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We discuss a model consisting of two reservoirs, each with N possible ball locations, at heights Eh

and El�Eh in a gravitational field. The two reservoirs contain nh and nl weight 1 balls. Empty
locations are treated as weight 0 balls. The reservoirs are shaken so that all possible ball
configurations are equally likely to occur. A cycle consists of exchanging a ball randomly chosen
from the higher reservoir and a ball randomly chosen from the lower reservoir. We relate this system
to a heat engine and show that the efficiency, which is defined as the ratio of the average work
produced to the average energy lost by the higher reservoir, is 1−El /Eh. When nl is comparable to
nh, the efficiency is found to coincide with the maximum efficiency 1−Tl /Th, where the
temperatures Tl and Th are defined from a simple expression for the entropy. We also discuss the
evaluation of fluctuations and the history of the Carnot discovery. © 2010 American Association of Physics
Teachers.
�DOI: 10.1119/1.3247983�
I. INTRODUCTION

The purpose of this paper is to introduce several important
thermodynamic concepts in a simple manner. The paper is
self-contained and employs only elementary mathematics.
The results are derived for a particular urn �or reservoir�
model, which is related to the one introduced in 1907 by
Ehrenfest.1–3 The model consists of two reservoirs, each with
N possible ball locations containing, respectively, nl and nh
weight 1 balls. These balls are considered indistinguishable.
This model is applicable to Otto heat engines �in which the
working agent parameter stays fixed when in contact with
either bath� with two-level atoms as the working agent.4,5

In Sec. II we describe our model and evaluate the average
work produced, the average energy lost by the upper reser-
voir, and the efficiency. The general properties of heat en-
gines are recalled in Sec. III. The relation between our urn
model and the properties of heat engines is discussed in Sec.
IV. The absolute temperatures Th and Tl of the reservoirs are
defined in the limit of large ball numbers. When nl�nh, the
system efficiency and the average work reduce to the expres-
sion for the efficiency and average work given by Carnot for
an ideal heat engine. The fluctuations in the work produced
are evaluated in Appendix A. A discussion of the history of
the Carnot discovery is given in Appendix B.

II. EXCHANGE OF BALLS
BETWEEN TWO RESERVOIRS

We consider a system consisting of two reservoirs at
heights El and Eh�El with respect to some lower reference
level. There are N possible ball locations in each reservoir,
which we label as 1 ,2 , . . . ,N, as shown in Fig. 1. A single
ball is allowed in any given location. The lower reservoir
contains nl weight 1 balls, and the higher reservoir contains
nh weight 1 balls. In Fig. 1 we show an example with N=5,

nh=2, and nl=1. In the higher reservoir there are ten distin-
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guishable ball configurations, and in the lower reservoir there
are five distinguishable configurations. The two reservoirs
together have 5�10=50 distinguishable configurations, all
of which correspond to the same energy. If we assume that
the reservoirs are sufficiently shaken between exchange
events, all possible ball configurations are equally likely to
occur.

We consider ball displacements from the lower and higher
reservoirs at a single location, say, the left-most location,
labeled 1. We may draw all the possible configurations and
evaluate by inspection quantities of interest such as the av-
erage work produced by the system. For example, the nine
distinguishable configurations for N=3, nh=2, and nl=1 are
shown in Fig. 2. The number below each configuration is the
energy E produced over a cycle, with E�Eh−El=1. For ex-
ample, consider the first position of the first configuration,
and note that there is an empty location in the higher reser-
voir and a ball in the lower reservoir. In this case a cycle
consists of transferring the lower-reservoir ball to the higher
empty location. The system then delivers an energy equal to
�1, that is, the system absorbs an energy equal to 1. The
average energy produced for this configuration, the average
work, is �W�= �−1+0+0+0+1+1+0+1+1� /9=1 /3.

We now turn to an equivalent but more convenient picture
involving the uniform probability of choosing a ball from a
reservoir. It is then convenient to suppose that empty loca-
tions are occupied by weight 0 balls, which do not carry any
energy when displaced. A cycle consists of exchanging two
balls �of weight 0 or 1�, one randomly chosen from the lower
reservoir and one randomly chosen from the higher reservoir.
The probability of choosing a weight 1 ball from the lower
reservoir is pl�nl /N, and the probability of picking up a
weight 1 ball from the higher reservoir is ph�nh /N. As we
will discuss, the average energy produced is �W�= ph− pl. For

our example with N=3, nh=2, and nl=1, we have pl=1 /3,
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ph=2 /3, and �W�=2 /3−1 /3=1 /3, which coincides with the
previous result. The equivalence between the two methods is
general.

The total energy of the system with n weight 1 balls is
Q=nE �with respect to some arbitrary level�. The letter Q is
employed anticipating a correspondence with thermodynam-
ics. When a weight 1 ball is added to the reservoir at height
E, the reservoir energy is incremented by E. If a ball is
randomly chosen from the N locations of a reservoir contain-
ing n weight 1 balls, the probability that this ball has weight
1 is n /N. Hence, if the chosen ball is subsequently carried to
a reservoir at height E, the latter reservoir’s average energy
is incremented by �Q=En /N. The word “average” will
henceforth be omitted because only average values will be
considered.

Consider two such reservoirs, one at height El �lower res-
ervoir� with nl weight 1 balls and the other at height Eh
�higher reservoir� with nh weight 1 balls. A cycle consists of
exchanging two randomly chosen balls between the two res-
ervoirs. The energies added to the lower and higher reser-
voirs are, respectively,

�Ql = El�ph − pl�, �Qh = − Eh�ph − pl� . �1�

The work performed follows from conservation of energy

Fig. 1. Schematic representation of an engine that converts potential energy
into work. Two reservoirs are located at heights El and Eh	El, each with N
possible ball locations labeled 1 ,2 ,3 , . . . ,N �N=5 in the figure�. The num-
ber of weight 1 balls �black circles� is nl in the lower reservoir and nh in the
higher reservoir. Open circles represent weight 0 balls. For each reservoir,
every ball configuration is equally likely to occur with the same frequency
because the energies are the same. Balls may be transferred from one res-
ervoir to the other in location 1 only. If there is a ball in the upper reservoir
at that location and none in the lower one �as is the case in the figure�, the
ball is transferred from the upper reservoir to the lower one, thereby deliv-
ering energy. Conversely, if there is a ball in the lower reservoir and none in
the upper one, the ball is transferred from the lower reservoir to the upper
one, thereby absorbing energy.
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Fig. 2. The nine possible configurations for N=3, nh=2, and nl=1. The

number below each configuration is the energy produced for one cycle.
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W = − �Ql − �Qh = �Eh − El��ph − pl� . �2�

The engine efficiency, defined as the ratio of the work per-
formed W and the energy −�Qh lost by the higher reservoir,
is therefore

� �
W

− �Qh
= 1 −

El

Eh
. �3�

In Sec. IV we show that when ph� pl, the efficiency given
in Eq. �3� coincides with the Carnot efficiency, and the work
given in Eq. �2� coincides with the expression given by
Carnot.

After a cycle the number of weight 1 balls in a reservoir is
changed by �1 or 0. The next cycle therefore operates with
different values of pl and ph. We will not consider the evo-
lution of the work produced cycle after cycle. We are inter-
ested in a comparison with heat engines operating between
two baths whose heat capacity is so large that their tempera-
tures do not vary significantly. Likewise, in the present res-
ervoir model, we may suppose that the number of balls in
each reservoir is so large that their change after any number
of cycles is insignificant.

III. HEAT ENGINES

In this section we recall some well known facts about heat
engines �for a detailed discussion, see, for example, Ref. 6�.

It is known empirically that when two bodies at different
temperatures are placed in contact, they eventually reach the
same temperature. This property may be interpreted by sup-
posing that energy is transferred from the high-temperature
body to the low-temperature body but that the converse
never occurs. A similar observation can be made with two
urns �see Fig. 1 with El=Eh�. Suppose that the urns contain N
balls, each of which is either a weight 1 �black� or weight 0
�white� ball. If randomly chosen balls are repeatedly ex-
changed between the two urns, the ratios of the black and
white balls will eventually become nearly the same in both
urns independent of the initial conditions. For the analogy
with thermal contact to hold, we need to define the tempera-
ture of an urn as a monotonically increasing function of the
ratio of the number of black to white balls, as long as nh
�N /2.

It is also known empirically that when energy is trans-
ferred to a body, the body’s temperature rises. We say that
the body has received energy by heating. The fact that this
energy cannot be converted back into usable energy is one
form of the second law of thermodynamics. To obtain usable
energy from heating, we need two bodies at different
temperatures.

Let us now recall how usable energy may be retrieved
from two baths at different temperatures. What we need is a
“working agent,” which may be any piece of material whose
properties can be changed by varying a parameter. An ex-
ample is a helium-filled cylinder with a piston of variable
length �. Another example more relevant to this paper is a
collection of two-level atoms. We suppose that the separation
in energy � of the two levels may be varied by, for example,
the application of an electrical field. The external agent that
causes the parameter � to vary transfers energy. A typical
closed cycle consists of putting the working agent with pa-
rameter �1 in contact with the low-temperature bath and
slowly varying � to �2. The working agent is then carried

from the low-temperature bath to the high-temperature bath,
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while � is slowly changed to �3. The parameter is then
changed to �4. The working agent is finally returned to the
low-temperature bath, and the parameter recovers its initial
�1 value. A closed cycle is thus defined by the nature of the
working agent and four parameter values. When � does not
vary the cycle transfers energy from the high-temperature
bath to the low-temperature bath and is analogous to a ther-
mal contact.

For the Otto cycle, which describes an idealized form of
the gasoline engine,7 �2=�1 and �4=�3, meaning that the pa-
rameter does not vary when the working agent is in contact
with either bath; � varies only during the adiabatic �that is,
slow and with thermal isolation� transitions from one bath to
the other. This cycle may deliver or receive work for appro-
priate choices of the parameters. Usually it does not achieve
the maximum �Carnot� efficiency, but it does so approxi-
mately when �4��2. For the exact description of Carnot heat
engines, see the generalization of the ball model in Ref. 8.

IV. ENTROPY AND TEMPERATURE

We consider a reservoir with N locations and n weight 1
balls and N−n weight 0 balls. The number of ball configu-
rations in the reservoir is N ! /n ! �N−n�!.9 We define the en-
tropy as the logarithm of the number of configurations, the
Boltzmann constant being set equal to unity, that is,

S�n� = ln	 N!

n ! �N − n�!
 . �4�

Note that for large n,

S�n + 1� − S�n� = ln	 N!

�n + 1� ! �N − n − 1�!

− ln	 N!

n ! �N − n�!
 �5�

=ln	N − n

n + 1

 � ln	N

n
− 1
 , �6�

The absolute temperature of a reservoir is defined as

T�n� =
Q�n + 1� − Q�n�
S�n + 1� − S�n�

�
E

ln	N

n
− 1
 . �7�

The entropy S must be an extensive quantity. Because the
number of configurations in two separate bodies is the prod-
uct of the configurations and the logarithmic function has the
property that ln�ab�=ln�a�+ln�b�, the final approximate ex-
pression in Eq. �7� ensures that T is an intensive quantity.

The cycle efficiency given in Eq. �3� may now be written
in terms of the temperature as

� = 1 −
El

Eh
= 1 −

Tl

Th

ln�pl
−1 − 1�

ln�ph
−1 − 1�

. �8�

When pl� ph, the last term in Eq. �8� drops out, the Carnot
efficiency is obtained, and the work W produced per cycle is
very small. However, we may always add up the work con-
tributions of any number of similar devices having the same
reservoir temperatures �but possibly different values of E and
n� and achieve any specified amount of work at the Carnot

efficiency.
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The ball exchange we have discussed changes the reser-
voir entropies by �1 or 0. Because these events are indepen-
dent, the change in the entropy of the lower reservoir is

�Sl = ph�1 − pl��S�nl + 1� − S�nl��

+ pl�1 − ph��S�nl − 1� − S�nl�� . �9�

From Eq. �6� we obtain

�Sl = �ph − pl�ln�pl
−1 − 1� . �10�

The change in the entropy of the higher reservoir is obtained
by exchanging the h and l labels in Eq. �10�, that is

�Sh = − �ph − pl�ln�ph
−1 − 1� . �11�

We thus find that for pl� ph, �Sl�−�Sh so that there is no
net entropy produced. Entropy is just carried from the higher
reservoir to the lower one. The Carnot expression for the
work may thus be written as

W = �Th − Tl��Sl � 	 Eh

ln�ph
−1 − 1�

−
El

ln�pl
−1 − 1�
�Sl �12�

��Eh − El��ph − pl� , �13�

so that the Carnot expression for W coincides with the ex-
pression for the work performed per cycle evaluated. More
precisely, the ratio of the total entropy produced �Sl+�Sh to
the work produced W goes to zero as ph→pl �see Eq. �A4��.

Equation �13� implies that the engine delivers work only if
Eh−El and ph− pl are both positive or both negative. Because
Eh�El, we must have ph� pl. From Eq. �7� and that the
logarithm is a monotonically increasing function of its argu-
ment, we find that work may be produced only if Th�Tl.

Conventional heat engines operate with two large baths, or
reservoirs, one hot and one cold. Because these baths are not
infinite in size, the temperature of the hot bath decreases, and
the temperature of the cold bath increases and eventually no
work is produced. The same situation occurs in our model.
After a very large number of cycles, the values of ph and pl
coincide, and work is no longer produced. Because the res-
ervoir temperatures do not equalize, we may say that the
system has reached a state of equilibrium but not a state of
thermal equilibrium. This kind of equilibrium is not a pecu-
liarity of our model but a general property of some heat
engines.
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APPENDIX A: FLUCTUATIONS

We obtain in the following the fluctuations in the work
produced and the high-temperature reservoir energy loss. Re-
call that a cycle consists of simultaneously exchanging a ball
from the higher reservoir with nh weight 1 balls and N−nh
weight 0 balls and a ball from the lower reservoir with nl
weight 1 balls and N−nl weight 0 balls.

We saw in the main text that the average work produced
per cycle is �W�=E�ph− pl�. We now evaluate �W2�. The
probability that a weight 1 ball falls and none is raised is
ph�1− pl�. If this event occurs, the work performed squared is

2
equal to E . Conversely, the probability that a weight 1 ball
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is raised and none falls is pl�1− ph�. If this event occurs, the
work performed squared is again equal to E2. Because the
two other cases produce no work, it follows that �W2�
=E2�ph�1− pl�+ pl�1− ph��. Therefore, the variance of the
work produced is

�W2� − �W�2 = E2�ph�1 − pl� + pl�1 − ph� − �ph − pl�2�

= E2�ph�1 − ph� + pl�1 − pl�� . �A1�

For ph� pl we have �W2�− �W�2�2E2pl�1− pl�.
We now consider the total entropy produced �S��Sl

+�Sh. When a weight 1 ball is transferred from the high to
the lower reservoir and none from the low to the higher
reservoir, an event that occurs with probability ph�1− pl�, the
change in Sl according to Eq. �6� is �S�nl+1�−�S�nl�
=ln�pl

−1−1�, and the change in Sh is �S�nh−1�−�S�nh�=
−ln�ph

−1−1�. It follows that the change in the total entropy is
ln��pl

−1−1� / �ph
−1−1�� with probability ph�1− pl�. When a ball

is transferred from the low to the higher reservoir and none
from the high to the lower reservoir, an event that occurs
with probability pl�1− ph�, the change in Sl is, according to
Eq. �6�, �S�nl−1�−�S�nl�=−ln�pl

−1−1�, and the change in
Sh is �S�nh+1�−�S�nh�=ln�ph

−1−1�. It follows that the
change in the total entropy is ln��ph

−1−1� / �pl
−1−1�� with

probability pl�1− ph�.
The average change in the total entropy is therefore

��S� = ph�1 − pl�ln	 pl
−1 − 1

ph
−1 − 1


 + pl�1 − ph�ln	 ph
−1 − 1

pl
−1 − 1



�A2�

=�ph − pl�ln	 pl
−1 − 1

ph
−1 − 1


 	 0. �A3�

When ph� pl, �S�0, and the system becomes reversible
and achieves the highest efficiency. Note that the entropy
change is non-negative for both a heat engine �ph� pl� and a
heat pump �pl� ph�. More precisely, to first order in 
� ph

− pl we have ln��pl
−1−1� / �1 / ph

−1−1���
 / �pl�1− pl��, and
thus

��S� �

2

pl�1 − pl�
. �A4�

This result is reasonable because the entropy is proportional
to 
2, and the work produced is proportional to 
 so that for
small 
, near reversibility does not imply vanishing work.

We also obtain

���S�2� = ph�1 − pl��ln	 pl
−1 − 1

ph
−1 − 1


�2

+ pl�1 − ph��ln	 ph
−1 − 1

pl
−1 − 1


�2

�A5�

=�ph + pl − 2plph��ln	 pl
−1 − 1

ph
−1 − 1


�2

, �A6�
and the variance is
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���S�2� − ��S�2 = �ph + pl − 2plph

− �ph − pl�2��ln	 pl
−1 − 1

ph
−1 − 1


�2

�A7�

=�ph�1 − ph� + pl�1 − pl��

��ln	 pl
−1 − 1

ph
−1 − 1


�2

, �A8�

which vanishes, as well as the average entropy produced,
when ph� pl. To first order in 
 we have

���S�2� − ��S�2 � 2��S� , �A9�

a remarkably simple result. This result was given in Ref. 10
and in previous work.11,12 This agreement shows that the
properties of our model are generally applicable to heat
engines.

APPENDIX B: BRIEF HISTORY
OF CARNOT’S DISCOVERIES

The motivation for introducing the following account of
Carnot discoveries is that they remain insufficiently appreci-
ated.

The Carnot theory, which appeared in a book in 1824 and
in unpublished notes, established both the first and the sec-
ond laws of thermodynamics.13 This fact has been pointed
out by several authors who have looked carefully at what
Carnot actually wrote, clarifying the terminology employed,
updating the system of units, and correcting minor errors in
the experimental data. We translate from Kastler’s paper:14

“Had Sadi Carnot lived longer � . . . �, he would be considered
today not only as the author of the Carnot principle �called
by Clausius the second principle of thermodynamics� but
also as the author of the first principle of that science.” The
book by Brodiansky13 lists ten major achievements of Car-
not, including that “Carnot is the first to formulate the second
principle of thermodynamics” and “He was among the first
to formulate strictly the law of equivalence between heat and
work and the first to calculate with sufficient accuracy its
numerical value.”

One reason for the lack of appreciation of Carnot’s contri-
bution is that it appeared in print decades after his early
death. A second reason is that his work was popularized by
Clapeyron in a partly erroneous manner. A third reason is the
unfortunate use by Carnot of the word “calorique” to desig-
nate what Clausius later called “entropy.” The word calo-
rique had been formerly employed by Lavoisier to designate
some hypothetical heat substance. Clausius and Lord Kelvin,
although highly appreciative of Carnot’s work, missed part
of his contribution because Carnot’s notes were not available
to them. La Mer expressed himself forcefully as follows:
“Unless the view-point that the Carnot theory is accurate is
adopted, one is placed in the position of maintaining that
Carnot succeeded in demonstrating some of the most funda-
mental and profound principles of physical science by the
most masterly display of scientific double-talk that has ever
been perpetrated upon the scientific world. This view is
untenable.”15 Much clarification is due to Hoyer.16 The his-
torian of science Fox has written, “Until recently there were
very few studies concerning �the physics of Carnot reflec-
tions�. Thanks to the work of Hoyer, we now have papers on

the logical implications of the Carnot theory, and its analogy
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with modern thermodynamics � . . . �. It is not at all obvious to
understand how Carnot �discovered the mechanical equiva-
lent of heat�. Hoyer examined this question in two important
papers. His articles provide complete references to earlier
attempts � . . . �. He explains the exactness of Carnot calcula-
tion �which is even more striking if one uses modern values
for the specific heats� by noticing that the Carnot theory is
entirely accurate.”

As far as the first law of thermodynamics is concerned, we
quote Carnot:17 “Heat is nothing but motive power, or rather
another form of motion. Wherever motive power is de-
stroyed, heat is generated in precise proportion to the quan-
tity of motive power destroyed; conversely, wherever heat is
destroyed, motive power is generated.” �Carnot calculated
that 1 cal is equivalent to 3.27 J instead of the present-day
value of 4.18 J.�

The key fact related to the second law is that engine effi-
ciencies reach their maximum value when they are revers-
ible. Carnot reached this conclusion by considering that en-
ergy cannot be obtained for free. He therefore looked for
energy transfers that could work in a reversed manner. Slow
processes are reversible, with the exception of thermal con-
tacts. Because there is some confusion in the literature con-
cerning the significance of the Carnot contribution to the
second law of thermodynamics, we quote Zemansky and
Dittman:6 “Carnot used chaleur when referring to heat in
general, but when referring to the motive power of fire that is
brought about when heat enters an engine at high tempera-
ture and leaves at low temperature, he uses the expression
chute de calorique, never chute de chaleur � . . . �. Carnot had
in the back of his mind the concept of entropy, for which he
reserved the term calorique.”
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