
HAL Id: lirmm-00533190
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00533190v1

Submitted on 5 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Web Components to Web Services: Opening
Development for Third Parties

Chouki Tibermacine, Mohamed Lamine Kerdoudi

To cite this version:
Chouki Tibermacine, Mohamed Lamine Kerdoudi. From Web Components to Web Services: Opening
Development for Third Parties. ECSA’10: The 4th European Conference on Software Architecture,
Denmark. pp.4, 2010. �lirmm-00533190�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00533190v1
https://hal.archives-ouvertes.fr


From Web Components to Web Services:

Opening Development for Third Parties

Chouki Tibermacine1 and Mohamed Lamine Kerdoudi2

1 LIRMM, CNRS and Montpellier University, France
2 Computer Science Department, University of Biskra, Algeria
Chouki.Tibermacine@lirmm.fr , l.kerdoudi@univ-biskra.dz

Abstract. One of the main advantages of the Web component-based
development paradigm is the ability to build customizable and compos-
able web application modules as independent units of development, and
to share them with other developers by publishing them in libraries as
COTS (Commercial Off The Shelf) or free components. Besides this,
since many years, Web services confirmed their status of the most per-
tinent solution for a given service provider, like Google, Amazon or
FedEx, to open its solutions for third party development. In this pa-
per, we present an approach to build web services starting from existing
web component-based applications and deploy them on a web service
provider. This transformation helps server-side web application develop-
ers in transforming their ”user interface”-based web components into a
set of web services intended for remote code extensions. We implemented
our solution on a collection of Java EE technologies.

1 Introduction: Context and Motivation

Web component-based development aims at decoupling Web application code
modules, and making them reusable and customizable software entities. Indeed,
in this paradigm a step has been taken forward in modularizing Web applications
and thus separating business logic code, from view, model and controller one. One
of the technologies leading this field is Java EE3 and its numerous frameworks
like Struts or JSF. Web components in such technologies are entities that can
be used and reused in different applications and customized according to the
application requirements.

In our opinion, these technologies are currently the ideal solutions for de-
veloping large and complex applications with highly critical requirements on
maintainability. However, after deploying a Web component-based application
within an application server, there is no means to directly publish some services
of the application for third party development. In this paper, we present an ap-
proach (see Section 2) to build web service-oriented architectures starting from
existing web component-based applications and deploy them on a web service
provider. In this way, developers of web components offer the opportunity to
other developers to build extensions of the services provided by their artifacts.

3 Java Enterprise Edition from Sun Microsystems: http://java.sun.com/javaee/



This transformation goes through a process composed of several steps, which has
been implemented on a collection of Java-related technologies. Java EE compo-
nents are the input artifacts of the proposed implementation, and a set of Java
web services and compositions of these services are provided at output. The
paper ends by discussing some related work and presenting our future work.

2 Proposed Approach

The transformation process is composed of five steps:
1. Operation Extraction: First, a recursive parsing of the different web com-
ponent elements is performed to extract the potential set of Web services. All
operations in classes and other structured code elements are saved. In addition,
the code present in server-side programs (JSP pages, for example) is grouped
within a single operation and formatted to be executed as stand-alone code.
Similar extracted operations are spread out in different Web services using a
simple similarity measure (based on operations’ names, parameters, ...).
2. Input and Output Message Identification: The input and output mes-
sages related to each operation in the Web services are extracted starting from
the parsed elements in the Web component. For classes and other structured
code elements, the parameters and the returned value are formatted as SOAP
messages. The code present in other programs (like JSP pages) is parsed to ex-
tract the input values received in the HTTP requests. Their types are inferred
from the parsed code by analyzing type casts and other conversions. The con-
tents produced by theses programs, which are viewed at the client side (like JSP
expressions), are considered as returned values.
3. Operation Filtering: After that, the non-pertinent operations of the Web
services are eliminated from the starting set, according to a collection of filter-
ing heuristics. These heuristics are boolean expressions which are represented by
OCL expressions that can be added/modified/removed by developers. An exam-
ple of a filtering heuristic is: “Operations that use the session standard script
variable are not taken into account”. This is formalized in OCL as follows:
not (self.body.usedType->includes(t|t.name=’HTTPSession’))

At the end of this step, the developer is asked to choose the less pertinent oper-
ations to remove from the Web services that will be published.
4. Composite Web Service Creation: In this step, the potential dependen-
cies between the different selected operations in the Web services are identified.
There are two kinds of dependencies between operations: operation-call depen-
dencies (which give rise to Web service choreographies) and Web navigation
relationships (which allow to generate Web service orchestrations).
4.1. Web Service Choreography Creation: All calls to operations in the
code are captured. If the called operations are published in the same web ser-
vice of the caller operation, the calls are left as method invocations. If they
are published on a remote host, these operation dependencies are replaced by
Web service requests. In this way, we build composite Web services as code-level
choreographies. In the near future, we plan to generate high-level choreographies
in “WS-CDL”-compliant languages [7].



4.2. Web Service Orchestration Creation: Navigation documents such as
JSF faces-config files are parsed. This allows the identification of the different
relationships between Web pages, and potential collaborations of the different
Web services extracted from these pages. This task is implemented according to
a simple algorithm in which we first create a process, and for each navigation
rule in the Web navigation document, we identify the source and destination
operations. Before each operation invocation, we prepare the list of parameters.
5. Web Service Deployment and Indexing The validated set of Web services
(composite and primitive ones) are deployed on an application server chosen by
the developer/administrator of the Web component-based application. If the de-
veloper deploys the Web services in different servers, the dependencies between
collaborative operations in composite services are resolved. Then, on the Seekda
Web server, we create an account and register the services. Once the services
indexed, we propose to the developer a smart mechanism of keyword extraction,
based on our previous work [2]. This mechanism identifies potential tags for the
services starting from their WSDL description. The keyword list (based on iden-
tifiers in the service operation names, parameters’ names, ...) is proposed to the
developer in order to select tags for the deployed services.

3 Related Work

In [5], Roger Lee et al. proposed an approach which allows a client to specify
a request for searching a given functionality in components deployed in a Web
server. As an answer, a Web service or a composition of Web services is gen-
erated automatically. Our approach is proactive; it does not react to a client
request, but it allows a web application engineer to anticipate the export of
some functionalities to third party developers as Web services. In addition, in
our work we deal with Web interface conversion into stateless Web services. In
Wike [3], developers can define patterns for extracting partial information from
Web pages. These patterns are encapsulated in functions that can be exported as
Web services. In our work, content-based Web pages are not the main concern.
Wike is however a complementary solution to our work. Web services that are
generated using our approach starting from Web components, which produce to
users during execution a large quantity of content, can be enhanced with new
operations that return only partial information (texts, images, ...) using Wike.

Many works in the literature proposed model-driven techniques to generate
Web service-oriented applications. Bauer and Müller [1] developed an approach
to map elements from UML2 sequence diagrams (considered as PlMs – Plat-
form Independent Models) to a representation of compositions of Web services
using BPEL (considered as PSMs – Platform Specific Models). In [8], the au-
thors propose transformation rules for converting orchestration models specified
in CCA (Component Collaboration Architecture), which is part of the UML
profile for Enterprise Distributed Object Computing (EDOC [6]), into BPEL
specifications. Another model-driven approach for creating service-oriented so-
lutions has been proposed in [4]. In this work, a UML profile has been defined for
the expression of service-oriented applications. In our work the transformations



are made from PSM to PSM. Web components, which are models specific to
a given platform (in the current implementation, Java EE), are converted into
Web services, which are considered as another platform-specific model (WSDL,
Java and BPEL). The UML profile presented in [4] can be used to define high-
level models of the generated Web services. The other approaches can be used
to make a reverse engineering of the generated Web services or orchestrations
and obtain more understandable models (compared to the code).

4 Conclusion: Contribution and Future Work

We implemented the proposed solution as a prototype tool called WSGen:
Web Service Generator. The components parsed by WSGen are Java Enter-
prise archives. JSPs, Servlets, JavaBeans, Enterprise JavaBeans and traditional
Java classes in these archives are extracted. To deploy services, this tool uses a
Tomcat/Axis server.

In our work, we consider the generated and deployed Web services as remote
APIs that offer the opportunity for developers to extend the functionalities pro-
vided by these services and exploit the resources used by them. Many enhance-
ments still have to be performed in the transformation process implemented in
WSGen. We are now working on the implementation of more interesting tech-
niques for grouping complementary operations in Web services, based on “text-
mining” of the Web components’ documentation. At the conceptual level, we
plan to study the formalization of the process as a set of high level declarative
(or a combination of declarative and imperative) transformation rules, and thus
integrate our solution in the Model-Driven Engineering world. At the tool level,
we plan, as introduced previously, to work on the generation of high-level speci-
fications of choreographies in ”WS-CDL”-compliant languages [7] starting from
collaborations of the generated Web services’ operations.

References

1. B. Bauer and J. P. Müller. Mda applied: From sequence diagrams to web service
choreography. In Proc. of ICWE’04, pages 132–136. Springer-Verlag, 2004.

2. J.-R. Falleri, Z. Azmeh, M. Huchard, and C. Tibermacine. Automatic tag identi-
fication in web service descriptions. In Proc. of WEBIST’10, April 2010.

3. H. Han and T. Tokuda. Wike: A web information/knowledge extraction system
for web service generation. In Proc. of ICWE’08, pages 354–357. IEEE CS, 2008.

4. S. K. Johnson and A. W. Brown. A model-driven development approach to creating
service-oriented solutions. In Proc. of ICSOC’06, pages 624–636. Springer, 2006.

5. R. Lee et al. A framework for dynamically converting components to web services.
In Proc. of SERA’05, 2005.

6. OMG. Uml profile for enterprise distributed object computing (edoc). OMG
Website: http://www.omg.org/technology/documents/formal/edoc.htm, 2004.

7. W3C. Web services choreography description language version 1.0, w3c candidate
recommendation. W3C Website: http://www.w3.org/TR/ws-cdl-10/, 2005.

8. X. Yu, Y. Zhang, T. Zhang, L. Wang, J. Zhao, G. Zheng, and X. Li. Towards a
model driven approach to automatic bpel generation. In Proc. of ECMDA, pages
204–218. Springer-Verlag, 2007.


