then, we clearly
haved (vi) # f\‘,?(vj), forall 1<i < j <3, sincevis colored inH’. Therefore, by

PropertyPs 4, there exists @o-coloringd’ of H’ such thaty’ (v) ¢ { f\‘,i’/(vﬁl), e f\‘,b/(\/k)}.
O

Proof of Configuration (C7). Suppose that contains the configuration depicted
in Figure 3(a). LetH’ be the graph obtained frotd* by adding a 2-pattuvw
betweenu andw such thatuvw is directed if and only iuvwis not directed. We
have thatH’ < H since|V(H’)| = [V(H)| — 1 andnz(H’) = n3(H). Due to the
orientations of the 2-pathsvw and uvw, any Tyo-coloring ¢ of H’ ensures that
¢ (u) # ¢(w) andd(u) #t(dp(w)). The coloringp can be extended td. O

Proof of Configuration (C8). Suppose that contains the configuration depicted
in Figure 3(b). LetH’ be the graph obtained from* by adding an edge between
u andw. We have thaH’ < H since|V(H’)| = [V(H)| —2ng(H’) = n3g(H). Since
Configuration(C7) is forbidden, the verticasandw are at distance at least 3k
andH’ is therefore triangle-free. Anfso-coloring¢ of H ensures thagi(u) # ¢ (w)
andd(u) # t(d(w)). The coloringd can be extended td. O

Proof of Configurations (C9) and (C10). To prove that these two configurations
are forbidden in a minimal counterexample to Theorem 3, apuder check is
needed. Indeed, Propertieso, P29, P34 andP, 1 are not sufficient.

A computer check allows us to show that for any compatiblercassignment on
the black vertices (i.e. any two black vertices at distangetBe configuration get
compatible colors) and any orientation of the arcs, theewettices can be colored.
Therefore, that shows thEt does not contain any of these two configurationsl

10
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Fig. 4. Discharging rules

3.2 Discharging procedure

To complete the proof of Theorem 3, we use a discharging proee We define
the weight functiorw by w(x) = d(x) — 4 for everyx € V(H)UF(H). SinceH is a
planar graph, we have by Euler formul® (H)|— |A(H)|+ |[F(H)| = 2):

WV + ¥ wf)= ¥ dv-4+ ¥ (d(f)-4)=-2<0.
veV(H) feF(H) veV(H) feF(H)

In what follows, we will define discharging rules (R1), (Rapd (R3) and redis-
tribute weights accordingly. Once the discharging is fiagsta new weight function
w" is produced. However, the total sum of weights is fixed by iketdarging rules.
Nevertheless, we can show that(v) > O for everyx € V(H)UF(H). This leads
to the following obvious contradiction:

0< Z (.O*(V)—f— Z Q)*(f): Z w(Vv) + Z w(f)<O.
veV(H) feF(H) veV (H) feF(H)

Therefore, no such counterexampleexists.
The discharging rules are defined as follows:

(R1) Each®4-vertex gives 1 to its 2-neighbors.

(R2) Each®5-face...axh.. such that andb are 2-vertices gives 1 (resé) toxif
X is a weak 7-vertices (resp. is not a weak 7-vertex).

(R3) Each®5-facef = ...awxyb.., such thag, b, x are 2-vertices and,y are weak
7-vertices, either receive%ifrom the vertexz if wxyzis a 4-face, or receives
1 from the=5-facef’ = ...cwxyd.. if c,d are=4-vertices.

The discharging rules are illustrated in Figure 4. whiteksligresp. black disks,
black squares) are 2-vertices (resg-vertices, weak 7-vertices).
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3.2.1 Forall vertices ve*(v) >0

In the following,d>4(v) denotes the number of neighbors/fith degree at least 4.
In the same wayd,(v) denotes the number of neighborsmfith degree exactly 2.
Then it is clear that, for every vertexof H, we haved(v) = d>4(Vv) + d2(Vv) since
H contains neither vertices of degree at most 1®Y), nor 3-vertices byC5).

Letvbe ak-vertex ofH. Thereforek = d>4(v) +d2(v). Recall that the initial charge
of vis w(v) = k—4.

if d>4(v) =0, thendz(v) = k > 40 by (C2). By (R1),v givesk x 1. By (C8), v
is incident tok =5-faces, and thereforereceivesk x % by (R2). Hencew*(v) =
w(v) —k+ % > 16.
if d>4(v) =1, thendz(v) =k—1> 19 by (C3). By (R1),v gives(k— 1) x 1.
By (C8), v is incident to(k — 2) =5-faces whose each givésto v by (R2).
Moreover,vis adjacent to at most one weak 7-vertex and therefore (R3) dot
apply. Hencew*(v) = w(v) — (k— 1) + &2 > 6.
if d>4(v) =2, thendy(v) = k—2> 9 by (C4). By (R1), v gives (k—2) x 1.
By (C8), v is incident to(k — 4) =5-faces whose each giv%sto v by (R2).
Moreover, by (R3)yv gives at most% sincev is adjacent to at most two weak
7-vertices. Hencep' (v) = w(v) — (k—2) + 2 -1 > 1.
if d>4(v) =3, thendy(v) = k— 3> 4 by (C5) and(C6). In each case, by (R1Y,
gives(k—3) x 1.

» Suppose that the thregt-neighbors are consecutive. Bg8), v is incident to
(k—4) =5-faces whose each givésto v by (R2). Moreover, by (R3) gives
at most 2x % if and only if da(v) > 6, that impliesk > 9 by (C9). Hence, if
k<8, w'(Vv)=wV) —(k-3)+ 54> 1;if k> 9, w(v) = w(v) - (k—3) +
Z 2323

» Suppose that twé4-neighbors are consecutive. B98), v is incident to(k —
5) =5-faces whose each givésto v by (R2). Moreover, by (R3)y gives at
most% if and only if d2(v) > 6, that impliesk > 9 by (C9). Hence, ifk < 8,
W (V) = (V) — (k—3)+ 52 > 0;if k> 9, 00" (V) = w(v) — (k—3) + 52— 1 >
1

> éuppose that none of tiel-neighbors are consecutive. Bg8), v is incident
to (k— 6) =5-faces whose each giv%sto v by (R2) if d(v) > 8 or gives 1
to v by (R2) ifd(v) =7 (i.e.v is a weak 7-vertex). Moreover, (R3) does not
apply. Hence, ifi(v) =7, w*(v) = w(v) — (k—3)+1=0;if d(v) > 8, w*(v) =
w(v) — (k—3)+ 58 >0.

e If d>4(v) =4, thendy(v) = k—4. By (C1), vgives(k—4) x 1.

Suppose that (R3) does not apply. Theh(v) > w(v) — (k—4) = 0. Suppose
now that (R3) applies: it applies at most twice (otherwisaauld imply that a
weak 7-vertex had three consecutive 2-neighbors). Moreby€C10), we have
da2(v) > 4, thatimpliek > 8.

» Suppose first that (R3) applies only once; tlwegives% to the corresponding
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4-face. Moreover, by (R2) receives%. Hence,w*(v) = w(v) — (k—4) +
51-320
» Suppose now that (R3) applies twice thegives 2x 1 5 to the corresponding
4 faces Moreover by (R2y,receives’>®. Hence w* (v) w(V) — (k—4) +
-2 5 2 0.
. Suppose finally thad>4(v) > 5. By (C1), vgives(k—d>4(v)) x 1. Moreover, by

(R3), v gives at most x { dz‘é(v) J Hence,w*(v) > w(v) — (k—ds4(v)) — 3 x
\\ dZAé(V) J Z 0.

Thus, for every € V(H), we havew*(v) > 0 once the discharging is finished.

3.2.2 Forallfaces fw"(f) >0

Let f be ak-face ofH. SinceH is triangle-free, thelk > 4. Recall that the initial
charge off isw(f) =k—4.

e If k=4, then no rule applies. Henae;(f) = w(f) =0
e If k=5, thenf is incident to at most two 2-vertices 6§€3). If f has no incident
2-vertices, them*(v) > w(f) = 1.

If fisincidentto one 2-vertex, then only (R3) may apply and keoi¢ f) >
w(f)—1=0.

If f is adjacent to two 2-verticesandz, either the common neighbgrof
x andzis weak 7-vertex either it is not. By (R2}, gives at most 1, and hence
w'(v) > w(f)—1=0.

e If k=6, thenf isincident to at most three 2-vertices (§3). If f has no incident
2-vertices, themo*(v) > w(f) = 2.

If fisincidentto one 2-vertex, then only (R3) may apply and keoic f) >
w(f)—1=1.

Suppose thaf is incident to two 2-vertex andz. If x andz has a common
neighbory, by (R2), f gives at most 1, and hence’(v) > w(f) —1=0. If X
andz has no common neighbor, then only (R3)may apply at most twieace,
w'V)>w(f)—2x1=0

Finally, suppose that is adjacent to three 2-vertices.

» If f isincident to at most one weak 7-vertex, thiegives at most k 1+ 2 x
2_2by(R2) Hencew" (v) > w(f)—2=0.
» If fisincidentto two weak 7-vertices, thdrgives 2x 1+ 1 x 2 =

Moreover,f receives at Ieas} by (R3).Hencew" (v) > w(f) — +

» If fisincidentto three weak 7-vertices, thégives 3x 1 by (R2) or

f receives at least 8 1 5 by (R3). Hencew" (v) > w(f) — 3+3x1 5= %

e Suppose finally that > 7, and assume that (R2) appliesmes and (R3) applies
mtimes. It is clear that gives weights by (R2) to at mo%tg J vertices: hence,
n<| 'g |. Moreover, we can easily check that we hawmerZm < k. With these

MHNW

by (R2).
= 0.
e

Z

over,
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Uq V3 us
Vi Vo
uz \ Ug

Fig. 5. Unavoidable configuration in a 2-outerplanar graphtaining neither & 3-vertex,
nor two adjacent 4-vertices

k
constraints, we have+ m = ”+Zg+3m < I 23J+", which implies thatn + m <
k—4 whenk > 7. Hencew"(v) > w(f) —n—m> 0.

Thus, for everyf € F(H), we havew*(v) > 0 once the discharging is finished, that
complete the proof.

4  Proof of Theorem 4

In this section, we prove Theorem 4, that is every orientedi2rplanar grapls
admits a homomorphism .

Esperet and Ochem [6] proved the following structural tbeofor 2-outerplanar
graphs.

Theorem 11 [6] Let G be a2-outerplanar graph. Then G contains eithersg-
vertex, or two adjacemt-vertices, or the configuration depicted in Figure 5.

Moreover, the class of 2-outerplanar graphs is a minoredagaph class.

To prove Theorem 4, we will consider a minimal counterexangpid prove that it
cannot contain one of the configuration described in Thedréna contradiction.

Let H be a hypothetical minimal counterexample (with respech&ominor order)
to Theorem 4.

e ltis trivial to show thatH does not contain a 1-vertex.

e Suppose that contains a 2-vertex adjacent tai; andu,. LetH’ be the graph
obtained fromH by contracting the arapv. By minimality of H, the graphH’
admits aTyo-coloring ¢, and sinceu; andu, are adjacent ifd’, ¢ (u1) # ¢ (up)
andd(uy) #t(d(uz)). By Pog, ¢ can be extended tid, a contradiction.

e Suppose thatl contains a 3-vertex adjacent tai, up, andus. If vis a sink, let
H’ = H; otherwise, leH’ be the graph obtained frokh by pushingu; and/oru,
and/oruz in such a way that becomes a sink ik’ (i.e. Uz, UpV, Ugv € A(H')).
By the Push Property (Proposition 7), the graphis clearly a minimal coun-
terexample to Theorem 4 sineE is T4o-colorable if and only oH does.

Suppose first that the subgraph inducedubyu,, andus in H’ contains a
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u us

uz \ Ug

Fig. 6. Reduction of the configuration depicted in Figure 5

sink, sayu;. Then, letH” be the graph obtained frotd’ by contractingtyV.
By minimality of H’, the graphH” admits aTsg-coloring . SincelUr, Uzt €
A(H"), then either the three verticsu1 ), ¢ (uz), d (uz) form a 3-clique inTyo or
they form a 2-clique iff4o with ¢ (u2) = ¢ (us) (recall thatN™ (u)NNT (t(u)) =0
for everyu of Tag). By Ps 4, the coloringp can be extended td’.

Suppose now that the subgraph inducedifyu,, andus in H’ does not con-
tain a sink; thenus,up, u3 form a directed cycle. Lel” = H’\ {v}. By mini-
mality of H’, the graphH” admits aTso-coloring ¢. It is clear thath(uz),d(up)
and¢(uz) form a 3-clique inTso. By Ps 4, the coloringp can be extended td’.

Therefore, by the Push Property (PropositionH)admits aTso-coloring, a
contradiction.

e Suppose thatl contains two adjacent 4-verticesandv and letH’ = H \ {Tv}.
Let up,up,us (resp.vi,Vo,Vv3) denote the three neighbors of(resp.v) distinct
fromv (resp.u). By minimality of H, H’ admits aTp-coloring¢. Then, erase the
colors ofu andv. By P; 4, we can colou to getd(u) ¢ Ui—123 i (vi). Then by
P41, there exist an available color to exteidio H, a contradiction.

e Suppose that contains the configuration depicted in Figure 5. Hétbe the
graph obtained fronid by contracting the arajvi, vavs andusve: we get the
graphH’ depicted in Figure 6. Bq))/ minimality dfl, H" admits aTg-coloring ¢.
By P34, we can choosé(va) ¢ { fv,(u1), f\‘,bg(v4), f\‘,bg(ue,)}. Then, byP4 1, we can
colorvi andvs, a contradiction.

ThereforeH does not contain any of the configurations described in Tradrl,
a contradiction that proves Theorem 4.
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