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A sharp concentration-based adaptive
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Christophe Fiorio, André Mas
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Abstract. We propose an adaptive procedure for segmenting images by
merging of homogeneous regions. The algorithm is based on sharp con-
centration inequalities and is tailored to avoid over- and under-merging
by controlling simultaneously the type I and II errors in the associated
statistical testing problem.

1 Introduction

In this paper we focus on a strategy which belongs to region merging segmen-
tation [1,2]. It consists in starting with pixel or very small groups of connected
pixels as primary regions and then grouping them two by two when adjacent
regions are considered to be the same. This decision is generally made through
a statistical test to decide the merging of regions [3]. The segmentation pro-
cess uses a merging predicate based on this test to decide, essentially locally,
to merge or not regions. Difficulties of these approaches come from essentially
two points. First, this locality in decisions has to preserve global properties such
as those responsible for the perceptual units of the image. Second, since based
on local decision, algorithms are generally greedy and so order-dependent. But
conversely, these approaches can yield very efficient algorithms [4,5].

Our goal in this paper is to propose a local criterion based on a statistical
test which ensures preserving global properties and stay efficient. The problem
of order dependence will be mentioned in section 8 at the end of this document.
To this aim we use concentration inequalities as first proposed by C. Fiorio and
R. Nock [6,7] and then continued by R. Nock and F. Nielsen [8] to propose a
statistical region merging algorithm. We propose to use another concentration
inequality in order to try to improve quality of the result but also to improve con-
trol on the segmentation by defining more significant parameters and proposing
to point out an indifference zone where we know that decision is not sure.

The paper is organized as follow. First in section 2 we present the basic
theory we use to define our merging criterion. Then our framework is presented at
section 3. Section 4 shows how to approximate our formula to be able to use them
in practice. At last, section 5 presents our main result for region segmentation.
Then we compare our results with previous works at section 6 and give some
experimental results at section 7. At last we conclude this article at section 8.
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2 Basics

Image segmentation by merging of regions or by any technique involving a de-
cision rule (based for instance on a threshold) may be viewed as a traditional
two (or more) samples testing problem. Usually some numerical features of two
regions must be compared to decide whether they look alike or not. Suppose
you are given two regions, say R and R′, made of pixels. Roughly speaking the

general test could be written :

{
H0 : The regions R and R′ must be merged
H1 : The regions must not be merged

.

We remind the reader that two types of error may appear when implementing a
test: rejecting H0 wrongly called type I error (we shall denote α the probability
of the type I error), and rejecting H1 wrongly called type II error (we shall de-
note β the probability of the type II error). It is a well known fact that α and β
cannot be made arbitrarily small together [9]

Usually authors propose merging predicates based on the control of the type
I error (see e.g. [10,11]) without controlling the probability of the type II error.
The main drawback of this procedure is clearly overmerging (one may not accept
H1 often enough).

In this article we propose an adaptive procedure to control both error types.
This procedure is adaptive in the sense that for each test the threshold depends
on second order characteristics of the regions to be tested (the variance associated
to the greylevels in fact). Besides the decision rule even depends on the size
of the regions. In the following E, V and P denote expectation variance and
probability respectively. Now we focus on the mathematical setting of our study.
We consider that the region R is made of pixels viewed as independent discrete
random variables denoted (Xi)i∈|R| with values in {0, ..., 256} . We assume that

for all Xi ∈ R, EXi = m and VXi = σ2.

Inspired by Nock and Fiorio’s theory [6,12,8] of underlying perfect images we
claim that two regions should be merged whenever the common expectation of
pixels from both images are the same. In fact, H0 : m = m′ and H1 : m 6= m′.
Clearly m′ is the expectation of the greylevel for region R′. This classical prob-
lem could be tackled through ANOVA techniques. But the usual assumption
(gaussian distributions and common variance amongst the dataset) are unreal-
istic. Fortunately our method is based on concentration inequalities and makes
independence on the pixels the only serious assumption in the model.

Now focusing on our segmentation problem and denoting. Xi (resp. X ′
j) the

value of the greylevel of pixel i (resp. j) in region R (resp R′), we set the empirical

greylevel mean in R by S =
1

|R|

∑
i∈R Xi and S′ =

1

|R′|

∑
i∈R X ′

i in region R′.

Let us denote by σ2 the common variance of the distributions of pixels within
region R and σ′2 its counterpart for R′. If we deal with the type I error, the
decision rule will be based on the difference |S − S′| and on a threshold tα. The
latter being defined by

PH0
(|S − S′| > tα) ≤ α (1)
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The type II error will be treated below in the paper similarly to the type I
error. The next section is devoted to introducing the probabilistic tools needed
to handle inequalities such as (1).

3 Random framework and tools

3.1 Concentration inequalities based on variance

Concentration inequality roughly claim that the probability for functional of in-
dependent random variables to deviate from their means rapidly decrease : these
functionals are ”concentrated” around a non random number (the expectation)
with a high probability.

For instance the well-known Mc Diarmid’s inequality [13] used by C. Fiorio
and R. Nock to derive concentration bounds and thresholds for the segmentation
algorithm in [6,12,8] is extremely general and powerful in many cases. Yet insofar
as the procedure relies on a comparison of means (see 1), it could be fruitful to
use concentration inequality more specifically designed for sums of independent
random variables instead of general functionals. Amongst these are the famous
Hoeffding’s [14], Bennett’s [15] and Bernstein’s [16] inequalities... It is easily
seen that Mc Diarmid’s inequality generalizes Hoeffding’s one since it involves
a supremum bound for the variation of each coordinate of the function. On the
other hand Bennett’s inequality takes into account the variance of the random
variables and we can expect it to be more precise in many situations. Here is
this inequality in its general formulation (the notations are those of Ledoux-
Talagrand (1991)[17]) :

P

(∣∣∣∣∣
∑

i

Vi

∣∣∣∣∣ > t

)
≤ 2 exp

(
t

a
−

(
t

a
+

b2

a2

)
log

(
1 +

at

b2

))
(2)

Where the independent and centered real random variables Vi’s are such
that |Vi| ≤ a almost surely and b2 =

∑
i EV 2

i .
The preceding bound may be rearranged in a more practical way. Indeed if

EV 2

i = σ2 for all i. Then b2 = nσ2 and setting x = at/σ2

P

(∣∣∣∣∣
∑

i

Vi

∣∣∣∣∣ > nt

)
≤ 2 exp

[
−

nσ2

a2
((1 + x) log (1 + x) − x)

]
(3)

We have already seen above and will make more precise below that one of our
goals would be to determine the smallest threshold t (or equivalently x) such
that the term of the right in the above display is less than α (α is the type I
error). The solution is

x∗
th = min

{
x > 0 : 2 exp

[
−

nσ2

a2
((1 + x) log (1 + x) − x)

]
≤ α

}
(4)

Let us denoted ϕ the positive non-decreasing, convex, one to one function defined
on the set of positive real numbers by ϕ (x) = (1 + x) log (1 + x) − x. This
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function will be referred to as the ”concentration function”, even if this term
does not match the usual probabilistic meaning. If the inverse of function ϕ was

explicitly known an obvious solution would be x∗
th = ϕ−1

(
a2

nσ2
log

(
2

α

))
. But

ϕ−1 cannot be explicitly computed. We will propose an explicitly known function

ϕ† such that ϕ† ≥ ϕ−1 and we will choose x∗ = ϕ†

(
a2

nσ2
log

(
2

α

))
Obviously

the closer function ϕ† is from ϕ−1, the closer x∗ is from x∗
th (x∗ ≥ x∗

th) and the
better our threshold. Before tailoring ϕ† we underline important features of the
bound (3).

3.2 From Gaussian to Poisson bounds

It is often noted in the literature on concentration inequalities (or on large devi-
ation theory) that, depending on the value of t, exponential bounds such as (2)
may be approximated the following way:

– when t is small, namely if at/b2 ≤ 1/2

P

(∣∣∣∣∣
∑

i

Vi

∣∣∣∣∣ > t

)
≤ 2 exp

(
−t2/4b2

)
(5)

which illustrates the gaussian behavior of the random sum.

– when t is large the following inequality is sharper

P

(∣∣∣∣∣
∑

i

Vi

∣∣∣∣∣ > t

)
≤ 2 exp

(
−

t

a

(
log

(
1 +

at

b2

)
− 1

))
(6)

and is referred to as a Poisson type behavior.

The main problem relies on the missing link between the two displays above:
what should we do when t is neither large nor small? What does even mean
”large” and ”small” with respect to our problem. We answer these questions in
the next section. However we notice that Bernstein [16] proved that, uniformly

in x ∈ R, ϕ (x) ≥
x2

2 (1 + x/3)
. This bound is sharp for small x -and would lead

to an explicit ϕ† -but not for large x. The function ϕ† we propose below strictly
reflects both ”domains”: Poisson and Gaussian and even define an intermediate
area.
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4 Approximating the inverse concentration function

4.1 Tailoring the function

We set

ϕ† (y) =





ϕ†
1
(y) =

y

3
+

√
y2

9
+ 2y if 0 ≤ y ≤ 3 (log 3) − 2

ϕ†
2
(y) =

y + 2.3

log 3.3
− 1 if 3 (log 3) − 2 ≤ y ≤ 4 (log 4) − 3

ϕ†
3
(y) =

y

log

(
y

log y
+ 1

)
(

1 +
1

log y

)
− 1 if 4 (log 4) − 3 ≤ y

(7)

The functions ϕ†
1

(resp. ϕ†
3
) lies in the Gaussian (resp Poissonian) domain

and ϕ†
2

features an intermediate domain as announced sooner in the paper.
Now we quickly explain how function ϕ† was derived :

– Bernstein bound directly provides ϕ†
1
: Indeed if ϕ (x) ≥

x2

2 (1 + x/3)
, ϕ−1 (y) ≤

ϕ†
1
(y)

– Function ϕ†
3

is obtained as a by product of Newton algorithm applied to
(4). Indeed we seek min {x > 0 : ((1 + x) log (1 + x) − x) ≥ M}, where M is
known and (4) is rewrited a simpler way. Straightforward calculations prove
that x0 (M) = M/ log (M) is a good estimate for large M. Then iterating
once Newton’s algorithm from x0 (M), we seek the intersection of the tangent
at x0 (M) to function ϕ and the line y = M. Denote this point (κ (M) ,M) .

We just set ϕ†
3
(y) = κ (y) . The good behavior of this estimate is due to the

slow rate of increase of ϕ′ (x) = log (1 + x) .

– Function ϕ†
2

linearly interpolates between ϕ†
1

and ϕ†
3
.

4.2 Measuring the error

Many procedures could be proposed to measure the error between the theoretical
threshold x∗

th and our estimate x∗. We propose the following which is quite
intuitive and global.

Take an x, whose image by ϕ is y = ϕ (x). The approximation error by ϕ† is
clearly

∣∣x − ϕ† (ϕ (x))
∣∣.

Definition 1. As a criterion for measuring the goodness of our approximating

function we take C =supx∈R

∣∣x − ϕ† (ϕ (x))
∣∣

x
.

The next Proposition enlightens the choice of the numerical constants in (7)

Proposition 1. If ϕ† is chosen as in (7), then C ≤ 0.055
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In other words, our method provides a threshold which approximates the
optimal one just inducing a 5% error (about 5% in fact...).

Remark 1. Obviously the bound on C given above may be improved (and made

smaller than the 0.05 threshold) by adding a fourth function, say ϕ†
2.5, between

ϕ†
2

and ϕ†
3
.

5 Main result

5.1 Type I&II errors

Obviously the greylevel of any region may be viewed as a discrete random vari-
ables almost surely bounded by a = 255. Assume first that the variances of
both regions (denoted σ2 and σ′2) are non null. Here is the first result re-

lated to error of type I : Set M =
a2

|R|σ2
log

(
4

α

)
, M ′ =

a2

|R′|σ′2
log

(
4

α

)
,

and tI (α) =
σ2

a
ϕ† (M) +

σ′2

a
ϕ† (M ′).

Theorem 1. When m = m′, P (|S − S′| > tI (α)) ≤ α.
In other words if |S − S′| ≤ tI (α) we accept the merging of both regions

Remark 2. M and M ′ both depend on σ2 and σ′2 which are unknown and will be

approximated by
1

|R|

∑|R|
i=1

(
Xi − X

)2
and

1

|R′|

∑|R′|
i=1

(
X ′

i − X
′
)2

respectively.

Now we focus on the error of type II whose probability was denoted β :
accepting H0 wrongly. At this point we need to address a crucial issue. We try to
avoid overmerging and we should first define what we mean by ”distinct” regions.
We guess that if we take two perfectly homogeneous regions says R with all pixels
taking values v and R′ with all pixels taking values v + 1, the human eye may
not consider them as ”different”. Consequently before going further we should
define precisely what we mean by distinct regions. We introduce the parameter
∆ ∈ N. as the minimum greylevel difference between two perfect regions beyond
which the segmentation procedure should always ”refuse” a merging.

In other words and with mathematical symbol : if |EX − EX ′| > ∆ we
assume that the average greylevel is too different for both regions to be merged.
Obviously ∆ is a tuning parameter that will first of all depend on the ”universal
human eye” but also on the type of images that have to be analyzed.

We are ready to state the next Theorem providing the threshold for type II
error.

Theorem 2. When |EX − EX ′| ≥ ∆ (i.e. when R and R′ should be considered
as distinct regions),

P (|S − S′| < ∆ − tI (β)) < β

and if |S − S′| ≥ ∆ − tI (β) we reject the merging.
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Remark 3. In fact the previous Theorem bounds sup|EX−EX′|≥∆ P (|S − S′| ≤ t)
by β. This probability is nothing but the maximal probability of error for merging
two distinct regions whereas they should not.

We assumed that σ 6= 0 and σ′ 6= 0. In practice it may happen that either
one or both variances are null. This situation is encountered when all pixels of
one (or both) of the regions have the same greylevel (say m and m′). If both
variance are equal we propose to merge them iff |m − m′| ≤ ∆. Now if only one
of the variances is null (say σ′ = 0 and σ 6= 0) then the region R′ will be seen
as a perfect region. Our concentration inequalities still hold but in a one sample
instead of the two sample framework above. A quick inspection of the proof of
Theorem 1 shows that the bound that appears there must be replaced by

t̃I (α) =
σ2

a
ϕ† (M) and t̃′I (α) =

σ′2

a
ϕ† (M ′) (8)

with M like at subsection 5.1.

5.2 The segmentation process

From what was done above the segmentation process decision could be the fol-
lowing :

– If |S − S′| ≤ tI (α) merge R and R′

– If |S − S′| ≥ ∆ − tI (β) do not merge R and R′

We know that in the first case (resp. the second), the probability of error
is less than α (resp.β). But for both conditions not to be contradictory the
following must hold :

∆ ≥ tI (α) + tI (β) (9)

An ultimate question arises : what should we do if tI (α) < |S − S′| < ∆−tI (β)?
The interval [tI (α) ,∆ − tI (β)] is sometimes referred to as the indifference zone
in statistical testing theory.

We propose to base this last step on an homogeneity test for the second
moment (we could also have investigated a randomized test but this approach
is less intuitive). Since we cannot make a decision based on means we look at
the second order moments : if they are close enough we accept the merging of

both regions. Set V =
1

|R|

∑|R|
i=1

X2

i and V ′ =
1

|R′|

∑|R′|
i=1

(X ′
i)

2
. Applying Mc

Diarmid’s (see [18,13]) inequality to V and V ′ we get when EX2 = EX ′2 :

P (|V − V ′| > s) ≤ exp


−

2s2

a4

|R|
+

a4

|R′|



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This time the threshold on the second moment is

tI (γ) =

√
1

2

(
a4

|R|
+

a4

|R′|

)
log

(
1

γ

)
(10)

where γ is a prescribed probability.
To summarize the test procedure, we have four parameters (α, β, ∆) and γ

where

– ∆ is the value of intensity discrepancy that makes two regions being consid-
ered as belonging to two different objects in the image ; this threshold would
be adapted to the dynamics of the image.

– α is the probability not to merge the two regions whereas we should.
– β is the probability to merge the two regions whereas we should not.
– γ is used in the indifference zone and is the probability that the difference

of second order moments of the two regions is too large so that the regions
should not be merge.

In order to achieve an optimal time segmentation, we base our algorithm on
algorithms described in [19] and used by [6,12,8]. These algorithms are based on
the following tests:

1. If |S − S′| ≤ tI (α) merge R and R′ where tI (α)is given in Theorem 1.
2. If |S − S′| ≥ ∆ − tI (β) do not merge R and R′ where tI (β)is computed

using same formula as tI (α)given in Theorem 1.
3. If tI (α) < |S − S′| < ∆− tI (β) compute tI (γ), V and V ′ and if |V − V ′| >

tI (γ) , do not merge R and R′ otherwise merge R and R′, where tI (γ) is
given by Equation 10.

For the sake of efficiency we use algorithms proposed in [19] based on Union-
Find data structure [20].To ensure linear complexity, [19] claims that computing
the criteria has to be done in constant time. Moreover, updating parameters of
regions should also be done in constant time. If we look at formula of Theorem 1
we can easily check that, whenever σ and |R| are known, computing tI (α)can
be considered done in constant time (we suppose that in practice arithmetic
operations, even log are done in constant time, which is not true in theory but
almost true in practice with regard to other operations).

Knowing |R| is easy, is suffices to keep this number as parameter of each
region. When a merging is done, we just add the two corresponding values to
obtain |R| of the newly created region.

As noted in remark 2, σ2 is approximated by
1

|R|

∑|R|
i=1

(
Xi − X

)2
that can

be set to σ2 =

∑|R|
i=1

X2

i

|R|
− X

2

and so we only need to keep updated
∑|R|

i=1
X2

i

and
∑|R|

i=1
Xi which is as easy to maintain as |R| by the same process.

When we are located in the indifference zone, we must be able to compute
in constant time V , V ′ of and Equation 10. It is simple to check, according
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Function Oracle(R,R′)

Input: R and R′ two regions to be checked
Result: true if they should be merged, else false

1 if (σ2 = 0) and (σ′2 = 0) then return |m − m′| ≤ ∆;

2 else if σ2 = 0 then return |S′ − m| ≤ et′
I
(α);

3 else if σ′2 = 0 then return |S − m′| ≤ etI (α);
4 else if |S − S′| ≤ tI (α) then return true;
5 else if |S − S′| ≥ ∆ − tI (β) then return false;
6 else /* indifference zone: tI (α) < |S − S′| < ∆ − tI (β) */

7 return |V − V ′| ≤ tI (γ);

to previous remarks, that these equations can also be computed in practical
constant time. So we can define a function Oracle, based on the 3 tests decribed
at end of subsection 5.2, which decides if two region R and R′ should be merge or
not. According to this Oracle (see function Oracle), Scanline and MergeSquare

algorithms of [19] perform in linear times and so are very fast.

6 Discussion and comparison with previous works

Our threshold cannot always be compared with the ”theoretical” one proposed
by Nock and Nielsen (2005) [10]. Since it is based on a different concentration
inequality. However for the sake of completeness it may be of interest to compare
both threshold. The analytic comparison is really uneasy, so

we plotted this function for |R| = |R′| = r, ranging from 1 to 40 (there was
no need to go beyond since θ (|r|) decreases quickly) and for different values of
σ2 ranging from 1000 to 16000. It turns out that our threshold is less sharp than
the one by Nock and Nielsen only for very small regions and works better for
small σ. We check that introducing the variance in the concentration inequality
provides adaptivity and an extra amount of sharpness.

7 Experimental results and practical improvements

Our main test is tI (α) but it requires that σ 6= 0 and σ′ 6= 0. If we look an image
with low dynamic such as cornouaille image (see figure 1a) and perform our
segmentation process directly we obtain image at figure 1b which clearly shows
effect of scanning order. In fact this effect is amplified by the fact that dynamic
is low and so a lot of regions have initially null variance. To avoid this bias, we
propose to pre-segment image by grouping very similar pixels into small regions
by unsing same algorithm but with an Oracle looking only at greyvalue of pixels.

Result can be seen at figure 1c. It can be compare to result with original
scanline process of [19] with same value of ∆ presented figure 1d.

We have also done some comparisons with work of [6] which first introduce
concentration inequality for segmentation and from which are derived numerous
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(a) original image (b) α = .8 β = .5 γ =
.1 ∆ = 8

(c) with pre-segmentation (d) original scanline

Fig. 1: Comparison with original scanline and without pre-segmentation.

papers of R. Nock [12,8]. For that, we use a very colorful image and perform
segmentation by applying our algorithm to each channel and comparing them as
R. Nock in [5]. As algorithm is basically designed for greylevel images, we need
to relax condition on α to have consistent results on the three RBG channels. So
we set α = β = γ = 0.10 and compare the result (see figure 2b with Mc Diarmid
segmentation criterion in [6,12,8] with Q parameter set to 8 (see figure 2c).

8 Conclusion and further work

We proposed in this paper a merging criterion based on a statistical test using
local properties but preserving global properties. Moreover an efficient region
segmentation algorithm, based on this test, has been given. The originality of
this work lies in the fact that we take into account the two classical types of
error for statistical tests. This leads to an adaptive multi-test which decides if
regions should be merged, should not, or if we are in indifference zone where
both decisions could be accepted. For this last case, we have proposed a way
to finally decide by introducing another parameter and looking at second order
moments.
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(a) original image (b) Bennet – α = .1 β =
.1 γ = .1 ∆ = 8

(c) Mc Diarmid – Q = 8 (d) original scanline

Fig. 2: Comparison with previous works.

Thus the algorithm we propose requires the setting of four parameters α, β, γ,∆.
In fact, the two first parameters need not to be tuned precisely. They even can
be fixed whatever is the image since they are related to the probability of making
error and so denote the trust you want in your test. Classical value in statisti-
cal applications is 5%. γ and ∆ are more sensitive parameters but are far more
intuitive than the Q parameter of [6,12,8] since they describe the perceptual
separability property of grey levels. Then, it has to be related to the image an-
alyzed. We have proposed a first improvement by doing a pre-segmentation in
order to decrease impact of ∆ parameter and scanning order. Another way to
improve results is to sort regions before merging them in order to reduce the
order dependence as done in [12,8]. Instead of sorting, we could also to carry
out seeded region merging. According to [19], the algorithm will loose its linear
time complexity but will stay near linear as proved by R.E. Tarjan in [20] and
so keep almost all of its efficiency. In the present paper, criteria are based on
first and second order moment of the regions, but as Scanline algorithm scans
regions starting from pixels, we could also take into account local pixel criteria
to improve the test in the case of indifference zone.
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