
HAL Id: lirmm-00616669
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00616669v1

Submitted on 23 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Web Service Tagging Using Machine
Learning and WordNet Synsets

Zeina Azmeh, Jean-Rémy Falleri, Marianne Huchard, Chouki Tibermacine

To cite this version:
Zeina Azmeh, Jean-Rémy Falleri, Marianne Huchard, Chouki Tibermacine. Automatic Web Service
Tagging Using Machine Learning and WordNet Synsets. WEBIST 2010 - 6th International Conference
on Web Information Systems and Technologies, Apr 2010, Valencia, Spain. pp.46-59, �10.1007/978-3-
642-22810-0_4�. �lirmm-00616669�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00616669v1
https://hal.archives-ouvertes.fr

Automatic Web Service Tagging Using Machine
Learning and WordNet Synsets?

Zeina Azmeh, Jean-Rémy Falleri, Marianne Huchard and Chouki Tibermacine

LIRMM, CNRS and Montpellier II University
161, rue Ada 34392 Montpellier Cedex 5 France

{falleri,azmeh,huchard,tibermacin}@lirmm.fr

Abstract. The importancy of Web services comes from the fact that
they are an important means to realize SOA applications. Their increas-
ing popularity caused the emergence of a fairly huge number of services.
Therefore, finding a particular service among this large service space can
be a hard task. User tags have proven to be a useful technique to smooth
browsing experience in large document collections. Some service search
engines proposes the facility of service tagging. It is usually done manu-
ally by the providers and the users of the services, which can be a fairly
tedious and error prone task. In this paper we propose an approach for
tagging Web services automatically. It adapts techniques from text min-
ing and machine learning to extract tags from WSDL descriptions. Then
it enriches these tags by extracting relevant synonyms using WordNet.
We validated our approach on a corpus of 146 services extracted from
Seekda.

Keywords: Tags, web services, text mining, machine learning.

1 Introduction

Service-oriented architectures (SOA) are achieved by connecting loosely coupled
units of functionality. The most common implementation of SOA uses units
of functionality invokable though Internet, called Web Services. Using SOA, a
developer can quickly build a complex software by using already available Web
services. One of the main tasks is therefore to find the relevant Web services
to use in the software. With the increasing interest toward SOA, the number
of existing Web services is dramatically growing. Finding a particular service
among this huge amount of services is becoming a time-consuming task.

Web services are usually described with a standard XML-based language
called WSDL. The WSDL format has been designed to be processed automati-
cally by programs, but it includes a documentation part that can be filled with
a text indicating to the user what the service do. Unfortunately, this documen-
tation part is often not filled by the creators of the services. In this case, the
potential users of the service spend time to understand its functionality and to
? France Télécom R&D has partially supported this work (contract CPRE 5326).

2 Azmeh et al.

decide whether or not they will use it. Moreover, it is common that a user has
finally selected a service but finds out that in fact this service is irrelevant. When
this case occurs, the user might want to easily get a list of services offering a
similar functionality. Tagging is a mechanism that has been introduced in search
engines and digital libraries to fulfill exactly this objective.

Tagging is the process of describing a resource by assigning some relevant
keywords (tags) to it. The tagging process is usually done manually by the users
of the resource to be tagged. Tags are useful when browsing large collections
of documents. Indeed, unlike with traditional hierarchical categories, documents
can be assigned an unlimited number of tags. It allows cross-browsing between
the documents. Seekda1, one of the main service search engines, already allows
its users to tag its indexed services. Tags are also useful to have a quick un-
derstanding of a particular service. Moreover, since tags are words particularly
important for the services, they are a good basis for other important tasks, like
service classification or clustering.

In this paper, we present an approach that automatically extract a set of
relevant tags from a WSDL service description, documented or not. We use a
corpus of user-tagged services to learn how to extract relevant tags from un-
tagged service descriptions. Our approach relies on text mining techniques in
order to extract candidate tags out of a description, and machine learning tech-
niques to select relevant tags among these candidates. The extracted set of tags
is then enriched with semantically related tags using the WordNet ontology [11].
We have validated this approach on a corpus of 146 user-tagged Web services
extracted from Seekda. Results show that this approach is significantly more ef-
ficient than the traditional (but fairly efficient) tfidf weight (explained in Section
2.1).

The remaining of the paper is organized as follows. Section 2 introduces
the context of our work. Then, Section 3 details our tag extraction process.
Section 4 presents a validation of this process and discusses the obtained results.
Before concluding and presenting the future work, we describe the related work
in Section 5.

2 Context of the Work

Our work focuses on extracting tags from service descriptions. In the literature,
we found a similar problem: keyphrase extraction. Keyphrase extraction aims
at extracting important and relevant short phrases from a plain-text document.
It is mostly used on journal articles or on scientific papers in order to smooth
browsing and indexation of those documents in digital libraries. Before starting
our work, we analyzed one assessed approach that performs keyphrase extraction:
Kea [12] (Section 2.1). After this analysis, we concluded that a straightforward
application of this approach is not possible on service descriptions instead of
plain-text documents (Section 2.2).

1 http://www.seekda.com

http://www.seekda.com

Automatic Web Service Tagging 3

2.1 Description of Kea

Kea [12] is a keyphrase extractor for plain-text documents. It uses a Bayesian
classification approach. Kea has been validated on several corpora [16,17] and
has proven to be an efficient approach. It takes a plain-text document as input.
From this text, it extracts a list of candidate keyphrases. These candidates are

the
k⋃

i=1
k-grams of the text. For instance, let us consider the following sample

document: “I am a sample document”. The candidate keyphrases extracted if
k = 2 are: (I,am,a,sample,document,I am,am a,a sample,sample document). To
choose the most adapted value of k for the particular task of extracting tags
from WSDL files, we made some measurments and found that 86% of the tags
are of length 1. It clearly shows that one word tags are assigned in the vast
majority of the cases. Therefore we will fix k = 1 in our approach (meaning that
we are going to find one word length tags). Nevertheless, our approach, like Kea,
is easily generalizable to extract tags of length k.

Kea then computes two features on every candidate keyphrase. First, distance
is computed, which is the number of words that precede the first observation
of the candidate divided by the total number of words of the document. For
instance, for the sample document, distance(am a) = 1

5 . Second, tfidf, a standard
weight in the information retrieval field, is computed. It measures how much a
given candidate keyphrase of a document is specific to this document. More
formally, for a candidate c in a document d, tfidf(c, d) = tf(c, d)× idf(c). The
metric tf(c, d) (term frequency) corresponds to the frequency of the term c in
d. It is computed with the following formula: tf(c, d) = occurences of c in d

size of d . The
metric idf(c) (inverse document frequency) measure the general importance of
the term in a corpus D. idf(c) = log(|D|

|{d: c ∈d}|).
Kea uses a naive Bayes classifier to classify the different candidate keyphrases

using the two previously described features. The authors showed that this type of
classifier is optimal [7] for this kind of classification problem. The two classes in
which the candidate keyphrases are classified are: keyphrase and not keyphrase.
Several evaluations on real world data report that Kea achieve good results
[16,17]. In the next section, we will describe how WSDL files are structured and
highlight why the Kea approach is not directly applicable on this kind of data.

2.2 WSDL service descriptions

The documents from which we intend to extract tags are service descriptions in
the WSDL format. This format is XML-based and aims at describing the differ-
ent elements involved in a web service. Those elements are: services, ports, port
types, bindings, types and messages. Their descriptions always come with a name,
called identifier (example:MyWeatherService, ComputeExchangeRatePort). They
can optionally come with a plain-text documentation. Figure 3 (left) shows the
general outline of a WSDL file.

One simple idea to extract tags from services would be to use Kea on their
plain-text documentations. Unfortunately, an analysis of our service corpus (see

4 Azmeh et al.

WSDL + Tags
Corpus

word 1 + features + class
word 2 + features + class
word n + features + class

Already classified
words

Trained
classifier

Fig. 1. The training phase

Section 3.1 for more information about this corpus) shows that about 38% of
the services are not documented at all. Using only plain-text documentation of
the WSDL to tags service would therefore leaves at least 38% of the services
untagged, which is not acceptable. Another important source of information to
discover tags are the identifiers contained in the WSDL. For instance weather
would surely be an interesting tag for a service named WeatherService. Unfortu-
nately, identifiers are not easy to work with. Firstly because identifiers are usually
a concatenation of different words (remember MyWeatherService). Secondly
because they can be associated to different kinds of elements (services, ports,
types, . . .) that have not the same importance in a service description. For all of
these reasons, extracting candidate tags from WSDL files is not straightforward.
Several pre-processing and text-mining techniques are required. Moreover, the
previous described feature (tfidf and distance) are not easy to adapt on words
coming from a service descriptions. First because WSDL deals with two cate-
gories of words (the one coming from the documentation and the one coming
from the identifiers) that are not necessary related. Second because the distance
feature is meaningless on the identifiers, which are defined in an arbitrary order.

3 Tag Extraction Process

Similarly to Kea, we model the tag extraction problem as the following classi-
fication problem: classifying a word into one of the two tag and no tag classes.
Our overall process is divided into two phases: the training phase and the tag
extraction phase.

Figure 1 summarizes the behavior of the training phase. In this phase we
dispose of a corpus of WSDL files and associated tags. Since we did not find
such a publicly available corpus, we created one by using data from Seekda. The
creation of this training corpus is described in Section 3.1. From this training
corpus, we first extract a list of candidate words by using text-mining techniques.
The extraction of these candidates is described in Sections 3.2 and 3.3. Then
several features are computed on every candidate. A feature is a common term
in the machine learning field. It can be seen as an attribute that can be computed
on the candidates (for instance the frequency of the words in their WSDL file).
Finally, since manual tags are assigned to those WSDL files, we use them to
classify the candidate words coming from our WSDL files. Using this set of
candidate words, computed features and assigned classes, we train a classifier.

Automatic Web Service Tagging 5

New WSDL
file

word 1 + features
word 2 + features
word n + features

Unclassified
candidate words

Trained
classifier

+
tag 1
tag 2
tag k

Tags

Fig. 2. The tag extraction phase

This trained classifier will then be used to classify words coming from subsequent
WSDL files during the tag extraction phase.

Figure 2 describes the tag extraction phase. First, like in the training phase,
a list of candidate words is extracted from an untagged WSDL file. The same
features as in the training phase are then computed on those words. The only
difference with the training phase is that we do not know in advance which of
those candidates are true tags. Therefore we use the previously trained classifier
to automatically perform this classification. Finally the tags extracted from the
WSDL file are the words that have been classified in the tag class. It is note-
worthy to remark that the training phase is only performed once, while the tag
extraction phase can be applied an unlimited number of times.

3.1 Creation of the training corpus
As explained above, our approach requires a training corpus, denoted by T .
Since we want to extract tags from WSDL files, T has to be a set of couples
(wsdl, tags), with wsdl a WSDL file, and tags a set of corresponding manually
assigned tags. We were not aware of such a publicly available corpus. Therefore
we decided to create one using data from Seekda. Indeed, Seekda allows its
users to manually assign tags to its indexed services. We created a program that
crawls on the Seedka services and extracts the WSDL files together with the
user tags. To ensure that the services of our corpus were significantly tagged,
we only retain the WSDL files that have at least five tags. Using this program,
we extracted 150 WSDL files. Then, we removed from T the WSDL files that
triggered parsing errors. Finally, we dispose of a training corpus containing 146
WSDL files together with their associated tags.

To clean the tags of the training corpus, we performed the three following
operations:
– We removed the non alpha numeric characters from the tags (we found

several tags like _onsale or :finance),
– We removed a meaningless and highly frequent tag (the _unkown tag),
– We divided the tags with length n > 1 into n tags of length 1, in order to

have only tags of length 1 (the reason has been explained in section 2.1).
The length of a tag is defined as the number of words composing this tag.

Finally, we dispose of a corpus of 146 WSDL files and 1393 tags (average of
9.54 tags per WSDL). An analysis of T shows that about 35% of the user tags
are already contained in the WSDL files. Now that we have this training corpus,
we will shortly describe the approach upon which our work is built.

6 Azmeh et al.

Types
 Documentation
Messages
 Documentation
Port Types
 Documentation
 Operations
 Documentation
Bindings
 Documentation
Services
 Documentation
 Ports
 Documentation

WSDL

Service;MyService
Port;Port1
Binding;MyBinding
Type;Type1
Type;Type2
Message;Msg1
Message;Msg2

Union of the plain
text
documentations of
the WSDL file.

Global
documentation

Identifier set

Fig. 3. WSDL pre-processing

3.2 Pre-processing of the WSDL files
As we have seen before, a WSDL file contains several element definitions op-
tionally containing a plain-text documentation. The left side of figure 3 shows
such a data structure. In order to simplify the WSDL XML representation in
a format more suitable to apply text mining techniques, we decided to extract
two documents from a WSDL description:

– A set of couples (type, ident) representing the different elements defined in
the WSDL. We have type ∈ (Service,Port,PortType,Message,Type,Binding)
the type of the element and ident the identifier of the element. We call this
set of couples the identifier set.

– A plain text containing the union of the plain-text documentations found in
the WSDL file, called the global documentation.

This pre-processing operation is summarized in the figure 3.

3.3 Selection of the candidate tags
As seen in the previous section, we dispose now of two different sources of infor-
mation for a given WSDL: an identifier set and a global documentation. Unfor-
tunately, those data are not yet usable to compute meaningful metrics. Firstly
because the identifiers are names of the form MyWeatherService, and therefore
are very unlikely to be tags. Secondly because this data contains a lot of ob-
vious useless tags (like the you pronoun). Therefore, we will now apply several
text-mining techniques on the identifier set and the global documentation.

Figure 4 shows how we process the identifier set. Here is the complete de-
scription of all the performed steps:
1. Identifier type filtering: during this step, the couples (type,ident) where

type ∈ (PortType,Message,Binding) are discarded. We applied this filtering
because very often, the identifiers of the elements in those categories are
duplicated from the identifiers in the others categories.

Automatic Web Service Tagging 7

Service;MyWeatherService
Port;WeatherPortSOAP
Binding;WeatherBinding
Message;WeatherMessage
Type;ZipCode
Type;Location

Service;MyWeatherService
Port;WeatherPortSOAP
Type;ZipCode
Type;Location

Service;(My,Weather,Service)
Port;(Weather,Port,SOAP)
Type;(Zip,Code)
Type;(Location)

1. Identifier
type filtering

2. Tokenization

4. Stopwords
removal

3. POS
tagging

5. POS
filtering

Service;([My,PP],[Weather,NN],
 [Service,NN])
Port;([Weather,NN],[Port,NN],
 [SOAP,NN])
Type;([Zip,NN],[Code,NN])
Type;([Location,NN])

Service;([My,PP],[Weather,NN])
Port;([Weather,NN])
Type;([Zip,NN],[Code,NN])
Type;([Location,NN])

Service;([Weather,NN])
Port;([Weather,NN])
Type;([Zip,NN],[Code,NN])
Type;([Location,NN])

Fig. 4. Processing of the identifiers

2. Tokenization: during this step, each couple (type, ident) is replaced by a
couple (type, tokens). tokens is the set of words appearing in ident. For in-
stance, (Service,MyWeatherService) would be replaced by (Service,[My,Wea-
ther,Service]). To split ident into several tokens, we created a tokenizer that
uses common clues in software engineering to split the words. Those clues are
for instance a case change, or the presence of a non alpha-numeric character.

3. POS tagging: during this step each couple (type, tokens) previously com-
puted is replaced by a couple (type, ptokens). ptokens is a set of couples
(tokeni, posi) derived from tokens where tokeni is a token from tokens and
posi the part-of-speech corresponding to this token. We used the tool tree tag-
ger [25] to compute those part-of-speeches. Example: (Service,[My,Weather,S-
ervice]) is replaced by (Service,[(My,PP),(Weather,NN),(Service,NN)]). NN
means noun and PP means pronoun.

4. Stopwords removal: during this step, we process each couple (type, ptokens)
and remove from ptokens the elements (tokeni, posi) where tokeni is a stop-
word for type. A stopword is a word too frequent to be meaningful. We
manually established a stopword list for each identifier type. Example: (Ser-
vice,[(My,PP),(Weather,NN),(Service,NN)]) is replaced by (Service,[(My,-
PP)(Weather,NN)]) because Service is a stopword for service identifiers.

5. POS filtering: during this step, we process each couple (type, ptokens) and
remove from ptokens the elements (tokeni, posi) where posi /∈ (Noun,Adject-
ive,Verb,Symbol). Example: (Service,[(My,PP),(Weather,NN)) is replaced by
(Service,[(Weather,NN)]) because pronouns are filtered.

Figure 5 shows how we process the global documentation. Here is the complete
description of all the performed steps:

1. HTML tags removal: the HTML tags (words begining by < and ending
by >) are removed from the global documentation.

2. POS tagging: similar to the POS tagging step applied to the identifier set.
3. POS filtering: similar to the POS filtering step applied to the identifier

set.

8 Azmeh et al.

1. HTML tags
removal

Union of the documentations
of our weather service.

[Union,NN] [of,IN] [the,DT]
[documentations,NNS]
[of,IN] [our,PP$] [weather,NN]
[service,NN] [.,SENT]

[Union,NN]
[documentations,NNS]
[weather,NN] [service,NN]

Union of the documentations
of our weather
 service.

2. POS
tagging

3. POS
filtering

Fig. 5. Processing of the global documentation

The union of the remaining words in the identifier set and in the global doc-
umentation are our candidate tags. When defining those processing operations,
we took great care that no correct candidate tags (i.e. a candidate tag that is a
real tag) of the training corpus have been discarded. The next section describes
how we adapted the Kea features to these candidate tags.

3.4 Computation of the features

After having applied our text mining techniques on the identifier set and the
global documentation, we dispose now of different well separated words. There-
fore we can now compute the tfidf feature. But words appearing in documen-
tation or in the identifier names are not the same. We decided (mostly because
it turns out to perform better) to separate the tfidf value into a tfidfident and
a tfidfdoc which are respectively the tfidf value of a word over the identifier set
and over the global documentation. Like in Kea, we used the method in [10] to
discretize those two real-valued features.

The distance feature still has no meaning over the identifier set, because
the elements of a WSDL description are given in an arbitrary order. Therefore
we decided to adapt it by defining five different features: in_service, in_port,
in_type, in_operation and in_documentation. Those features take their values
in the (true, false) set. A true value indicates that the word has been seen in an
element identifier of the corresponding type. For instance in_service(weather)
= true means that the word weather has been seen in a service identifier.
in_documentation(weather) = true means that the word weather has been seen
in the global documentation.

In addition of these features, we compute another feature called pos. We
added this feature, not used in Kea, because it significantly improves the results.
pos is simply the part-of-speech that has been assigned to the word during the
POS tagging step. If several parts-of-speech have been assigned to the same
word, we choose the one that has been assigned in the majority of the cases. The
different values of pos are: NN (noun), NNS (plural noun), NP (proper noun),

Automatic Web Service Tagging 9

Table 1. Extract of the ARFF file

Word T F IDFid T F IDFdoc IN_SERV ICE . . . IN_DOC P OS IS_T AG
Weather [0, 0.01]]0.01, 0.04] × NN ×
Location]0.03, 0.1]]0.04, 0.15] × JJ

Code]0.03, 0.1]]0.01, 0.04] × V V

NPS (plural proper noun), JJ (adjective), JJS (plural adjective), VV (verb),
VVG (gerundive verb), VVD (preterit verb), SYM (symbol).

3.5 Training and using the classifier

We applied the previously described technique to all the WSDL files of T .
In addition to the previously described features, we compute the is_tag fea-
ture over the candidates. This feature takes its values in the (true, false) set.
is_tag(word) = true means that word has been assigned as a tag by Seekda
users for its service description. We have serialized all those results in an ARFF
file compatible with the Weka tool [29]. Weka is a machine learning tool that
defines a standard format for describing a training corpus and furnish the imple-
mentation of many classifiers. One can use Weka in order to train a classifier or
compare the performances of different classifiers regarding a given classification
problem. Table 1 shows an extract of the ARFF file we produce. In this table,
words are displayed for the sake of clarity, but in reality, they are not present in
the ARFF file. The ARFF file only contains features.

With this ARFF file, we used Weka to train a naive Bayes classifier, shown as
optimal for our kind of classification task [7]. This trained classifier can now be
used in the tag extraction phase. As previously said, the beginning of this phase
is the same as the one of the training phase. It means that the WSDL file goes
through the previously described operations (pre-processing, candidates selection
and features computation). Only this time, the value of the is_tag feature is not
available. This value will be automatically computed by the previously trained
classifier.

3.6 WordNet for semantically related tags

In our approach, the classifier that we built determines whether a word in a
WSDL file is a tag or not. Thus, it extracts the tags appearing inside the WSDL
files only. This way, we miss some other interesting tags like associated words or
synonyms. In order to solve this issue, we used the WordNet lexical database [11].
In WordNet a word may be associated with many synsets (synonym sets), each
corresponding to a different sense of a word.

Our corpus consists of 146 WSDL files, each of which is assigned two sets of
tags: user tags and our automatically extracted tags. Our objective is to enrich
each set of tags with semantically similar words extracted from WordNet. Thus,
for each tag we identify the possible senses and the synonyms set related to each
sense. We add the extracted synonyms to the corresponding set of tags, and we

10 Azmeh et al.

perform some experiments to evaluate the obtained tags, as we show in the next
section.

4 Validation of the Proposed Work

This section provides a validation of our technique on real world data from
Seekda. We conduct experiments in which we assess the precision and recall of
our trained classifier.

Methodology: We carried out our experiments on three stages. In the first
one, the trained classifier is applied on the training corpus T and its output is
compared with the tags given by Seekda users (obtained as described in Section
3.1).

After having conducted the first experiment, a manual assessment of the
tags produced by our approach revealed that many tags not assigned by the
user seemed highly relevant. This phenomenon has also been observed in several
human evaluations of Kea [16,17], that inspired our approach. It occurs because
tags assigned by the users are not the absolute truth. Indeed, it is very likely
that users have forgotten many relevant tags, even if they were in the service
description. To show that the real efficiency of our approach is better than the
one computed in the first experiment, we perform a second experiment. In this
experiment, we manually augmented the user tags of our corpus with additional
tags we found relevant and accurate by analyzing the WSDL descriptions of
the services. In the final experiment, we enriched the user tags as well as our
automatically extracted tags with semantically related tags using WordNet.

Metrics: In the evaluation, we used precision and recall. First, for each web
service s ∈ T , where T is our training corpus, we consider: A the set of tags
produced by the trained classifier, M the set of the tags given by Seekda users
and W the set of words appearing in the WSDL. Let I = A ∩M be the set
of tags assigned by our classifier and Seekda users. Let E = M ∩ W be the
set of tags assigned by Seekda users present in the WSDL file. Then we define
precision(s) = |I|

|A| and recall(s) = |I|
|E| , which are aggregated in precision(T) =∑

s∈T
precision(s)
|T | and recall(T) =

∑
s∈T

recall(s)
|T | . The recall is therefore com-

puted over the tags assigned by Seekda users that are present in the descriptions
of concerned services. We did not compute the recall for the WordNet extracted
tags, because these tags may not be present in the WSDL descriptions.

Evaluation: Figure 6 (left) gives results for the first experiment where the
output of the classifier is compared with the tags of Seekda users, while in Figure
6 (right), enriched tags of Seekda users are used in the comparison (curated
corpus). In this figure, our approach is called ate (Automatic Tag Extraction). To
clearly show the concrete benefits of our approach, we decided to include in these
experiments a straightforward (but fairly efficient) technique. This technique,

Automatic Web Service Tagging 11

Raw Seekda corpus

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ate tfidf ate tfidf

Precision Recall

0.48

0.28

0.47

0.53

Curated Seekda corpus

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ate tfidf ate tfidf

Precision Recall

0.80

0.41

0.61 0.62

Fig. 6. Results on the original and manually curated Seekda corpus

called tfidf in Figure 6, consists in selecting, after the application of our text-
mining techniques, the five candidate tags with the highest tfidf weight.

In Figure 6 (left), the precision of ate is 0.48. It is a significant improvement
compared to the tfidf method that achieves only a precision of 0.28. Moreover,
there is no significant difference between the recall achieved by the two methods.
To show that the precision and recall achieved by ate are not biased by the fact
that we used the training corpus as a testing corpus, we performed a 10 folds
cross-validation. In a 10 folds cross-validation, our training corpus is divided in
10 parts. One is used to train a classifier, and the 9 other parts are used to
test this classifier. This operation is done for every part, and then, the average
recall and precision are computed. The results achieved by our approach using
cross-validation (precision = 0.44 and recall = 0.42) are very similar to those
obtained in the first experiment.

In Figure 6 (right), we see that the precision achieved by ate in the second
experiment is much better. It reaches 0.8, while the precision achieved by the
tfidf method increases to 0.41. The recall achieved by the two methods remains
similar. The precision achieved by our method in this experiment is good. Only
20% of the tags discovered by ate are not correct. Moreover, the efficiency of ate
is significantly higher than tfidf.

Evaluation after using WordNet: We enriched the tags sets with semanti-
cally similar words extracted using the WordNet, as described above. We recal-

12 Azmeh et al.

culated the precision value, considering these new sets of enriched user tags and
automatically extracted tags. The precision value has increased by 9%, reaching
the value of 89% of correctness. Thus, using the WordNet has improved the pre-
cision value and enriched the services with tags that are not necessarily present
in the WSDL descriptions.

Threats to validity: Our experiments use real world services, obtained from
the Seekda service search engine. Our training corpus contains services extracted
randomly with the constraint that they contain at least 5 user tags. We assumed
that Seekda users assign correct tags. Indeed, our method admits some noise
but would not work if the majority of the user tags were poorly assigned. In
the second experiment, we manually added tags we found relevant by examining
the complete description and documentation of the concerned services. Unfortu-
nately, since we are not “real” users of those services, some of the tags we added
might not be relevant.

5 Related Work

In this section, we will present the related work according to two fields of re-
search: keyphrase extraction and web service discovery.

5.1 Keyphrase extraction and assignment

According to [27], there are two general approaches that are able to supply
keyphrases for a document: keyphrase extraction and keyphrase assignment. Both
approaches are using supervised machine learning approaches, with training ex-
amples being documents with manually supplied keyphrases.

Keyphrase assignment: In the keyphrase assignment approach, a list of pre-
defined keyphrases is treated as a list of classes in which the different documents
are classified. Text categorization techniques are used to learn models for assign-
ing a class (keyphrase) to a document. Two main approaches of this category are
[9,19].

Keyphrase extraction: In the keyphrase extraction approach, a list of candi-
date keyphrases are extracted from a document and classified into the classes
keyphrase and not keyphrase. There are two main approaches that fall in this
category: one using a genetic algorithm [26] and one using a naive Bayes classifier
(Kea [12]).

5.2 Web service discovery

Web service discovery is a wide research area with many underlying issues and
challenges. A quick overview of some of the works can be acquired from [4,18]2.
Here, we describe a selection of works, classified using their adapted techniques.
2 The second one is edited by the responsible of Seekda’s technical infrastructure

Automatic Web Service Tagging 13

Using machine learning techniques: Many approaches adapt techniques
from machine learning field, in order to discover and group similar services. In
[5,15], service classifiers are defined depending on sets of previously categorized
services. Then the resulting classifiers are used to deduce the relevant categories
for new given services. In case there were no predefined categories, unsupervised
clustering is used. In [21], CPLSA approach is defined that reduces a services
set then cluster it into semantically related groups.

Using service matching techniques: In [20], a web service broker is designed
relying on approximate signature matching using xml schema matching. It can
recommend services to programmers in order to compose them. In [13], a service
request and a service are represented as two finite state machines then they are
compared using various heuristics to find structural similarities between them. In
[8], the Woogle web service search engine is presented, which takes the needed
operation as input and searches for all the services that include an operation
similar to the requested one. In [3], tags coming from folksonomies are used to
discover and compose services.

Using vector space model techniques: The vector space model is used for
service retrieval in several existing works as in [23,28,6]. Terms are extracted
from every WSDL file and the vectors are built for each service. A query vector
is also built, and similarity is calculated between the service vectors and the query
vector. This model is sometimes enhanced by using WordNet, structure matching
algorithms to ameliorate the similarity scores as in [28], or by partitioning the
space into subspaces to reduce the searching space as in [6].

Using formal concept analysis techniques: A collection of works [1,22,2],
adapt the formal concept analysis method to retrieve web services more effi-
ciently. Contexts obtained from service descriptions are used to classify the
services as a concept lattice. This lattice helps in understanding the different
relationships between the services, and in discovering service substitutes.

6 Conclusion and Future Work

With the emergence of SOA, it becomes important for developers using this
paradigm to retrieve Web services matching their requirements in an efficient
way. By using Web service search engines, these developers can either search
by keywords or navigate by tags. In the second case, it is necessary that the
tags characterize accurately this service. Our work contributes in this direction
and introduces a novel approach that extracts tags from Web service descrip-
tions and enrich them using the WordNet ontology. This approach combines and
adapts text mining as well as machine learning techniques. It has been experi-
mented on a corpus of user-tagged real world Web services. The obtained results
demonstrated the efficiency of our automatic tag extraction process, and the
enrichment of semantically similar tags. The use of WordNet has improved the

14 Azmeh et al.

precision of the returned tags and enriched the services with tags that are not
necessarily present in the WSDL descriptions. The proposed work is useful for
many purposes. First, the automatically extracted tags can assist the users who
are tagging a given service, or to “bootstrap” tags on untagged services. They
are also useful to have a quick understanding of a service without reading the
whole description. They can also be used to help in building domain ontologies
like in [24] [14], also in tasks such as service clustering (for instance by measuring
the similarity of the tags of two given services), or classification (for instance by
defining association rules between tags and categories). One of our perspectives
is to work on extracting composed tags, which consist of more than one word.
A one-word tag is sometimes insufficient to describe some concepts (for example
exchange rate or Web 2.0).

References

1. Aversano, L., Bruno, M., Canfora, G., Penta, M.D., Distante, D.: Using concept
lattices to support service selection. International Journal of Web Services Research
3(4), 32–51 (2006)

2. Azmeh, Z., Huchard, M., Tibermacine, C., Urtado, C., Vauttier, S.: Wspab: A
tool for automatic classification & selection of web services using formal concept
analysis. In: Proceedings of the 6th IEEE European Conference on Web Services
(ECOWS 2008). pp. 31–40. IEEE Computer Society, Dublin, Ireland (2008)

3. Bouillet, E., Feblowitz, M., Feng, H., Liu, Z., Ranganathan, A., Riabov, A.: A
folksonomy-based model of web services for discovery and automatic composition.
In: IEEE International Conference on Services Computing (SCC). pp. 389–396.
IEEE Computer Society (2008)

4. Brockmans, S., Erdmann, M., Schoch, W.: Service-finder deliverable d4.1. research
report about current state of the art of matchmaking algorithms. Tech. rep., On-
toprise, Germany (October 2008)

5. Crasso, M., Zunino, A., Campo, M.: Awsc: An approach to web service classification
based on machine learning techniques. Inteligencia Artificial, Revista Iberoameri-
cana de Interligencia Artificial 12, No 37, 25–36 (2008)

6. Crasso, M., Zunino, A., Campo, M.: Query by example for web services. In: SAC
’08: Proceedings of the 2008 ACM symposium on Applied computing. pp. 2376–
2380. ACM, New York, NY, USA (2008)

7. Domingos, P., Pazzani, M.J.: On the optimality of the simple bayesian classifier
under zero-one loss. Machine Learning 29(2-3), 103–130 (1997)

8. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for
web services. In: VLDB ’04: Proceedings of the Thirtieth international conference
on Very large data bases. pp. 372–383. VLDB Endowment (2004)

9. Dumais, S.T., Platt, J.C., Hecherman, D., Sahami, M.: Inductive learning algo-
rithms and representations for text categorization. In: Gardarin, G., French, J.C.,
Pissinou, N., Makki, K., Bouganim, L. (eds.) CIKM. pp. 148–155. ACM (1998)

10. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: IJCAI. pp. 1022–1029 (1993)

11. Fellbaum, C., editor. 1998. WordNet: An Electronic Database. MIT Press, Cam-
bridge, MA.

Automatic Web Service Tagging 15

12. Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.:
Domain-specific keyphrase extraction. In: Dean, T. (ed.) IJCAI. pp. 668–673. Mor-
gan Kaufmann (1999)

13. Günay, A., Yolum, P.: Structural and semantic similarity metrics for web service
matchmaking. In: EC-Web. pp. 129–138 (2007)

14. Guo, H., Ivan, A.A., Akkiraju, R., Goodwin, R.: Learning ontologies to improve
the quality of automatic web service matching. In: Williamson, C.L., Zurko, M.E.,
Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW. pp. 1241–1242. ACM (2007)

15. Heß, A., Kushmerick, N.: Learning to attach semantic metadata to web services.
In: International Semantic Web Conference. pp. 258–273 (2003)

16. Jones, S., Paynter, G.W.: Human evaluation of kea, an automatic keyphrasing
system. In: JCDL. pp. 148–156. ACM (2001)

17. Jones, S., Paynter, G.W.: Automatic extraction of document keyphrases for use in
digital libraries: Evaluation and applications. JASIST 53(8), 653–677 (2002)

18. Lausen, H., Steinmetz, N.: Survey of current means to discover web services. Tech.
rep., Semantic Technology Institute (STI) (August 2008)

19. Leung, C.H., Kan, W.K.: A statistical learning approach to automatic indexing of
controlled index terms. JASIS 48(1), 55–66 (1997)

20. Lu, J., Yu, Y.: Web service search: Who, when, what, and how. In: WISE Work-
shops. pp. 284–295 (2007)

21. Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering seman-
tic approach. In: CSSSIA ’08: Proceedings of the 2008 international workshop on
Context enabled source and service selection, integration and adaptation. pp. 1–8.
ACM, New York, NY, USA (2008)

22. Peng, D., Huang, S., Wang, X., Zhou, A.: Management and retrieval of web services
based on formal concept analysis. In: Proceedings of the The Fifth International
Conference on Computer and Information Technology (CIT’05). pp. 269–275. IEEE
Computer Society (2005)

23. Platzer, C., Dustdar, S.: A vector space search engine for web services. In: Third
IEEE European Conference on Web Services, 2005. ECOWS 2005. pp. 62–71
(2005), http://dx.doi.org/10.1109/ECOWS.2005.5

24. Sabou, M., Wroe, C., Goble, C.A., Mishne, G.: Learning domain ontologies for
web service descriptions: an experiment in bioinformatics. In: Ellis, A., Hagino, T.
(eds.) WWW. pp. 190–198. ACM (2005)

25. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceed-
ings of International Conference on New Methods in Language Processing. vol. 12.
Manchester, UK (1994)

26. Turney, P.D.: Learning algorithms for keyphrase extraction. Inf. Retr. 2(4), 303–
336 (2000)

27. Turney, P.D.: Coherent keyphrase extraction via web mining. In: Gottlob, G.,
Walsh, T. (eds.) IJCAI. pp. 434–442. Morgan Kaufmann (2003)

28. Wang, Y., Stroulia, E.: Semantic structure matching for assessing web service simi-
larity. In: 1st International Conference on Service Oriented Computing (ICSOC03.
pp. 194–207. Springer-Verlag (2003)

29. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann (1999)

http://dx.doi.org/10.1109/ECOWS.2005.5

	Automatic Web Service Tagging Using Machine Learning and WordNet Synsets

