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Abstract—In Model Driven Engineering (MDE), model
transformations are basic and primordial entities, thus easing
their design and implementation is an important issue. A quite
recently proposed way to create model transformations consists
in deducing a transformation from examples of transformed
models. Examples are easier to write than a transformation
program and are often already available. We propose in this
paper a method based on a machine learning method of
the lattice domain, the Relational Concept Analysis, and an
implementation of this method.

I. INTRODUCTION

Model transformation is a crucial topic in model driven

development (MDD) [1], [2]. The many model transfor-

mation languages and tools can only be used by transfor-

mation experts, with a strong knowledge concerning the

transformation language by itself, the metamodels of the

involved source and target models, and the underlying meta-

metamodel. Domain experts generally do not have sufficient

skills in model-driven technologies. Model Transformation

By Example (MTBE) [3] is a proposal to let them design

model transformations, based on their knowledge of the

domains, masking the technological complexity of MDD.

The domain expert is asked to give examples: a set of

representative source models are created, as well as the

corresponding target models, and links explaining in which

target element(s) one or several source model elements are

transformed. From those examples, transformation rules are

automatically deduced, using a learning approach.

In this paper, we present a Model Transformation By

Example approach, from examples to transformation rules.

The proposed underlying learning approach is based on

Relational Concept Analysis (RCA). RCA is an extension

of the Formal Concept Analysis theory, that classifies a

set of objects based on their properties. Applying RCA on

the examples results in a classification of source and target

elements of the transformation. Then, the classification of

the mappings between source and target results in a set of

rules partially ordered in a lattice. We propose an analysis

of these rules to filter the relevant rules.

The following of this paper is structured as follows. We

introduce our problem into details in Section II, through

a running example. Then, in Section III, we describe how

to obtain the information from our examples to generate

the rules using an extension of Formal Concept Analysis

taking into account relations inside models and mapping

links. Section IV describes the method we use to generate

transformation rules from the lattices, and the corresponding

tool. Section V presents related work and we conclude in

Section VI.

II. PROPOSAL OVERVIEW USING AN EXAMPLE

In this section, we provide the reader with the flavor

of our approach using the example of a simple model-to-

model transformation that aims at transforming association

members described by their role inside the association

(normal member, treasurer, chairman) into persons described

by their responsibility level. For example, the chairman

Joe in the association GreenFingers is transformed into

a responsible person while the normal member Arthur in

the association GreenFingers is transformed into a person

without responsibility.

Figure 1 shows the two metamodels involved in the trans-

formation. The source metamodel represents associations.

An association is composed of members that have a name.

Each member of the association plays a role (chairman,

treasurer, or normalMember). The target metamodel

describes persons and responsibilities. A person has a

name and is a Responsible Person or a Person

Without Responsibility.

Two models conform to those metamodels are given

in Figure 2 in the form of instance diagrams of the

metamodels. On the left, the association GreenFingers

is composed of Joe, the chairman, Jenny, the treasurer,

and Arthur and Cindy two normal members. The as-

sociation members are transformed into persons, respec-

tively Responsible Persons or Persons without

Responsibility, according to their role inside the as-

sociation: chairmans and treasurers are transformed into

responsible persons while normal members are transformed

into persons without responsibility. Let us note that the trans-

formation of members is thus based on their neighborhood,
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Figure 2. Models (in the form of instance diagrams) for associations (lhs) and responsibilities (rhs) and the transformation example (MapLinks).
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Figure 1. Metamodels for associations (up) and responsibilities (down).

here the roles assocChairman, assocTreasurer, or

assocNormalMember.

Figure 2 also shows a transformation example from the

association towards persons and responsibilities. The nine

mapping links of the transformation have been given by

a designer who indicated with directed dashed lines the

correspondences between the source and the target models.

Inferring the transformation rules mainly consists in

finding common features of source (resp. target) elements

connected by the transformation. Among these common

features, the neighborhood of the elements has to be consid-

ered (e.g. member are transformed differently according to

the role they have w.r.t. the association). Formal Concept

Analysis [4], which is a clustering method able to find

commonalities in the description of objects, appears to be a

relevant approach for such a type of problem. To be more

precise in learning the transformation rules, we will use

Relational Concept Analysis [5], an extension of FCA. RCA

takes into account objects described by their relations with

other objects.

Our approach takes as input a transformation example

and includes three steps: first, classification of the elements

of source and target models of the transformation example

(here two instance diagrams); second, classification of the

mapping links that show how elements are connected by the

transformation example; third, interpretation of the resulting

concepts into transformation rules. Next section describes

the first two steps.

III. CLASSIFICATION OF MODEL ELEMENTS AND LINKS

In this section we show how to characterize patterns

involved in the transformation example through model el-

ements and link classification.

From now on, we use the suffixes A and B to differentiate

source models from target models.

A. Classification of source model elements

In our example, the source model elements are the boxes

from the left of Figure 2. Each of them is an instance of

a metaclass from the source metamodel of Figure 1. We

aim at grouping the source model elements by common

characteristics in order to identify later which characteristics

induce which transformation rule. This will include classi-

fication of the metaclasses which are part of the description

of the elements themselves. But we want to capture the

fact that the elements that instantiate a same metaclass

may have different meanings and may be transformed in

different ways: for example a Member is transformed into

a Responsible Person or into a Person Without

Responsibility depending whether it is linked through

a assocNormalMember.

We thus take into account the following characteristics to

classify the model elements:

• the metaclass of each model element, a metaclass

being characterized by its name. For example, we

take into account that elementA_1 (JoeC) has for

metaclass metaClassA_1 (named Member), and

that elementA_2 (the name Joe) has for metaclass

metaClassA_2 (named Name), etc.

• the way model elements are linked with roles. For

example, we take into account that elementA_1
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(JoeC) is linked to elementA_2 (the name Joe) by

the role identification.

Technically, those characteristics are presented in the form

of binary tables that are required for the RCA process.

FCA and RCA are clustering techniques which extract

concepts, namely groups of entities sharing characteristics

from binary tables describing these entities. In RCA, the

description takes into account relations between the entities.

This approach gives sound mathematical foundations to

our classification construction. Here the entities are our

metaclasses and model elements, which will be clustered.

For metaclasses, we limited the description to their name for

the sake of simplicity, but it could include relations inside the

metamodel. For model elements, we use their metaclasses

and the associations in the model.

The application of RCA results in lattices, that organize

concepts (entity groups) in a partial order structure. The

lattices built using the RCA tool eRCA 1 for our example

are presented in Figure 3.

Each concept is a box with 3 parts: the top part is

the name, the middle part is the intent of the concept

(shared characteristics) and the bottom part is the extent

(covered entities). Inheritance applies in the lattice: if an

attribute (resp. object) is represented in a concept intent

(resp. extent), it will be owned by all the concepts below

(resp. above). For our example, we obtain two lattices,

one for the metaclasses, and one for the model elements.

To illustrate the lattices, we here detail several concepts.

In the metamodelA lattice, there are three non trivial

concepts, each one representing one of the metaclasses.

The only given description being the name, each concept

groups only one metaclass. For example Concept_3

represents Member metaclass. In the modelA lattice,

groups are more informative. Concept_26 represents

elementA_0 (GreenFingers). Concept_32 groups

elementA_5 (Arthur) and elementA_7 (Cindy)

which share: characteristic assocNormalMember:

Concept_26 (being associated with GreenFingers through

the role normal member); inherited characteristic

metaClassA: Concept_3 (being an instance of

Member); inherited identification: Concept_29

(having a name).

B. Classification of target model elements

The target metamodel and model elements are similarly

classified into two lattices (presented in Figure 4), exploiting

the same kind of description for the model elements: their

metaclass (the metaclass being described by its name), and

the way the model elements are linked by roles.

We present into more details several concepts of

the obtained lattices. In the metamodelB lattice, there

are three non trivial concepts, each one representing

1http://code.google.com/p/erca/
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Figure 3. Lattices obtained by RCA for the RCF describing source
metamodel and model

one of the metaclasses. The only given description be-

ing the name, each concept groups only one meta-

class. For example Concept_11 represents Person

Without Responsibility metaclass. In the modelB

lattice, groups are more informative. Concept_36 groups

elementB_5 (Arthur) and elementB_7 (Cindy) which

share: characteristic metaClassB: Concept_11 (being

an instance of person without responsibility); inherited char-

acteristic name: Concept_37 (having a name).
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Figure 4. Lattice obtained by RCA for the RCF describing target
metamodel and model

C. Classification of transformation links

Transformation links are given in a transformation ex-

ample to describe the correspondences between several
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elements of two models. We consider here 1-1 links (one

source element transformed into one target element). n-m

links are encoded by several 1-1 links.

We explain here how we classify those links, using

RCA. A mapping link is characterized by its source ele-

ment denoted mappingA and its target element denoted

mappingB. For example, mapping link MapLink_1 has

for mappingA (source) elementA_1 (the member JoeC)

and for mappingB (target) elementB_1 (the responsible

person JoeRP)

Figure 5 shows the classification obtained for the mapping

links. Detailing the concept Concept_46, we understand

that the links MapLink_5 and MapLink_7 are grouped

because they share: a source described by Concept_32

(members connected to an association through the normal

member role) and a target described by Concept_36 (per-

sons without responsibility). Such a concept can also be un-

derstood as a rule: transform members connected through

normal member role to an association into persons without

responsibility. This mapping link lattice is thus a good

structure to identify the transformation rules, provided that

interpretation mechanisms are defined. In the next section,

we go deeper in the rule generation mechanisms and choice

by an expert in a representation of the mapping link lattice

with good visual properties.

Mapping Links
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mappingA : Concept_5

mappingB : Concept_13
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mappingB : Concept_33
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MapLink_3

Concept_46 (S: 2)
mappingA : Concept_32
mappingB : Concept_36

MapLink_5
MapLink_7

Concept_42 (S: 2)
mappingA : Concept_28
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Concept_47 (S: 2)
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Figure 5. Lattice of mapping links

IV. CONCEPT INTERPRETATION AND RULE GENERATION

The result from the RCA process is a set of five concept

lattices where a concept intent often has references to

other concepts (not necessarily in the same lattice). These

lattices are therefore quite difficult to read that is why

the transformation rules are extracted from the MapLink

lattice by transforming it into a rule lattice presented in

Figure 6. The concept characterizing the source elements

(mappingA values in Figure 5) is used to get the premise

of the rule, while the concept characterizing the target

elements (mappingB values in Figure 5) is used to build

the conclusion.

Figure 6 is a vizualisation of the rule lattice where boxes

are the rules. The structure of the lattice is the same as the

structure of the MapLink lattice (Figure 5). For example,

Rule 4 is deduced from Concept_46 of the MapLink lattice.

Some of the concepts from this lattice cannot be translated

as rules. Some of the upper concepts describe too general

mappings: e.g. the Concept_42 is referring to Concept_38

from modelB and this concept groups all the elements which

have a name reference. We consider that having a type for

the premise and conclusion element is a mandatory condition

to create a rule. The bottom concept has usually an empty

extent so it should not either be considered.

The deduction is represented by a larger arrow, its origin

represents the premise and its target represents the conclu-

sion. A premise consists in an element constrained by its

neighborhood. In the figure the neighbors are linked to an

element by thin arrows, the label of the arrow represents the

name of the role of the neighbor and its cardinality.

For example, Member in Rule 4 comes from the Con-

cept_32 which describes members. Member is connected to

an identification and also through normal member role to an

association (neighbourhood at distance 1), this association

being connected to members via the roles chairman, trea-

surer (neighbourhood at distance 2), etc. The conclusion of

the rule is an element (at the end of the large arrow) and its

neighbourhood. For Rule 4, the conclusion is Concept_36,

that is Person Without Responsibility with a

name (neighbourhood at distance 1). This neighbourhood

of the source or target element can be exploited going more

or less deeply in this neighbourhood, to form the rule.

The lattice offers a structure to navigate among the rules

thus choosing the relevant rules is facilitated. The upper

rules are more general, like the rule 5 which describes that

a Member who is not a normal member can be transformed

into a Responsible Person. This rule is specialized by rules

6 and 7 which describe respectively that a chairman is

transformed into a Responsible Person and that a treasurer

is transformed into a Responsible Person.

To facilitate the reading of the next part, we will use the

following convention: Lattice.c refers to the concept c owned

by the lattice Lattice.

For a rule stemming from a concept MapLink.c, required

properties for the premise (resp. conclusion) are obtained by

analysing the concept ModelA.c’ (resp. ModelB.c’), which is

the most specialized concept of ModelA (resp. ModelB) in

c intent. There are three categories of characteristics:

Mandatory characteristics, described in ModelA.c’

(resp. ModelB.c’) intent. They are the characteristics com-
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Figure 6. Rule lattice

mon to all the mapping links contained in Maplink.c extent.

They are represented in the Rule Lattice by the associations

with (1,*) cardinality

Authorized characteristics, described in the intents of

concepts specializing ModelA.c’ (resp. ModelB.c’), under the

condition that the concept extent includes the end of a link of

c. They are the characteristics that may appear but have no

incidence in the way an element is to be transformed. They

are represented in the Rule Lattice by the associations with

(0,*) cardinality. We see two authorized characteristics in

rule 5: if a Member is transformed in a Responsible Person

it can be a chairman or a treasurer in the association.

Forbidden characteristics, described by the intents of

the concepts which do not include in their extent the end of

a link of c. These characteristics are especially important

if they belong to concepts specializing ModelA.c’ (resp.

ModelB.c’). They are the characteristics that never appear

in the source or target of the rule transformation. They are

represented in the Rule Lattice by the associations with (0,0)

cardinality. We see an authorized characteristic in rule 5: if

a Member is transformed in a Responsible Person it cannot

be a Normal Member.

We developed a tool supporting our approach. The tool,

mainly written in Java/EMF, supports as an Eclipse plug-

in the full process from the mapping to the transformation

rules. The mappings are taken as input of the process in

the form of models conform to the mapping metamodel we

defined. From the mapping and the corresponding models,

contexts are generated for the models and the mappings,

according to the description given in section III. The RCA

process by itself is applied, using the MDE tool described

in [6]. The main work achieved by our tool is then to build

the rules.

V. RELATED WORK

The automatic generation of model transformation is a

recent research topic. Roots and inspiration can be found

in the domains of ontology and schema matching [7], [8]

and programming by-example or by-demonstration [9], [10].

Here we only describe the by-example approaches. In [11],

ATL rules are derived from transformation examples and

mappings written in concrete syntax. Links are made from

the concrete syntax to the abstract syntax, in particular

with OCL constraints. The algorithm to build a metamodel

mapping uses these constraints. That requires the links

between the abstract and concrete syntax to be well defined

and implemented in an editor, making it hardly generalizable

for any metamodel without a prior development cost. The

mapping generation is not described into details, so that it is

difficult to precisely compare the two approaches. However,

the main contribution of [11] is to provide an approach

directly dealing with concrete syntax, whereas we are based

on abstract syntax. Our approach would clearly benefit from

a bridge from mappings in concrete syntax to mappings in

abstract syntax.

Kessentini et al. [12], [13] discuss the transformation

model as an optimization problem. The particle swarm

optimization in [12] and the simulated annealing in [13]

are used to generate a consistent model transformation. The

transformation of the source model is encoded as solutions
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to potential elementary transformation solutions, which are

placed in the search space of possible transformations. A

possibility of transformation is associated to each element

of the model to transform. The quality of this transformation

is evaluated and refined at each iteration. The optimization

problem is to find the best possible combination of transfor-

mations that maximizes the overall quality of processing.

This optimization approach based on meta-heuristics is

fundamentally different from ours: we produce rules whereas

they produce a black-box way of generating the output

models.

Varró [3] lays the foundations for a generation process

of transformations by examples, based on inductive logic

programming algorithms [14]. This process is presented as

iterative and interactive, since the transformation designer

must interfere to provide examples illustrating critical cases

of the transformation to be inferred, but also to select or

generalize the transformation rules obtained at the end of

an iteration. Varro’s approach uses pre-defined mappings

between the metamodel elements, defining to which type

of target model element a type of source model element

is transformed. If we consider the example introduced in

our paper, that means that we have to specify as input

that elements conform to Association are transformed into

elements conform to Persons. Those initial informations

are refined using the examples, to obtain what is called

contextual conditions. In our approach, we just use the

examples to learn the rules to obtain at the same time

the mappings between the meta-model elements and the

contextual conditions. Furthermore, we classify the rules in

the rule lattice in order to help the programmer to choose

the right ones.

References [15], [16] describe the early specification of

the approach detailed in this paper. The novelty in this paper

consists in the definition of a rule lattice that gathers the

informations from all the lattices generated and presents the

rules in a practical structure, and a tool implementing the

approach.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach and a tool

to generate model transformation rules using examples of

transformed models and mapping links between source and

target elements. This allows engineers involved in Model

Engineering tasks to quickly have a transformation program

even if they are not familiar with transformation languages

and metamodels. Using Formal Concept Analysis, rules

are classified through a lattice which helps navigation and

choice. Improving the tool and the underlying process using

in particular other RCA scaling operators, we expect to

enhance the produced rules and detect new patterns for rule

premise and conclusion.
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