
HAL Id: lirmm-00531804
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00531804v1

Submitted on 3 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-based Architecture Recovery from Object
Oriented Systems via Relational Concept Analysis

Alae-Eddine El Hamdouni, Abdelhak-Djamel Seriai, Marianne Huchard

To cite this version:
Alae-Eddine El Hamdouni, Abdelhak-Djamel Seriai, Marianne Huchard. Component-based Architec-
ture Recovery from Object Oriented Systems via Relational Concept Analysis. CLA: Concept Lattices
and their Applications, Oct 2010, Sevilla, Spain. pp.259-270. �lirmm-00531804�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00531804v1
https://hal.archives-ouvertes.fr


Component-based Architecture Recovery from Object

Oriented Systems via Relational Concept Analysis

Alae-Eddine El Hamdouni1, A.Djamel Seriai1, and Marianne Huchard1

LIRMM/CNRS, Montpellier 2 University, France

LIRMM - UMR 5506 - CC 477, 161 rue Ada, 34095 Montpellier Cedex 5 - France

{huchard, seriai, elhamdouni}@lirmm.fr

Abstract. Software architecture modelling and representation has become an

important phase of the development process of complex software systems. Using

software architecture representation as a high level view provides many advan-

tages during all phases of the software life cycle. Nevertheless, for many systems,

such architecture representation is not available. To deal with this problem, we

propose in this paper an approach of architecture recovery which aims to extract

component-based architecture from an object-oriented (OO) system, by a semi-

automatic exploration process. To this end, we use relational concept analysis in

order to identify the architectural components. The RCA-based approach comes

as a complementary method to relieve some limits of the existing implementation

of ROMANTIC based on simulated annealing algorithm. In the RCA approach,

architectural components are identified from concepts derived by exploiting all

existing dependency relations between classes of the OO system. We evaluated

the feasibility of our approach on a Java software.

Keywords: Software Architecture, Architecture Recovery, Relational Concept Analy-

sis, Component-based, Object-oriented

1 Introduction

Given the explosive growth of the computer systems size and complexity, software ar-

chitectures are emerging as a valuable ally for both the design and maintenance of these

systems. During the last decade, this abstract view of systems has become a central field

of software engineering [4]. Its main advantage is to make easier the program compre-

hension by allowing us to focus on architectural elements rather than implementation

details [10]. Indeed, a component-based software architecture is a high level abstraction

of a system using the architectural elements: components which describe functional

computing, connectors which describe interactions and configuration which represents

the topology of connections between components. In addition to program comprehen-

sion, this distinction between functionalities and interaction is crucial to safely main-

tain the system [14]. However, most existing systems do not have a reliable architecture

representation. Indeed, these systems could have been designed without an architecture

design phase, as it is the case for most legacy systems. In other systems, the available

representation can diverge from the system implementation due to the lack of synchro-

nization between software documentation and implementation. Taking into account the



previous considerations, we have proposed an approach called ROMANTIC1, which fo-

cuses on recovering a component-based architecture from OO systems [6]. The main

advantage of this approach is in its automation level, which decreases the need of hu-

man expertise which is expensive and it is not always available. In fact, starting from

the source code, the ROMANTIC process aims at selecting among all the architectures

which can be abstracted from a system, the best one according to an architectural quality

model. Then we formulate this model as measurable constraints. We have experimented

with a simulated annealing algorithm [7]. However, in spite of the many advantages that

offers this implementation of ROMANTIC, it has some limits. First, the architecture ob-

tained by simulated annealing algorithm is an architecture with only one abstraction

level, which optimizes the objective-function. Second, composition relationships are

not presented: In fact, the algorithm does not provide the execution trace that gives

the composition hierarchy of the obtained components. Finally, based on the objective-

function evaluation, the result of a simulated annealing algorithm is unique. Therefore,

there are no alternative solutions to the final one, because intermediate solutions are

considered as less good.

Thereby, we have explored Relational Concept Analysis (RCA) as a satisfactory

solution to these issues. Thus, we have used RCA firstly to overcome the limitations

of the search-based algorithm. On the other hand, we aim to combine the results of

RCA and simulated annealing algorithms to deduce a single relevant architecture. Our

objective in this paper is to present elements required for modelling the recovery of

component-based architectures from OO systems as a RCA problem. In order to use

RCA, the source code has first to be analysed in order to extract entities to be encoded

into contexts. These contexts contain information on the relations linking the entities.

Afterwards, the RCA algorithm is applied and builds a lattice containing a set of con-

cepts. Finally, some of these concepts are decoded toward architectural components.

The remainder of this paper is structured as follows. Section 2 presents an overview

of our approach core. The ROMANTIC-RCA approach is presented and illustrated with

an example in section 3. Section 4 discusses related work. Conclusion and future work

are given in section 5.

2 Background: ROMANTIC overview

ROMANTIC aims to recover a component-based software architecture from an OO sys-

tem using a search-based approach [6,7], i.e. an exploration process of the solution

space in order to identify the best solution according to a given fitness function. In or-

der to model the recovery problem as a search-based one, the ROMANTIC approach

defines the search space, i.e. a representation of all possible architectures, the fitness

function driving the search and a meta-heuristic which is the algorithm of the search-

space exploration.

1 ROMANTIC: Re-engineering of Object-oriented systeMs by Architecture extractioN and mi-

graTIon to Component-based ones.



(a) (b)

Fig. 1. Object-Component mapping model (a) and ROMANTIC elements representation (b)

2.1 Object-component mapping model: Definition of the search space

The search-space of ROMANTIC is composed of all architectures, which are partitions

of the set of system classes, i.e. it contains all the instances of a mapping model (corre-

spondence) between object concepts (i.e. classes, interfaces, packages, etc.) and archi-

tectural ones (i.e. components, connectors, interfaces, etc.).

This mapping model defines an architecture as a partition of the system classes.

Each element of this partition represents a component(“Shape”)(cf.Figure 1(a)). Each

shape is composed of two sets of classes: the “shape interface” , which contains classes

linked with some classes outside the shape, e.g. via method call; and the “center” ,

which is the remainder of the shape (cf.Figure 1(b)). Concerning the component inter-

face, it is assimilated to “shape interface“ as shown on the figure 1(a). Finally, connec-

tors are all dependencies existing between components. As a result of these considera-

tions, in a system which contains n classes, the search-space contains O(Bn) possible

architectures, where Bn, or Bell number, is the number of partitions of a set with n

members [19].

2.2 Romantic’s quality-model of Architecture : Definition of the fitness function

In addition to the search-space, ROMANTIC defines a quality model for software ar-

chitecture which is used to drive the recovery process. This model is based on the

ISO-9126 norm [21] and refines architecture quality characteristics to a set of sub-

characteristics. These sub-characteristics are refined in properties on components and

then on shapes, like coupling or cohesion. The first quality characteristic is the seman-

tic correctness. This characteristic measures the relevance of a partition of classes ac-

cording to the concept of architecture. Semantic correctness of architecture is based on

semantic-correctness of its architectural elements (component, connector and configu-

ration), and it is different from the semantic of the business logic of these elements.In



the current state of Romantic model, connectors are considered as simple links be-

tween components. Thus, semantic-correctness of an architecture is based on semantic-

correctness of its components. The semantic correctness of a component is related to its

sub-characteristics which are component autonomy, specificity and composability.

These sub-characteristics are refined throughout a refinement model in properties on

component, like the component coupling. Finally, these properties are linked to shape

properties, like cohesion of the shape classes.

Figure 2 presents the refinement model of the semantic correctness.

Fig. 2. ROMANTIC’s refinement model of a component’s semantic properties

The second quality characteristic is the architectural quality. It describes the qual-

ity characteristics of the architectural elements, e.g. maintainability and reliability. As

result, ROMANTIC’s fitness function is based on the quality model and uses a set of

metrics to measure the identified shape properties and to evaluate each characteristic.

The quality model, the metrics and the fitness function are presented exhaustively in

[7].

3 Architecture recovery via Relational Concept Analysis

Throughout this section we use the example of a small pictures collage tool called

"PhotoCollage"2 to illustrate the different stages of the architecture recovery process

using RCA.

PhotoCollage is a small tool to collate pictures over each others on a board. It

contains 13 classes: CollageBoard(CB), PhotoItem(PhI), ImageViewer(IV), PhotoItem-

Panel(PhIP), HeaderPanel(HP), Java2DHelper(J2Dhlp), GhostGlassPane(GGP), Col-

lageItem(CI), CollageItemTransferHandler(CITH), DragAndDropLock(DnDL), CollageDemo(CD),

CollageApplet(CA), ShadowFactory(ShF). Figure 3 presents an overview of the appli-

cation class diagram.

2 Source code available on: http://www.lirmm.fr/∼seriai/PhotoCollage



Fig. 3. PhotoCollage simplified class diagram

3.1 From ROMANTIC to ROMANTIC-RCA

As evoked in the previous sections, we are interested in developing several versions of

the ROMANTIC approach, with the final objective to compare and combine their results.

Among the clustering methods, we investigate Formal Concept Analysis ( FCA) [9],

which groups entities sharing common properties into concepts organized in lattices.

Considering that the source code entities we manipulate are linked by dependencies,

we use a variant of FCA, Relational Concept Analysis (RCA) [12].

Properties we expect from the RCA analysis include: a rationale of the obtained

solutions, based on the fact that the dependencies that have lead to the solution are

explicitly given in the lattice; a set of solutions rather than a single one; the organization

of the solutions inside the lattice that allows an expert to navigate between the different

solutions; a decomposition of components of a given solution into sub-components by

exploration of the sub-concepts.

This new method must take into account the common ROMANTIC conceptual core

(cf. Section 2) in which we have defined a refinement model of quality characteristics of

architectural components into object-oriented metrics such as coupling and cohesion.

Nevertheless, this metrics measurement is not adequate to use with RCA. In fact, RCA

uses the relational aspect of the processed data beyond the respect of a prospective

assessment of a given group. On the other hand, the metrics are essential to identify

good architectural components. To this aim, we study how metrics are calculated in

order to extract relationships within the system source code. In fact, metrics are derived

from the set of all relationship dependencies between source code entities.

Therefore, ROMANTIC simulated annealing algorithm is based on metrics while

ROMANTIC-RCA is based on source code dependency relationships from which met-

rics are calculated.

3.2 ROMANTIC-RCA process

As described in the previous section, RCA process is based on the identification of

source code entities and the relations between them. These relations must match the



metrics definition in the Romantic refinement model (cf. Section3.3). Thus, entities and

relations have to be extracted by source-code analysis. In order to apply RCA, we have

defined a process with four steps: The first one focuses on the extraction of a graph of

dependencies of source-code classes. The second aims to create an RCA model using

dependency-graph data. Next, the third step generates a lattice of concepts representing

clusters of object classes and the last step aims to identify candidates components from

the resulting lattice (Figure 4).

The objective of the Dependency graph (DG) extraction is to generate an accurate

representation of the source-code as a graph in which both graph loops and multiple

edges are allowed. Graph vertices represent classes of OO source-code, and edges rep-

resent different dependency types. The weight of these edges is the value of the strength

of the dependency it represents. The Dependency graph is obtained from the extracted

dependencies with static analysis of the source-code. The graph is then encoded into

RCF (Relational Context Family) (cf. Section3.4). The RCF is composed of several

contexts describing entities of different categories, and relations between entities. These

contexts are processed to obtain a final lattice. The lattice’s concepts define the set of all

meaningful clusters of system classes. From these concepts, some are selected to repre-

sent the candidate architectural components. Here, components are considered as sets

of OO classes called Shape (cf. Section 2). The provided and required interfaces of one

of these components are deduced from method calls between classes belonging to dif-

ferent components. Method calls represent the set of connectors between the identified

components.

Fig. 4. Process overview

3.3 From ROMANTIC metrics to RCA relations

As outlined in the previous section, OO classes dependency-links used as relations in

RCA model must translate the meaning of metrics used in the ROMANTIC refinement

model. Thus, the study of this refinement model whose constituents have been presented

in Figure 2, shows that the characteristics of semantic correctness and architectural

quality are refined into metrics like coupling and LCC cohesion.

We analyse these metrics in order to identify the dependency relations that partic-

ipate in their calculation. In fact, the definition of metrics on OO system elements is

obtained by the identification of the different types of relationships between system

classes and the computation of their strengths. Thus, we need to determine precisely

the dependency relations which must be taken into account and how to measure their

strengths. The list of possible links between OO system entities includes inheritance,

composition, aggregation, invocation relationships, etc.



Study of coupling metrics to identify and assess dependency relations. Coupling [22]

has been defined as "the measure of the strength of association established by a connec-

tion of one module to another". Following the considered coupling relations between

classes, we distinguish five coupling metrics. The first is the invocation coupling (eq.1):

two classes are coupled by invocation if at least one method of the former invokes a

method of the latter. The strength of the interaction will be given by the number of such

invocations, relative to the other invocations made by the class.

Winvokes(Cli, Clj) =
|Calls(Cli,Clj)|

|Mtds(Cli)|
·

|Callers(Cli,Clj)|+|Callees(Clj ,Cli)|
|Mtds(Cli)|+|Mtds(Clj)|

(1)

where:

– Calls(Cli, Clj) is the set of method invocations of the class Clj by methods of the

class Cli;

– Callers(Cli, Clj) ⊆ Mtds(Cli) is the set of methods of Cli that contain invoca-

tions to the methods of the class Clj ;

– Callees(Clj , Cli) ⊆ Mtds(Clj) is the set of methods of Clj invoked by elements

of Callers(Cli, Clj).

The second is the access coupling (eq.2) that evaluates the accesses made by a class on

attributes of another class.

Waccess(Cli, Clj) =
|Access(Cli,Clj)|

|Mtds(Cli)|
·

|Accessors(Cli)|+|Accessed(Clj)|
|Mtds(Cli)|+|Attrs(Clj)|

(2)

where:

– Access(Cli, Clj) is the set of accesses to attributes of class Clj by methods of

class Cli;

– Accessors(Cli, Clj) ⊆ Mtds(Cli) is the set of methods of class Cli that make

accesses to attributes of class Clj ;

– Accessed(Clj , Cli) ⊆ Attrs(Clj) is the set of attributes of class Clj accessed by

elements of Accessors(Cli, Clj).

The third metric is the type-dependency coupling (eq.3). For two classes Cli and Clj
it evaluates the use of the class Clj as a type by the methods of class Cli (parameter or

return type) and adds the number of attributes of class Cli whose type is class Clj .

WtypeDep(Cli, Clj) = |AttrsClj (Cli)|+

|RtnTypeClj
(Cli)|+|ParamsClj

(Cli)|+|LocalV arsClj
(Cli)|

|Mtds(Cli)|
(3)

where:

– RtnTypeClj (Cli) is the set of methods of class Cli whose return type is Clj ;

– ParamsClj (Cli) is the set of parameter of class Cli whose type is Clj ;

– LocalV arsClj (Cli) is the set of local variables of class Cli whose type is Clj .



The above mentioned three equations were defined taking into account specially

the notion of the density of interaction relations between the system classes. In fact,

this way of calculation allows to relativize the coupling measure value compared to the

total number of methods of the two classes in interaction.

The fourth coupling metric is the inheritance coupling (Wextends) that evaluates to 1

(Wextends(Cli, Clj) = 1) if there exists an inheritance relation between the two classes

(Cli, Clj). And the fifth coupling metric is the composition coupling (Wcompose) that

evaluates to 1 (Wcompose(Cli, Clj) = 1)if there exists a composition relation between

the two classes (Cli, Clj).

Study of cohesion metric to identify and assess dependency relations. Cohesion is de-

fined in the literature as the degree of collaboration between different elements of a

group. In the OO paradigm, it is based on the method collaboration. The LCC (Loose

Class Cohesion) metric [5], for example, defines the cohesion as the fraction of the

methods that use a same attribute or invoke a same method by the number of method

pairs. We will consider that two classes Cli et Clj are cohesive if their methods are.

That is, if there is at least one method pair (mik,mil),mik ∈ Mtds(Cli) and mil ∈
Mtds(Clj) that invoke the same method or access the same attribute of another class.

This is thus encoded by invocation and access relations (eq.1 and eq.2). The above

identified relations are represented in the dependency graph. As example, Figure 5 rep-

resents a simplified view of the dependency graph of the studied "PhotoCollage" appli-

cation.

����

��

���

	
	�

���

�	

����

�	���

��

���

��

��

��

����������


�
�������


������

����	���
��

�
�� ���
��

Fig. 5. A simplified dependency-graph of the "PhotoCollage" software.

3.4 Relational Concept Analysis for architecture recovery

RCA analyses data represented through a relational context family (RCF). The RCF

is composed of several contexts describing entities of different categories, and rela-

tions between entities. Here we consider only one category of entities, which is com-

posed of all the classes of the system under study. They are described by their name



in the unique non-relational context of the RCF. Then, a relational context is added for

each type of dependency, so we build five relational contexts: r_Invokes, r_Accesses,

r_TypeDepends, r_Compose, r_Extends (for inheritance). These relational contexts are

built on the basis of the dependency graph. Let d be the considered dependency, d is

invokes, access, typeDep, compose or extends.

In the rd relational context, a pair (Cli, Clj) is established if the dependency is

greater than a threshold θ, that is Wd(Cli, Clj) ≥ θ. The threshold θ is given by the

architect according to its own understanding of the system, or it can be preset to a fixed

value, for example, the average of the Wd(Clm, Cln) values, for all classes Clm, Cln
of the system. The RCA process then takes all these tables and iterates on two steps:

(1) building a lattice on the main (non-relational) context concatenated with the five

relational contexts, (2) transforming the five relational contexts to integrate the concepts

found at that current step (to use this knowledge in the next iteration) [12]. During this

transformation, we use an existential scaling operator. The classes that form the columns

of a rd context are replaced by concepts that group the classes. If (Cli, Clj) ∈ rd
initially, and Clj is in the extent of a concept C at the current step, thus in the current

version of rd we add (Cli, C). The obtained concepts can be interpreted with patterns

such as "group of classes that invoke methods of this group of classes and inherit from

this other group of classes, etc." The process stops when no new concept emerges during

the FCA analysis.

As example, Table 1 shows one of the relational contexts of the system RCF. This

RCF is constructed from the dependency graph of the studied "PhotoCollage" applica-

tion.3

C
o
ll

ag
eB

o
ar

d

P
h
o
to

It
em

Im
ag

eV
ie

w
er

P
h
o
to

It
em

P
an

el

H
ea

d
er

P
an

el

Ja
v
a2

D
H

el
p
er

G
o
st

G
la

ss
P

an
e

C
o
ll

ag
eI

te
m

C
o
ll

ag
eI

te
m

T
ra

n
sf

er
H

an
d
le

r

D
ra

g
A

n
d
D

ro
p
L

o
ck

C
o
ll

ag
eD

em
o

C
o
ll

ag
eA

p
p
le

t

S
h
ad

o
w

F
ac

to
ry

CollageBoard ×
PhotoItem × × × ×
ImageViewer

PhotoItemPanel ×
HeaderPanel

Java2DHelper ×
GostGlassPane ×
CollageItem

CollageItemTransferHandler

DragAndDropLock ×
CollageDemo × × ×
CollageApplet ×
ShadowFactory

Table 1. The relational context r_Invokes of the "PhotoCollage" software.

3 This lattice is built using a framework called eRCA available on http://code.google.com/p/erca/



3.5 Identification of architectural components

The concept lattice is explored from the top, by considering sets of concepts forming a

candidate architecture, whose extents cover the whole class set.

The choice, done by the expert, of the concepts to be considered as candidate com-

ponents depends on several factors, including the concepts extent size. A large con-

cept may be considered as a composite component whose sub-components are the sub-

concepts. Otherwise, one class can belong to the extent of several concepts of the can-

didate architecture. In this case, the expert has to evaluate the strength of the relation

between the class and the other classes of each extent. The class is discarded when this

relation is under a threshold. If there is more than one class shared by many concepts,

this set of shared classes belongs necessarily to a common sub-concept of the concerned

concepts. Here we choose this sub-concept instead of its parents. The remaining classes

belong to the other sub-concepts which are chosen too. The process stops when no sub-

concept with more than a class in its extent is shared by more than one parent concept.

Each concept in the candidate architecture is then considered as an architectural compo-

nent. The sub-concepts of each architectural component can be used as an opportunity

to identify composite components.

In the PhotoCollage example, the top-part, of the generated lattice, groups concepts

which are candidate components4. From these concepts we were able to identify 3 com-

ponents. The first contains 6 classes (CB, PhI, PhIP, GGP, DnDL and CD) which are

responsible of the collage board management (where pictures are glued). The second

contains 5 classes (IV, HP, CI, CITH and ShF) which manage the item that handle a

chosen picture. The last component contains the remaining classes (J2Dhlp and CA)

which represent the system execution interface. The identified candidate components

constitute the architectural components of the system architecture of the "PhotoCol-

lage" application.

4 Related Work

Several works are proposed in literature to extract architecture from an OO system [18].

We distinguish these works according to their automation level. First, some approaches

are almost manual. For example, Focus [16] proposes a guideline to a hybrid process

which regroups classes and maps the extracted entities to a conceptual architecture ob-

tained from an architectural style according to the human expertise. Second, most ap-

proaches propose semi-automatic techniques. They automate repetitive aspects of the

recovery process but the reverse engineer steers the iterative refinement or abstraction,

leading to the identification of architectural elements. Thus ManSART [11] tries to

match source code elements on the architectural styles and patterns defined by reverse

engineers. Third, some techniques are quasi-automatic. For example, we can cite the

clustering algorithms which are used to produce cohesive clusters that are loosely inter-

connected [1]. ROMANTIC approach is quasi-automatic too. The main difference with

other quasi-automatic approaches is that it refines the commonly used definitions of

4 Both complete lattice and contexts tables are available on http://www.lirmm.fr/∼seriai/CLA10



components into characteristics and refinement models, whereas other works use the

expertise of the authors in order to define rules driving the process.

Similarly, different approaches have been proposed using formal concept analysis

either in software re-engineering or maintenance. For example, in [17] they propose

an approach of refactorings and design defects correction on procedural OO systems

using RCA. In fact, these systems often include Blob or God Class that reveals a pro-

cedural design. Thus, correcting a Blob amounts to splitting the Blob class into smaller

cohesive sets by grouping class members that collaborate to realize a specific responsi-

bility of the Blob class. Cohesive sets are identified using formal concepts whose intents

involve both proper characteristics and inter-member links, such as calls between meth-

ods. G. Arévalo [2,3] has developed different FCA-based software engineering tools

that help to generate high level view at different levels of abstraction. In re-engineering

context, many work has used FCA to identify modules and components in legacy sys-

tems [8,15,20]. For example, V. Deursen [8] uses both FCA and clustering algorithm

[13] to build OO classes from procedural source code. Elements from source code are

gathered according to the features they share. Then, the resulting concepts are candi-

date classes and sub-concept relationships represent relations between these classes. In

a similar way, M. Stiff [20] has presented a method for identifying modules in legacy

systems based on concept analysis. A formal context is built from the system elements,

and both negative and positive attributes are used in order to extend the context to be

well formed. Then, an algorithm of concept partition is used to discover possible par-

titions in the set of the generated concepts. The chosen partition represents the set of

candidate classes.

5 Conclusion and Future Work

We have proposed in this paper an approach to recover component-based architecture

from an object-oriented system. We have presented elements required to model this

issue with RCA. We rely in part on the results obtained in a previous work based on

the use of a simulated annealing algorithm. We mainly use a model refining the qual-

ity characteristics of components in a set of metrics. Thus, we studied how metrics are

calculated in order to identify relationships within classes of the object-oriented sys-

tem. These relationships are used in an RCA model to generate a lattice of concepts.

Some of these concepts are considered as components of the resulting architecture. The

obtained lattice allows us to: identify architectures with several abstraction levels, iden-

tify composite components, select components according to some grouping criteria and

navigating in the lattice. In our future work, we want to develop some query patterns in

order to select component (concepts) whose classes satisfy some given criteria. Also,

we aim to compare architectures obtained by the simulated annealing and RCA algo-

rithms respectively. We expect to exploit the combined results of these algorithms to

extract a more relevant architecture.

References

1. Anquetil, N., Fourrier, C., Lethbridge, T.C.: Experiments with clustering as a software re-

modularization method. In: Proc. of the Sixth WCRE. p. 235. IEEE (1999)



2. Arévalo, G., Ducasse, S., Nierstrasz, O.: Lessons learned in applying formal concept analysis

to reverse engineering. In: Ganter, B., Godin, R. (eds.) ICFCA. Lecture Notes in Computer

Science, vol. 3403, pp. 95–112. Springer (2005)

3. Arévalo, G., Mens, T.: Analysing object-oriented application frameworks using concept anal-

ysis. In: Bruel, J.M., Bellahsene, Z. (eds.) OOIS Workshops. Lecture Notes in Computer

Science, vol. 2426, pp. 53–63. Springer (2002)

4. Bertolino, A., Bucchiarone, A., Gnesi, S., Muccini, H.: An architecture-centric approach for

producing quality systems. In: QoSA/SOQUA. pp. 21–37 (2005)

5. Bieman, J.M., Kang, B.K.: Cohesion and reuse in an object-oriented system. SIGSOFT

Softw. Eng. Notes 20(SI), 259–262 (1995)

6. Chardigny, S., Seriai, A., Oussalah, M., Tamzalit, D.: Extraction of component-based ar-

chitecture from object-oriented systems. In: WICSA. pp. 285–288. IEEE Computer Society

(2008)

7. Chardigny, S., Seriai, A., Tamzalit, D., Oussalah, M.: Quality-driven extraction of a

component-based architecture from an object-oriented system. In: CSMR. pp. 269–273.

IEEE (2008)

8. van Deursen, A., Kuipers, T.: Identifying objects using cluster and concept analysis. In:

ICSE. pp. 246–255 (1999)

9. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer (1999)

10. Garlan, D., Perry, D.: Introduction to the special issue on software architecture. IEEE Trans-

actions on Software Engineering 21(4), 269–274 (1995)

11. Harris, D.R., Reubenstein, H.B., Yeh, A.S.: Reverse engineering to the architectural level.

In: Proc. of ICSE. pp. 186–195. ACM, Inc. (1995)

12. Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery in struc-

tured datasets. Annals of Mathematics and Artificial Intelligence 49(1-4), 39–76 (2007)

13. Johnson, S.: Hierarchical clustering schemes. Psychometrika 32, 241–245 (1967)

14. Koschke, R.: Atomic Architectural Component Recovery for Program Understanding and

Evolution. Ph.D. thesis, University of Stuttgart (2000)

15. Lundberg, J., Löwe, W.: Architecture recovery by semi-automatic component identification.

Electr. Notes Theor. Comput. Sci. 82(5) (2003)

16. Medvidovic, N., Jakobac, V.: Using software evolution to focus architectural recovery. Au-

tomated Software Eng. 13(2), 225–256 (2006)

17. Moha, N., Hacene, A.R., Valtchev, P., Guéhéneuc, Y.G.: Refactorings of design defects using

relational concept analysis. In: Medina, R., Obiedkov, S.A. (eds.) ICFCA. Lecture Notes in

Computer Science, vol. 4933, pp. 289–304. Springer (2008)

18. Pollet, D., Ducasse, S., Poyet, L., Alloui, I., Cimpan, S., Verjus, H.: Towards a process-

oriented software architecture reconstruction taxonomy. In: CSMR ’07: Proceedings of the

11th European Conference on Software Maintenance and Reengineering. pp. 137–148. IEEE

Computer Society, Washington, DC, USA (2007)

19. Rota., G.C.: The number of partitions of a set. The American Mathematical Monthly 71, No

5, 498–504 (1964)

20. Siff, M., Reps, T.W.: Identifying modules via concept analysis. IEEE Trans. Software Eng.

25(6), 749–768 (1999)

21. for Standardization, I.O.: ISO 9126-1 Software Engineering - Product Quality - Part 1: Qual-

ity Model. International Organization for Standardization (2001)

22. Stevens, W., Myers, G., Constantine, L.: Structured design pp. 205–232 (1979)


