
HAL Id: lirmm-00531807
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00531807v1

Submitted on 3 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Extraction of a WordNet-Like Identifier
Network from Software

Jean-Rémy Falleri, Marianne Huchard, Mathieu Lafourcade, Clémentine
Nebut, Violaine Prince, Michel Dao

To cite this version:
Jean-Rémy Falleri, Marianne Huchard, Mathieu Lafourcade, Clémentine Nebut, Violaine Prince, et
al.. Automatic Extraction of a WordNet-Like Identifier Network from Software. ICPC’10: 18th
IEEE International Conference on Program Comprehension, Jun 2010, Braga, Portugal. pp.4-13,
�10.1109/ICPC.2010.12�. �lirmm-00531807�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00531807v1
https://hal.archives-ouvertes.fr

Automatic Extraction of a WordNet-like Identifier Network from Software

J.-R. Falleri

RMoD Team

INRIA Lille Nord Europe

jean-remy.falleri@inria.fr

M. Huchard, M. Lafourcade, C. Nebut, V. Prince

LIRMM, CNRS and Université Montpellier 2

Montpellier, France

{huchard,lafourcade,nebut,prince}@lirmm.fr

M. Dao

Orange Labs

Issy-Les-Moulineaux, France

michel.dao@orange-ftgroup.com

Abstract—Softwares are designed to be used a significant
amount of time, therefore maintenance represents an important
part of their life cycle. It has been estimated that a lot of
the time allocated to software maintenance is spent on the
program comprehension. Many approaches using the program
structure or external documentation have been created to
ease the program comprehension. However, another important
source of information is still not widely used for this purpose:
the identifiers. In this article, we propose an approach, based
on Natural Language Processing techniques, that automatically
extracts and organizes concepts from software identifiers in
a WordNet-like structure: lexical views. Those lexical views
give useful insight on an overall software architecture and
can be used to improve results of many software engineering
tasks. The proposal is validated on a corpus of 24 open source
softwares.

I. INTRODUCTION

Softwares are designed to be used a significant amount

of time, therefore maintenance represents an important part

of their life cycle. In [1], it is estimated that up to 60%
of the time allocated for software maintenance is spent

on the comprehension of the program. A lot of work has

been done to recover important insight about a program by

the analysis of its structure or its external documentation.

Unfortunately, a fundamental other source of information

present in softwares is still not widely used: the identifiers.

The identifiers are short names given by the developers to

the different elements (functions, classes, attributes, types,

variables) defined in a software. They constitute about 33%

of all tokens [2] in the source code of softwares like Eclipse,

Sun JDK or Tomcat. They also have a strong impact on the

program comprehension.

In most of the existing work using software identifiers,

they are considered as bags of words. On the contrary,

we consider them as short sentences, containing words

of distinct importance. For instance, let us consider these

three identifiers: OrderedSet, HashSet and setName. After

tokenization, these identifiers become: ordered set, hash

set and set name. With no further analysis, these three

identifiers seem highly related, because they all share the

word set. Unfortunately, only the two first identifiers are

related. Moreover, the bag of words paradigm is unable to

extract hierarchical relations between the identifiers. Let us

consider the two following identifiers: List and LinkedList.

It is clear that the meaning of List is more general than the

meaning of LinkedList.

Disposing of a lexical network like WordNet [3] is very

useful to navigate through a set of words. Moreover, it can

be used as the basis to compute several semantic similarity

measures [4]. In such a lexical network, words are grouped

into sets of words having the same meaning (synsets) and

connected by several distinct relations (like is more general

than or is a part of). The main problem is that obtaining

such a lexical network usually requires a lot of manual work

done by many domain experts. For instance, the original

WordNet, that displays the relations between the general

English words, has required several years of work. Having

available such a lexical network for a particular software

could ease many forward and reverse engineering tasks such

as program comprehension, program visualization, naming

assistance, architecture recovery or aspect mining. Unfortu-

nately, creating it by hand would be very time consuming.

Moreover, using the original WordNet would probably lead

to poor results for several reasons. First, working in the

context of a software system strongly restricts the semantic

field, and some software terms, or term meanings cannot be

found in WordNet: for example, is not included in WordNet

(3.0 online search), and the computer science meaning of

is not mentioned. Second, WordNet mostly includes atomic

words, while identifiers are small sentences. Therefore, it is

not clear how one can attach a given identifier in WordNet.

In this paper, we propose a novel approach that auto-

matically classifies a set of identifiers in a WordNet-like

structure. We call this structure a lexical view. It highlights

the hierarchical relations between the identifiers. Moreover,

it includes several implicit concepts that have been auto-

matically extracted from the initial set of identifiers. This

approach, that adapts and uses techniques from the Natural

Language Processing (NLP) field, performs the following

successive steps:

1) cut up identifiers in order to find the primitive words

they are composed of,

2) classify the previously extracted primitive words into

lexical categories (noun, verb, adjective, . . .),

3) apply rules specific to the English language to de-

termine which words are dominant and impose the

meaning of the identifiers,

4) extract implicit important words,

5) organize the initial identifiers together with the freshly

extracted words in a WordNet-like lexical view.

Our approach can be applied at any level of granularity:

one can compute a lexical view of class identifiers, of

attribute identifiers, etc. Since the only thing required by our

approach is a set of identifiers, we can extract lexical views

from softwares defined using a wide range of languages like

object-oriented or functional languages.

In this paper, we first introduce our lexical views, and

the underlying mathematical model we defined (section II).

Then we detail our approach to extract the lexical views

(section III). We show the validity and the interest of the

approach by applying it on identifiers taken from 24 real-

world Java programs (section IV). Section V discusses the

related work and section VI describes the future work and

concludes.

II. LEXICAL VIEW FOUNDATIONS

Before precisely describing the foundations of our lexical

views, we first give some insight about WordNet that has

largely inspired our approach. WordNet [3] is a manually

built lexical dictionary that displays the relations between

the words. There are several differences between WordNet

and a traditional dictionary. First, the words are grouped into

synonym sets (called synset) instead of being displayed in

alphabetic order. This has been done because the designers

of WordNet make the difference between the syntax of a

word (its form) and its semantics (its meaning). A synset

is a set of words that have a different syntax but the same

meaning. Second, the different words displayed in WordNet

are split according to their grammatical categories (verb,

noun, adjective). It means that a synset contains only words

of the same grammatical category. Finally, these synsets are

involved in several binary relations such as is more general

than or is a part of. The relations allowed to connect synsets

are constrained by the grammatical category of these synsets.

Moreover, these relations can connect only synsets having

the same grammatical category.

In this section, we define a precise model of such a lexical

dictionary, called a lexical view. Our objective being to build

a WordNet of identifiers coming from a software, we have

several differences with the original WordNet. First, identi-

fiers are short sentences and not atomic words. Therefore,

we will base our model upon the notion of sentence. Second,

since a sentence cannot easily be classified in a grammatical

category, we do not separate them this way. Finally, since

we focused in this paper on how to automatically extract

the synsets and the relations of our lexical view, we limit

the number of possible relations between the synsets to

two: hyperonymy and hyponymy. These relations can be

defined respectively as is more general than and is more

specific than. We choose these relations for two reasons.

First they are the only relations that can be safely derived

from the identifiers. Second because these relations are

the most important: in [4] we can see that most of the

semantic similarity measures based on WordNet use only

these relations.

In this section, we denote by C a strict partial order

of concepts ordered by <c, and S a set of sentences.

The concepts represent the different possible meanings of

the sentences. The order relation between the concepts

represents the is more specific than relation. We assume

that every sentence s ∈ S refers to a concept c ∈ C. We

introduce the sem function that maps every sentence to its

referred concept, sem : S → C. In the natural language,

sem is a multivalued function: it is usual that a sentence

s ∈ S can be mapped on two different concepts, given

the context. For instance condition is mapped to the disease

concept when one talks about medicine, but is mapped to

another concept in the general case. Since we are working

with identifiers coming from softwares, we constrain the

sem to be a function, therefore a given sentence s ∈ S
is mapped to only one concept c ∈ C. We did that because

usually words in software are used carefully. In our opinion

it is very unlikely that a term appearing in a software with

the same lexical catecory can have two different meanings

(like set as a noun or set as a verb).

Definition 1: Synonymy (syn). Let (s1, s2) ∈ S2. We

have syn(s1, s2) iff sem(s1) = sem(s2). syn indicates that

two sentences have the same meaning.

Property 1: syn is trivially reflexive, symmetric and

transitive. Therefore, it is an equivalence relation over S .

Since syn is an equivalence relation over S , we can derive

the following property:

Property 2: syn defines several equivalence classes over

S .

We denote by [s] the equivalence class of a sentence s ∈
S . As previously seen, such an equivalence class is often

referred to as synset in the WordNet litterature. We now

define the hyponymy and hyperonymy relationships as:

Definition 2: Hyponymy (hypo) and hyperonymy (hy-

per). Let (s1, s2) ∈ S2. We have hypo(s1, s2) (resp.

hyper(s1, s2)) iff sem(s1) <c sem(s2) (resp. sem(s2) <c

sem(s1)).
Property 3: hypo is the inverse relation of hyper.

Property 4: hypo and hyper are (by construction) irreflex-

ive, asymmetric and transitive. They define a strict partial

order over S .

We have seen that syn defines equivalence classes in S ,

we can therefore derive the following property:

Property 5: Let (s1, s2) ∈ S2. hypo(s1, s2) → ∀si ∈
[s1], ∀sj ∈ [s2], hypo(si, sj). The same property also applies

for hyper.

Lexical views are a mean to display a set of sentences

S together with their relations syn, hypo and hyper. A

lexical view lv is a labeled and directed graph lv = (N,A)
with N a set of nodes and A a set of directed edges. To

Tuing
Element
Object

Animal

Bird Feline Zebra

uyper

uyper

syn

uypo

uypoFlying tuing

Figure 1. A sample lexical view

build a lexical view, a triple (S, syn, hypo) is required.

Since hypo and hyper are inverse relations, it can also be

done with a triple (S, syn, hyper). The nodes n ∈ N of

the lexical view represent the equivalence classes (synsets)

defined by syn in S . Edges a ∈ A between the nodes of the

lexical view represent hypo relations between the sentences.

Since the hypo relation is transitive, the edges of the lexical

view are created using the transitive reduction [5] of the

hypo relation. A lexical view is therefore very similar to

the Hasse diagram of a partially ordered set, with the nodes

representing equivalence classes instead of elements. Figure

1 shows a sample lexical view. Some of the relations that

can be inferred from this view are represented by the dotted

edges.

In this mathematical model, we defined the syn relation

and how it can be displayed in the lexical view. However,

we will not use it in our automatic extraction process.

Nevertheless, we did define this relation because we think

it is very useful in the case of a semi-automatic approach

where a user-defined list of synonyms can be manually

added to the input of the extraction process.

III. AUTOMATIC EXTRACTION OF LEXICAL VIEWS

In this section we describe our approach that automatically

computes a lexical view from a set of identifiers. In this

lexical view, there is a node for each concept. Since we

concentrated on the automation of the approach, our process

currently does not let the user manually give synonymy

information, thus, more precisely, there is a node for each

identifier. Additionally, there are nodes for each implicit

concept introduced by the identifiers. For instance, with two

identifiers HashSet and OrderedSet, we build a view with

three nodes, two nodes for the initial identifiers, and one

additional node for the Set concept, implicitly introduced.

This approach adapts and uses common techniques coming

from the Natural Language Processing (NLP) field. It is

composed of five steps:

1) tokenization: the identifiers are split into a list of

terms,

2) part-of-speech tagging: part-of-speech (POS) types

(verb, noun, . . .) are assigned to each term of the

previously computed lists,

3) dependency sorting: every tagged list of terms is

sorted by the dominance order of the terms,

4) lexical expansion: implicit concepts are extracted

from the previously sorted lists of tagged terms,

5) lexical view computation: a lexical view is computed,

using concepts directly extracted from the identifiers

and concepts discovered during the lexical expansion

step.

A. Identifier tokenization

This step aims at extracting the terms that have been

aggregated in the identifiers. For instance, getNextWarning

should be decomposed into get, next and warning. These

terms are often highlighted with a case change or special

characters like underscore or hyphen, usually following team

conventions and programming language rules.

We defined identifier tokenization as follows. Let I be

the set of identifiers provided as the input of our process.

T is the set of terms appearing in the identifiers. We define

tokenization (tok) as a function taking as input an identifier

and producing as output a list of terms of an arbitrary length.

More formally,

tok : I →
∞⋃

i=1

T i (1)

To create the list of terms τ = t1, . . . , tk from an

identifier i, we designed several simple algorithms exploiting

heuristics based on how the developers build their identifiers.

The clues we take into account are:

• Case changes (as in getNextWarning)

• Sequences of numeric characters (as in block129)

• Sequences of non alpha-numeric characters (as in

next_warning)

Our algorithm reads sequentially the characters of i and

performs a cut when one of the previous situations is

triggered. The cut segment is then added at the end of τ and

the algorithm resumes reading the identifier. This procedure

stops when the end of i is encountered.

At the end of this step, the tok function has been applied

to every identifier of I yielding a set L of term lists. L

will be now the input of the next step, called part-of-speech

tagging.

B. Part-of-speech tagging

In this second step, we apply a tag operation on every

list of terms τ ∈ L. This tag operation aims at assigning

a part-of-speech (POS) to every term t ∈ τ . The parts-of-

speech are several lexical categories under which the words

of a sentence can be classified. Two words with the same

part-of-speech share common properties in the sentence. For

[(get,VV);(conf,NN)]

[(get,VV);(conf,NN);(user,NN)]

[(get,VV);(conf,NN);(project,NN);(all,DT)]

[(get,VV);(conf,NN);(project,NN)]

[(get,VV);(conf,NN);(user,NN);(all,DT)]

Figure 2. Excerpt of the operation lexical view of Salome-TMF

instance noun, verb or adjective are parts-of-speech. We

denote by P the set of parts-of-speech. More formally,

tag :

∞⋃

i=1

T i →
∞⋃

i=1

(T × P)i (2)

Computing the part-of-speech of a word within a sentence

is a very complex operation that has been thoroughly investi-

gated in the NLP field. Here the different lists of terms τ are

our sentences. We use the tool Tree Tagger [6] to perform the

part-of-speech tagging operation on τ . Tree tagger produces

as output a list pt of pairs derived from τ . Let τ = t1, . . . , tk
be a list of terms. pt is a list (t1, p1), . . . , (tk, pk), with

pi ∈ P being the part-of-speech corresponding to ti.

We used the English version of Tree Tagger, therefore

our parts-of-speech P are adapted to the English language.

In this case, four categories of nouns are defined, whether

they are common (NN) or proper (NP), singular or plural (S

added to the category name). Tree Tagger also uses 18 verb

categories, including VV for infinitive and VVN for past

participle. Other categories of interest for us are adjective

(JJ), comparative (JJR), preposition to (TO), preposition

around, toward (IN), symbol (SYM) and number (CD). With

these notations get,next,warning would be transformed into

(get,VV),(next,JJ),(warning,NN).

We apply the tag operation to every list of terms t ∈ L.

This leads to the creation of a set PT of lists of pairs

pt previously described. In the next step, we apply the

dependency sorting to every element pt ∈ PT .

C. Dependency sorting

This operation is inspired by the dependency analysis or

parsing [7], [8], a well-known technique in the NLP field.

Roughly, the traditional dependency parsing operation takes

as input a part-of-speech-tagged sentence. It connects the

word by links representing the relation dominate between the

words. The links are then used to build a dependency tree.

Let us imagine the following phrase: I ate an orange and

a green apple. The verb ate applies on (dominates) orange

and green apple, but the adjective green applies only on (is

dominated by) apple.

Sentences derived from identifiers are much simpler than

real sentences. They describe a precise and atomic concept.

For this reason, there is no need for a tree structure to

represent them. Instead, an identifier can be represented by

a list of terms ordered by the order of domination among

the terms: in such a list, a given term dominates all the

terms located after him. For instance get,next,warning could

be reorganized into get,warning,next because this identifier

represents a get action applying on the warning which is next

to the current one. We name this reorganization operation

dependency sorting, or dsort. More formally,

dsort :

∞⋃

i=1

(T × P)i →
∞⋃

i=1

(T × P)i (3)

The dependency sorting is driven by an ordered set of

rules, specifically designed for lists of terms with parts-of-

speech in English. It takes as input an element pt ∈ PT and

produces as output an element pt′. The pt and pt′ elements

are given to a procedure which searches the first rule that

applies. This rule is then applied, the corresponding action

is performed, and the procedure is recursively called with

the modified pt and pt′. We apply this operation on every

element pt ∈ PT to build a PT ′ set. More precisely, the

set of rules that creates an element pt from an element pt′

is the following (where |pt| is the size of pt, i.e. its number

of terms):

1) |pt| = 0 ⇒ stop.

2) |pt| = 1 ⇒ insert the element of pt at the end of pt′,

and remove it from pt.

3) |pt| = 2, the first element is a noun, while the second

is not, ⇒ the first element is added at the end of pt′

and removed from pt.

4) the first element of pt is a verb ⇒ it is added at the

end of pt′ and removed from pt.

5) the first element of pt is a preposition ⇒ it is added

at the end of pt′ and removed from pt.

6) pt is the sequence (s = elements that are not prepo-

sitions, p = preposition, r = the rest) ⇒ apply rules

to s and add the result at the end of pt′, then add p,

Step Identifier 1 Identifier 2

TestWrapper ManualTestWrapper

Tokenization Test,Wrapper Manual,Test,Wrapper

POS tagging (Test,NN),(Wrapper,NN) (Manual,JJ),(Test,NN),(Wrapper,NN)

Dependency sorting (Wrapper,NN),(Test,NN) (Wrapper,NN),(Test,NN),(Manual,JJ)

Lexical expansion ∅

Lexical relations hypo(ManualTestWrapper,TestWrapper)

Lexical view

(Wrapper,NN)(Test,NN)

(Wrapper,NN)(Test,NN)(Manual,JJ)

Table I
ANALYSING TWO wrapper IDENTIFIERS (FROM Salome-TMF)

finally apply rules to r and add the result at the end

of pt′.

7) the last element of pt is a number ⇒ it is moved at

the beginning of pt.

8) (default rule) the last element of pt is added at the

end of pt′ and removed from pt.

This set of rules might seem simplistic, but it captures

most of the constructions that we found in the identifiers of

a lot of softwares. Let us apply these rules to the identifier

JavaBlock12, that has been tokenized and POS tagged to

(Java,NN),(Block,NN),(12,CD):

pt = (Java,NN),(Block,NN)(12,CD); pt′ = ∅
1. Rule 7 (last element is a number), move (12,CD) at the

beginning of pt.

pt = (12,CD),(Java,NN),(Block,NN); pt′ = ∅
2. Rule 8 (default), transfer (Block,NN) at the end of pt′.

pt = (12,CD),(Java,NN); pt′ = (Block,NN)

3. Rule 8 (default), transfer (Java,NN) at the end of pt′.

pt = (12,CD); pt′ = (Block,NN),(Java,NN)

4. Rule 2 (|pt| = 1), transfer (12,CD) at the end of pt′.

pt = ∅, pt′ = (Block,NN),(Java,NN),(12,CD)

Here is another example with the identifier getChange-

Listener, that has been tokenized and POS tagged to

(get,VV),(Change,NN),(Listener,NN):

pt = (get,NN),(Change,NN),(Listener,NN); pt′ = ∅
1. Rule 4 (first element is a verb), transfer (get,NN) to the

end of pt′

pt = (Change,NN),(Listener,NN); pt′ = (get,NN)

2. Rule 8 (default), transfer (Listener,NN) to the end of

pt′.

pt = (Change,NN); pt′ = (get,NN),(Listener,NN)

4. Rule 2 (|pt| = 1), transfer (Change,NN) to the end of

pt′

pt = ∅, pt′ = (get,NN),(Listener,NN),(Change,NN)

D. Lexical expansion

During this step, we extract implicit concepts from the set

of identifiers. These concepts, while present in the software,

are never directly addressed by an existing identifier (like the

Set concept that would have been induced by two OrderedSet

and HashSet identifiers). During this step, a set PT ′′ is

derived from PT ′, such as PT ′ ⊆ PT ′′. To create this PT ′′

set we use a lcp operation, that returns the longest common

prefix between two elements of PT ′. More formally, we

have:

lcp :

∞⋃

i=1

(T × P)i →
∞⋃

i=1

(T × P)i (4)

Let

pt1 = (t10, p
1
0), . . . , (t

1
kp

1
k) (5)

pt2 = (t20, p
2
0), . . . , (t

2
mp2m) (6)

(7)

We have

lcp(pt1, pt2) = (t10, p
1
0), . . . , (t

1
l , p

1
l), l < min(k,m) (8)

Such as

∀i ∈ [0, l], (t1i = t2i) ∧ (p1i = p2i) (9)

And

if l < min(k,m),¬(t1l+1 = t2l+1) ∨ ¬(p1l+1 = p2l+1) (10)

We start with a PT ′′ set equal to PT ′, and we apply

the lcp operation to every possible combination of two

elements from PT ′′. Whenever |lcp(pt1, pt2)| > 0, we add

lcp(pt1, pt2) in PT ′′ if it is not already present. For instance,

let us imagine the two following identifiers: LinkedList

and ArrayList. After tokenization, POS tagging and depen-

dency sorting, we have pt1 =(List,NN),(Linked,VVD) and

pt2 = (List,NN),(Array,NN) in the PT ′′ set. We compute

lcp(pt1, pt2) = (List,NN). Since there is no such element in

PT ′′, (List,NN) is added to PT ′′.

E. Lexical view computation

In this step, we first build a graph G = (N,A), with N

a set of nodes and A a set of directed edges. This graph is

computed from the elements in PT ′′. In our graph, there is

a node for each element pt ∈ PT ′′ (therefore |N | = |PT ′′|).

Step Identifier 1 Identifier 2

updateSalomeConf updateProjectConf

Tokenization update, Salome, Conf update, Project, Conf

POS tagging (update,VV),(Salome,NN),(Conf,NN) (update,VV),(Project,NN),(conf,NN)

Dependency sorting (update,VV),(conf,NN),(salome,NN) (update,VV),(conf,NN),(project,NN)

Lexical expansion (update,VV),(conf,NN)

Lexical relations
hypo(updateSalomeConf,updateConf)

hypo(updateProjectConf,updateConf)

Lexical view

(�pdate,VV)(Conf,NN)

(update,VV)(Conf,NN)(Salome,NN) (update,VV)(Conf,NN)(Project,NN)

Table II
ANALYSING TWO update conf IDENTIFIERS (FROM Salome-TMF)

We define n : PT ′′ → N the bijection that maps an element

pt to its corresponding node n ∈ N . The edges in this

graph represent the hypo relations between the elements

of PT ′′. We consider that an element pt1 is an hyponym

of an element pt2 if pt2 is a prefix of pt1. For instance,

it is reasonable to say that (List,NN),(Linked,VVD) is an

hyponym of (List,NN).

We first create nodes corresponding to every element

of PT ′′. Then we apply the previous procedure lcp to

every combination of two elements from PT ′′. Whenever

|lcp(pt1, pt2)| > 0 ∧ |pt1| = |lcp(pt1, pt2)|, we create an

edge between n(pt1) and n(pt2).
Finally, we compute the transitive reduction of G [5].

This transitive reduction, denoted by lv, is our lexical view.

Figure 2 shows the extract of a lexical view computed on

identifiers coming from the Salome-TMF software. In this

figure, nodes corresponding to the existing identifiers are

represented in white. The concepts extracted during the lex-

ical expansion are represented with a non-white background.

F. Examples

In this section, we show several small lexical view com-

putation examples. We took these examples from real world

software identifiers. Table I shows the lexical view computed

from only two class identifiers coming from the Salome-

TMF program: TestWrapper and ManualTestWrapper. In

this table, results of the successive steps are given in the

different rows. To assess if the produced lexical view was

relevant, we looked in the code of Salome-TMF. There, we

saw that the class ManualTestWrapper is indeed a subclass

of TestWrapper.

Table II shows the lexical view computed on only two

operation identifiers updateSalomeConf and updateProject-

Conf extracted from the same interface (namely ISQL-

Config) of Salome-TMF. Here, the process extracted a

updateConf concept not initially present in the identifiers.

By checking the class implementing this interface (named

SQLConfig), we remarked that these two operations call an-

other operation, updateConf, defined only in the SQLConfig

class. That clearly shows that our approach is able to create

relevant new concepts from the linguistic information found

in identifiers.

IV. VALIDATION

We validate the results given by our approach by running

two different experiments. First, we assess the results given

by the natural language processing (NLP) techniques we

used in our approach (tokenization, part-of-speech (POS)

tagging and dependency sorting). This experiment is given

in Section IV-A. Second, we extracted lexical views from

several real world softwares. We assess the quality of these

views by the use of metrics. This experiment is described in

Section IV-B. In Section IV-C we discuss the limits of our

approach as well as its potential applications.

A. Natural language processing techniques

The goal of this experiment is to check whether the NLP

techniques we used in our approach give satisfying results on

identifiers from the real world. By NLP techniques, we refer

to the tokenization, POS tagging and dependency sorting

steps. For this purpose, we established a list (shown in Table

III) of 24 real Java programs. In this experiment, we want

to assess the efficiency of our NLP techniques on every

kind of identifiers. Therefore, we drew at random from every

program of our corpus 5 classes, attributes and operations

identifiers. After this operation, we had 120 class identifiers,

120 attribute identifiers and 120 operations identifiers, for a

total of 360 identifiers. With the help of NLP experts, we

segmented manually those identifiers. Then, we manually

affected parts-of-speech to the different segments. Finally,

we performed the dependency sorting by hand. This set of

360 identifiers manually curated is our test corpus.

For the sake of the clarity, we split our set of 360
identifiers I in three sets Ik, k ∈ (C,A,O). C stands for

the classes, A for the attributes and O for the operations.

The different Ik contain the identifiers of type k. In this

experiment, we will prefix by m a function to indicate that its

result has been computed manually. To show the efficiency

Efficiency of our NLP techniques

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C A O C A O C A O

Tokenization POS tagging Dependency sorting

1.00
0.97

0.99
0.96

0.94

0.83

0.94 0.94

0.88

Figure 3. Efficiency of our NLP techniques

of our NLP techniques, we compute the following precision

metrics:

• pktok = |i∈Ik,tok(i)=mtok(i)|
|Ik|

: this metric shows the ratio

of identifiers that has been successfully tokenized,

• pktag = |i∈Ik,tag(tok(i))=mtag(i)|
|Ik|

: this metric shows the

ratio of identifiers that has been affected correct parts-

of-speech,

• pkdsort = |i∈Ik,dsort(tag(tok(i)))=mdsort(i)|
|Ik|

: this metric

shows the ratio of identifiers for which the dependency

sorting has been applied correctly.

The more important metric is pkdsort, because the compu-

tation of the lexical views is based directly on the results

given by this step.

Figure 3 shows the results of this experiment. It clearly

shows that the NLP techniques are very efficient for the class

and the attribute identifiers. But one can see a significantly

lower efficiency regarding the operation identifiers. A man-

ual assessment of this result showed that this phenomenon

is induced by the POS tagging step, that sometimes fails

to correctly tag tokens coming from operation identifiers.

More precisely, it tends to affect parts-of-speech such as

past participle to the action verbs of these identifiers (like

put) whenever the past participle is the same as the present.

Since we consider past participle as nouns when performing

the dependency sorting (e.g. LinkedList is not sorted like

linkPeople), this error results in wrongly sorted identifier

tokens. Nevertheless, the overall efficiency of dsort for the

operation identifiers remains good (88% of the identifier

tokens well sorted).

Program Classes Attributes Methods

|Ip
c | |CCp

c | |Ip
a | |CCp

a | |Ip
o | |CCp

o |
JSON 16 14 12 12 124 35

SableCC 198 98 401 127 1711 124

JavaCC 129 69 320 153 1559 194

OpenCloud 21 10 54 36 204 31

Salome TMF 68 33 105 63 613 46

JUnit 115 65 110 53 423 96

NgramJ 37 21 63 43 136 46

JWNL 103 47 155 82 740 80

SimMetrics 114 48 118 32 490 41

Commons CLI 20 12 36 24 131 32

Args4J 29 13 25 17 98 24

JSAP 67 24 107 48 349 39

Choco 461 142 947 331 4337 352

Colt 424 150 807 324 3598 423

JGA 216 108 452 151 1425 150

JScience 176 98 320 157 1890 187

JSci 172 65 206 91 1620 78

Commons Math 223 68 383 173 1501 161

Lucene 269 91 913 303 2053 253

JCommon 181 82 332 158 965 116

XOM 323 95 268 123 1801 170

Julia 423 115 560 202 2035 183

Weka 1164 435 6013 1235 15287 976

Table III
NUMBER OF IDENTIFIERS AND CONNECTED COMPONENTS FOR THE

PROGRAMS OF OUR CORPUS

B. Lexical views

In this second experiment, we build the lexical views

corresponding to the different programs of our corpus. For

each program we compute three lexical views lvk: the class

lexical view, the attribute lexical view and the operation

lexical view. The goal of this experiment is to show that

our approach successfully discovers several groups of se-

mantically linked identifiers among the different identifiers

of a program. In a lexical view, such a group of semantically

comparable concepts is a connected component. Therefore,

the more the different identifiers are semantically linked, the

less is the number of connected components in the lexical

view. In order to show that, we compute six metrics. We

remind that Ik is the set of identifiers of kind k ∈ (C,A,O).
Therefore, for every program, Ic is the number of classes,

Ia the number of attributes and Io the number of operations.

We denote by CCk the set of connected components in lvk.

Table III shows the results of this experiment.

In Table III, we can see that when there are only a few

identifiers of a kind, the number of connected components

is similar to the number of identifiers. On the other hand,

when there is a large amount of identifiers, the number

of connected components is dramatically lower than the

number of identifiers. To show the differences between the

number of identifiers and connected components for every

kind of software elements, we compute several additional

metrics. We count aik the average number of identifiers of

kind k in a program, and acck the number of connected

components of kind k in a program. Figure 4 shows aik and

acck for k ∈ (C,A,O). This figure clearly shows that the

reduction is similar for the classes and the attributes, while

C A O

Avg. reduction from identifiers to connected components

0
50

0
10

00
15

00
20

00

ai acc ai acc ai acc

215.17

82.74

552.48

171.22

1873.48

166.83

Figure 4. Average reduction from identifiers to connected components

it is significantly higher for the operations. This results was

expected because the actions performed by the operations are

highly similar in a software, but applies on different objects.

Indeed, softwares usually contain a lot of operations prefixed

by an action verb such as get, set or update. The operations

are thus grouped in connected components corresponding

to these action verbs. For this reason, the reduction on the

operation identifiers is higher than with the other identifiers.

In an operation lexical view, it could therefore be very

interesting to focus also on the second level concepts.

With the previous metrics, we assessed if our lexical views

were composed of connected components. To improve the

understanding of the lexical view we produce, we compute

two additional metrics. Firstly, let LVk be the set of lexical

views of identifiers of kind k. We remind that CCk is the set

of connected components in lvk ∈ LVk. We compute adk
the average depth of cck ∈ CCk, |cck| > 1. Similarly we

calculate ask the average size of cck ∈ CCk, |cck| > 1.

Finally, we have ank the average number of new con-

cepts (therefore extracted during the lexical expansion step)

cck ∈ CCk, |cck| > 1. To sum up, adk represents the

average depth of the connected components coming from

identifiers of kind k and of size greater than 1. Similarly, ask
represents the average size of these connected components,

and ank the average number of new concepts. Figure 5

shows these metrics. We see that the average depth is similar

for every kind of identifiers. An average maximum depth

about 2 means that, in average, the connected components

have three levels of hierarchy. It is not very deep compared

to WordNet. The average size of the connected components

differs according to the kind of the considered identifiers.

First, the attribute identifiers yield the smaller connected

components. Second, classes lead to slightly larger con-

nected components. Finally, operations result in significantly

larger connected components. The size of the operation con-

nected components is probably induced by the phenomenon

previously described, but it seems that class identifiers yield

bigger connected components than the attributes. Finally

we can see that operations induce the greatest number of

new concepts (which are the different action verbs). Classes

yield a fair number of new concepts. In general the concepts

deduced from the classes are very useful to understand the

program. Finally, attributes seem to produce only a small

amount of new concepts.

C. Discussion

In this section, we discuss several limitations and possible

improvements of our approach. Some of those have also

been observed in a related approach [9].

Naming conventions During the validation of our ap-

proach, we used Java programs. The naming conventions

used in Java make it easy to tokenize the identifiers. Nevethe-

less, it remains several ambigous cases when camel case

is used. Our approach would therefore benefit from [10]

where identifiers are segmented using a corpus of software,

allowing to dectect the most likely tokenization. On the

other hand, some other naming conventions, specially in

legacy code, yield identifiers not so easy to tokenize. It is

even possible that no tokenization at all has been put in

the identifiers, leading to an impossible tokenization with a

classic technique. In this case, other dedicated approaches

could be used [11].

POS tagging We compute the parts-of-speech of the

tokenized terms by using a version of Tree Tagger that has

been trained for the general English language. We saw in

the validation that it yields wrong results in several cases.

Nevertheless, a version of tree tagger specifically trained

to tag terms coming from identifiers would achieve better

results. Training Tree Tagger requires to create a large corpus

of sentences manually tagged.

Generated identifiers It is not uncommon to find pro-

grams where several identifiers have been generated. These

identifiers are most of the time meaningless and will there-

fore introduce some noise in our lexical views. Nevertheless,

if they are generated following strict rules (like they are all

prefixed by the same term), it is very likely that they have

been all organized in the same connected component of the

lexical view, and therefore it might be possible to easily filter

them from the lexical view.

Abbreviations and synonyms In real world identifiers,

it is common that both expanded and abbreviated forms of

a term are used. For instance, let us consider a Message

class that has a huge amount of subclasses. These subclasses

Avg. depth Avg. size Avg. new concepts

Avg depth, size and new concepts of the connected components

0
2

4
6

8
10

12
14

C A O C A O C A O

1.97 1.87 1.94

6.13

5.24

11.77

0.98
0.70

1.34

Figure 5. Average size, depth and new concepts in the connected
components

would probably be named ErrorMsg, WarningMsg, in order

to keep the identifiers short. With our approach, those iden-

tifiers would be in two different connected components of

the lexical view. However, it is easy to extend our approach

to cope with this case. Only a little modification of the lcp

function described in Section III-D is required, by extending

the = relation between the terms to look in a user-defined

list of abbreviations. This extension can also be applied to

deal with the case where two synonym words are used in a

software (e.g. car and auto). Moreover, it would possible to

couple our approach with the appraoch in [10], that discover

automatically abbreviated forms within a software source

code.

General purpose ontologies We said in Section I that

general purpose ontologies, like WordNet, are difficult to

use with the identifiers. Nevertheless, they still could bring

valuable information to our lexical views. Since our lexical

views are ordered with a hypo relation, trying to extract

and inject information from WordNet to our lexical view is

easier than with the raw identifiers. Indeed, it is sufficient to

look to the more general nodes of our lexical views and try

to connect them (semi-automatically) with the nodes from

WordNet.

Semantic measures WordNet has been widely used as the

basis to define and be able to compute semantic similarity

measure between the words [4]. Therefore, it is possible to

take advantage of this work to compute semantic similarity

measures between the identifiers.

V. RELATED WORK

Automatic extraction of lexical relations between words

has been extensively in the field of Natural Language

Processing (example: [12], [13]). Usually the existing ap-

proaches relies on syntactical clues relative to a given

language (for instance, in English, such as indicates often a

case of hyponymy). Unfortunately, these approaches cannot

be applied on identifiers since the syntactical clues are

removed in a identifier.

Perhaps the most related approach to our is the one

described in [14]. In this approach a process similar to our

is defined to extract what the author call verb - direct object

pairs (like draw - circle). The authors explain how their

approach can be used to locate concerns or to mine aspects.

Our approach differs from this one especially on the output:

we focus on a WordNet-like identifier network that shows

the lexical relations between the identifiers of a software.

In [10], an approach that automatically mines abbreviation

from a software source code is described, by using pattern

matching techniques. In [15] an automatic approach that

uses the word frequencies in a software source code to

tokenize the identifiers, allowing to tokenize identifiers with

ambiguous camel case or with no syntactical clue at all.

Although these approaches pursue different objectives than

our, our approach would probably greatly benefit from using

them.

In [16], six approaches that computes the semantic sim-

ilarity of words using WordNet are compared on word

coming from identifiers. The article concludes that WordNet

seems not adapted to this task, since synonyms in the

general English are not the same as in software identifiers.

This indicates that our approach, that automatically extract

a WordNet of identifiers, might improve computation of

semantic similarity on software identifiers.

In [17] a manual procedure extracts words and constructs

a dictionary including the words and their part-of-speech

categories in identifiers. This dictionary is manually enriched

during an identifier segmentation phase, where successive

suffixes are looked for in the dictionary. Words are also

assigned a class among 7 lexical classes including number,

acronym or english-form. Then a grammar for the language

of identifiers is defined, which explains how identifiers are

built. A concept lattice is used to group identifiers that

share common words. An analysis of identifiers of 9 systems

shows that most of the words are English-forms. The concept

lattice highlights relevant terms in identifiers and recurrent

grouping, revealing important concepts.

A technique that aims at extracting concepts from file

names is proposed in [11]. The final objective is clustering

files into subsystems. The method is composed of two steps.

First step constructs candidate segments. Two directions

are followed: an iterative method uses n-gram decompo-

sition of words and an English dictionary, and removes

prefixes candidates to find other candidates; a statistical

method computes most common substrings in file names.

Comments, function identifiers are also explored to find

candidate segments and abbreviations are computed for the

candidates. The second step uses the candidate segments

and abbreviations to split file names. Several strategies are

explored and their combination gives about 90% of correct

decompositions. Our approach, although already giving re-

sult, could be improved by some of their proposals.

Several approaches [18], [9] use Latent Semantic Indexing

(LSI), a well known information retrieval technique, to

find cluster in softwares. Software artifacts are modeled as

documents whose text content are the word contained in its

identifier and plain-text comments. Then the LSI technique

is applied, making it possible to compute the similarity

between two software artifacts. These similarity values are

then used to find clusters of similar software artifacts. Our

approach is different because it focus on extracting the

hierarchical relations between the identifiers. This cannot be

done by using LSI.

VI. CONCLUSION

The names of the identifiers are recognized to contain a

large part of the semantics of programs, and thus, if ade-

quately chosen, to be of great help to understand programs.

The contribution presented in this paper is a fully auto-

mated approach that extracts from those identifier names the

main concepts of a program, and that organizes them into a

lexical view making explicit the relations linking them. The

main benefits of this approach are:

• it is fully automated,

• it is language- and paradigm-independent,

• it can be applied to any piece of code, of any granular-

ity, from a single class to an entire system, in order to

analyze any kind of identifiers (class names, function

names, attributes names),

• it extracts the concepts explicitely included in the

identifiers, as well as those implicitely included,

• it organizes the concepts in a lexical view allowing to

navigate the concepts through their hierarchical struc-

ture.

The validity and interest of the approach have been demon-

strated with a case study involving 24 existing Java pro-

grams.

In order to improve the approach, we plan to create a

training set in order to train a POS tagger specialized in

tagging english sentences derived from identifiers. We also

plan to slightly modify the approach to let the user give

synonymy information.

Linguistic information in the form of lexical views may

be helpful in several phases of software lifecycle, starting

from assistance for identifier naming, to maintenance and

reengineering. Identifier analysis is for example a crucial

part of several approaches allowing class models to be

improved, using automatic detection of design defects [19],

class model restructuring based on the entity names [20],

object identification based on synonymous files [21] or

aspect mining approaches that use fragments of identifiers

[22], group programming elements according to relevant

substrings of their names [23] or search for lexical and type-

based patterns () [24]. Our approach is currently used in a

class model restructuring technique [25], and we will inves-

tigate the way it can contribute to enhance other approaches

requiring identifiers analysis like in references [19], [22],

[23], [24].

ACKNOWLEDGMENT

The authors would like to thank France Télécom R&D

for their support of this work (CPRE 5326).

REFERENCES

[1] A. Abran, P. Bourque, R. Dupuis, and L. Tripp, “Guide to the
software engineering body of knowledge (ironman version),”
Technical report, IEEE Computer Society, Tech. Rep., 2004.

[2] F. Deissenboeck and M. Pizka, “Concise and consistent
naming,” Software Quality Journal, vol. 14, no. 3, pp. 261–
282, 2006.

[3] G. A. Miller, “Wordnet: A Lexical Database for English,” in
HLT. Morgan Kaufmann, 1994.

[4] A. Budanitsky and G. Hirst, “Evaluating WordNet-based
Measures of Lexical Semantic Relatedness,” Computational
Linguistics, vol. 32, no. 1, pp. 13–47, 2006.

[5] A. Aho, M. Garey, and J. Ullman, “The transitive reduction
of a directed graph,” SIAM Journal on Computing, vol. 1, p.
131, 1972.

[6] H. Schmid, “Probabilistic Part-of-Speech Tagging Using De-
cision Trees,” in Proceedings of the International Conference
on New Methods in Language Processing, Manchester, UK,
1994, pp. 44–49.

[7] L. Tesnière, Eléments de syntaxe structurale. Paris: Klinck-
sieck, 1959.

[8] I. A. Mel’čuk, Dependency Syntax: Theory and Practice.
New York: State University of New York Press, 1988.

[9] A. Kuhn, S. Ducasse, and T. Gîrba, “Enriching Reverse
Engineering with Semantic Clustering,” in proc. of the 12th
Working Conference on Reverse Engineering (WCRE 2005).
IEEE Computer Society, 2005, pp. 133–142.

[10] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L. L.
Pollock, and K. Vijay-Shanker, “Amap: automatically mining
abbreviation expansions in programs to enhance software
maintenance tools,” in MSR, A. E. Hassan, M. Lanza, and
M. W. Godfrey, Eds. ACM, 2008, pp. 79–88.

[11] N. Anquetil and T. Lethbridge, “Extracting concepts from file
names: A new file clustering criterion,” in ICSE, 1998, pp.
84–93.

[12] M. A. Hearst, “Automatic acquisition of hyponyms from large
text corpora,” in COLING, 1992, pp. 539–545.

[13] P. Pantel and M. Pennacchiotti, “Espresso: Leveraging generic
patterns for automatically harvesting semantic relations,” in
ACL. The Association for Computer Linguistics, 2006.

[14] Z. Fry, D. Shepherd, E. Hill, L. Pollock, and K. Vijay-
Shanker, “Analysing source code: looking for useful verb–
direct object pairs in all the right places,” Software, IET,
vol. 2, no. 1, pp. 27–36, 2008.

[15] G. Sridhara, E. Hill, L. L. Pollock, and K. Vijay-Shanker,
“Identifying word relations in software: A comparative study
of semantic similarity tools,” in ICPC, R. L. Krikhaar,
R. Lämmel, and C. Verhoef, Eds. IEEE Computer Society,
2008, pp. 123–132.

[16] ——, “Identifying word relations in software: A comparative
study of semantic similarity tools,” in ICPC, R. L. Krikhaar,
R. Lämmel, and C. Verhoef, Eds. IEEE Computer Society,
2008, pp. 123–132.

[17] B. Caprile and P. Tonella, “Nomen Est Omen: Analyzing the
Language of Function Identifiers,” in proc. of the Working
Conference on Reverse Engineering (WCRE’99), 1999, pp.
112–122.

[18] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An
information retrieval approach to concept location in source
code,” in proc of the 11th Working Conference on Reverse
Engineering (WCRE 2004). IEEE Computer Society, 2004,
pp. 214–223.

[19] N. Moha, Y.-G. Guéhéneuc, A.-F. L. Meur, and L. Duchien,
“A domain analysis to specify design defects and generate
detection algorithms,” in FASE, ser. Lecture Notes in Com-
puter Science, J. L. Fiadeiro and P. Inverardi, Eds., vol. 4961.
Springer, 2008, pp. 276–291.

[20] R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and
T.-T. Chau, “Design of Class Hierarchies Based on Concept
(Galois) Lattices,” TAPOS, vol. 4, no. 2, pp. 117–134, 1998.

[21] A. Cimitile, A. D. Lucia, G. A. D. Lucca, and A. R. Fasolino,
“Identifying objects in legacy systems using design metrics,”
Journal of Systems and Software, vol. 44, no. 3, pp. 199–211,
1999.

[22] W. G. Griswold, Y. Kato, and J. J. Yuan, “Aspect Browser:
Tool Support for Managing Dispersed Aspects,” in In First
Workshop on Multi-Dimensional Separation of Concerns in
Object-oriented Systems - OOPSLA 99, 1999.

[23] T. Tourwé and K. Mens, “Mining Aspectual Views using
Formal Concept Analysis,” in SCAM. IEEE Computer
Society, 2004, pp. 97–106.

[24] C. Zhang and H.-A. Jacobsen, “PRISM is research in aSpect
mining,” in OOPSLA Companion, J. M. Vlissides and D. C.
Schmidt, Eds. ACM, 2004, pp. 20–21.

[25] G. Arévalo, J.-R. Falleri, M. Huchard, and C. Nebut, “Build-
ing abstractions in class models: Formal concept analysis in
a model-driven approach,” in MoDELS. Springer, 2006, pp.
513–527.

[26] R. L. Krikhaar, R. Lämmel, and C. Verhoef, Eds., The 16th
IEEE International Conference on Program Comprehension,
ICPC 2008, Amsterdam, The Netherlands, June 10-13, 2008.
IEEE Computer Society, 2008.

	Introduction
	Lexical view foundations
	Automatic extraction of lexical views
	Identifier tokenization
	Part-of-speech tagging
	Dependency sorting
	Lexical expansion
	Lexical view computation
	Examples

	Validation
	Natural language processing techniques
	Lexical views
	Discussion

	Related work
	Conclusion
	References

