
HAL Id: lirmm-00534898
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00534898v1

Submitted on 10 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Components and Service Farms
Gabriela Beatriz Arévalo, Zeina Azmeh, Marianne Huchard, Chouki

Tibermacine, Christelle Urtado, Sylvain Vauttier

To cite this version:
Gabriela Beatriz Arévalo, Zeina Azmeh, Marianne Huchard, Chouki Tibermacine, Christelle Urtado,
et al.. Components and Service Farms. 2010. �lirmm-00534898�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00534898v1
https://hal.archives-ouvertes.fr


Component and Service Farms

Gabriela Arévalo

LIFIA - Facultad de Informática (UNLP) - La Plata (Argentina)

garevalo@sol.info.unlp.edu.ar

Zeina Azmeh, Marianne Huchard, Chouki Tibermacine

LIRMM - CNRS UMR 5506 - Université de Montpellier II - Montpellier (France)

{azmeh, huchard, tibermacin}@lirmm.fr

Christelle Urtado, Sylvain Vauttier

LGI2P - Ecole des Mines d’Alès - Nı̂mes (France)

{Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

I. CONTEXT

Software components and web services are software

building blocks that are used in the composition of mod-

ern software applications. They both provide functionalities

that require to be advertised by registries in order to be

discovered and reused during software building processes1

[1], [2], [3], [4], [5]. Building or evolving existing software

implies assembling software components. This task is not

trivial because it requires to select the adequate component

or service that provides some part of the desired application

functionality and connects easily (with minimum adapta-

tions) to other selected components.

Within this context, we identified two main issues: (1)

finding appropriate components from huge databases, and

(2) creating and maintaining distributed applications.

Finding appropriate components from huge databases:

A huge number of components already exist. For example,

the Seekda2 web service search engine has a catalog of more

than 28.000 references, and the OW2 consortium3 groups

around 40 open-source projects in the domain of middleware

technology. In Seekda, functionalities are rather directly

exposed, but in projects, components are sometimes buried

into application code repositories and should be properly

extracted before being publicly advertised. However, in

both cases the task of finding and adapting an appropriate

component is hard and time-consuming, and this will surely

worsen when more components become available.

Creating and maintaining distributed applications:

There is a growing need for being able to create and

maintain distributed applications assembled from third party

components as network, middleware and deployment tech-

nologies now are mature enough. Reduced cost, increased

quality and decreased dependence to a given provider also

1In the following, we will often use the term components as a generic
name for both web services and software components.

2http://webservices.seekda.com/
3http://www.ow2.org/

contribute to popularize this trend. Paradigms that are based

on this principle are numerous: component-based devel-

opment, web 2.0, mashups, cloud computing, software as

a service, etc. State-of-the-practice technologies such as

OSGi4, that enables the deployment and redeployment of

software (for example, in remotely administered internet

boxes), or upcoming technologies such as Google Chrome

OS5, that aims to put web-apps at the center of net-books’

operating system, also illustrate this trend.

II. INNOVATIVE REGISTRIES

In this context, it is necessary to design innovative

software component registries to advertise components and

assist users when they need to search, select, adapt and

connect a component to others [6], [7]. We even could

think of the automation of these tasks as much as possible,

in order to adapt to open and dynamic contexts (remotely

administered embedded devices, pervasive computing, open

and extensible applications, mobile computing, etc.).

Then, the challenge consists in proposing an online

architecture for a component service registry, with two

functionalities (a) gives efficient access to adequate compo-

nents, and (b) provides life-cycle long support to developers

and applications (in automatic mode). This registry will

be a platform for developers to share their knowledge and

experiences on the components they use (what runs and what

does not, what are ideal contexts for running some given

component, what adaptations have already been performed

or tested on some component, what are user ratings on

components, etc.), and improve development efficiency as

well as running software reliability or liveliness.

As an extension of the component search engine, we

think of a component farm, where components could be

either physically located (component repository model) or

solely referenced in an adequately organized component

4http://www.osgi.org
5http://googleblog.blogspot.com/2009/07/introducing-google-chrome-

os.html



advertisement directory). The component farm (cf. Fig. 1)

should offer multiple views on components and tailored

efficient retrieval mechanisms.

Developed software applications that use components

from the farm could either simply use the farm’s public

facilities or register to benefit from increased community-

related capabilities. In the latter case, the added value would

be provided by the exchange of component-related data

between registered software applications and the farm, in

both directions:

• from software applications to the farm. Applications

could register components developed for their own pur-

poses into the farm directory or share usage information

on components they have previously retrieved from the

farm, etc. This means that developers should contribute

as in collaborative web.

• from the farm to software applications. The farm

should provide several operations supported by efficient

tools for searching and selecting components, providing

usage feedback on components, informing the devel-

oper of other developers’ experiences regarding new

products, found problems with components, problem

solving issues, possible adaptations, etc.

Our proposal focuses on two challenging issues, each

of which is developped in one of the followig sections:

(1) the adequacy and efficiency of the organization of the

component directory, (2) the proposal of tailored support to

applications.

III. EFFICIENT ORGANIZATION

Many components exist but are not always available in

public servers/directories. Providing abstract views and ade-

quate services, a global organization could help to stimulate

their sharing and be profitable increasing cross-fertilization

between projects. The first aim of the registry is to efficiently

organize components for several development and mainte-

nance tasks. The components can be physically contained in

the repository or just accessible from the directory, through

hypertext links, from other external locations. An efficient

organization is based on an efficient classification of the

components. For example, some approaches [8], [9], [10],

[11], [12], [13] have already investigated formal concept

analysis (FCA) [14], [15], an approach that rigorously

classifies data in structures that have strong mathematical

properties. Other approaches should nevertheless be studied.

Several aspects can be used to classify components:

syntactical, semantic and pragmatic [16], [17]. All of them

could be used complementarily. At the syntactical level,

component external descriptions include ports, interfaces,

functionality signatures and parameter types. At the semantic

level, components can be documented (with plain or struc-

tured text, with interaction protocols, etc.), described by key-

words (either normalized through ontologies, for example,

or not), and by any information that conveys the meaning

of the component (for what purpose it has been developed,

by whom, etc.). At the pragmatic level, components are

documented by information that provides feedback from

its usage, in assemblies, choreographies or orchestrations:

which functionalities are used, which functionalities are

never used, how components are connected (with which

adaptations), good and bad experiences, etc.

IV. APPLICATION SUPPORT

The second aim of the registry is software application sup-

port. Applications using the components from the registry

are invited to register so as the directory can receive feed-

back. Thus, the directory stores information on which appli-

cation uses which components and documentation about this

use, in order to share usage information among developers.

The registry memorizes the manual or automatic adapta-

tions that are necessary when a faulty component is replaced

by another. This information is used to optimize future

replacements and is capitalized to be used by other registered

applications.

The registry prepares backups (sets of possible substitutes)

for each used component in order to ensure rapid repairing

of a software application in case one of its components fails

[18]. These backups are organized in small classifications

for efficiency purposes. They can be used manually or

sometimes automatically in restricted cases where either

exact matching between the used component and its potential

substitute exists, or automatic adaptations are known and can

be applied. These backups can be stored inside the repository

or uploaded on demand by applications. Backups can also

be used by designers to make the software evolve when the

application designer wants to add extra functionalities or

improve the software quality attributes.

Candidate backup components and possible adaptations

are dynamically updated, as components become unavailable

or are upgraded. Software applications that use them are also

dynamically informed of these updates.

V. STARTING POINT

In previous work, we have started to imagine partial

solutions to the issues identified here.

• We have developed an automated process for clas-

sifying components from their external descriptions.

This process is based on type-theory (we only use

syntactic information) and uses FCA to iteratively build

lattices that provide functionality signature classifica-

tions, interface classifications and component classifi-

cations [8], [9], [10].

• We have prototyped the CoCoLa tool [10] that imple-

ments the aforementioned process. Thanks to a pivot

meta-model, component descriptions from various for-

mats are translated into comparable models (instances

of the common meta-model). These descriptions are

then processed to build context tables and lattices.



Figure 1. Overview of the component farm

Experiments have been run on the Dream6 component

library (that comes from a real-world component-based

framework). They show the feasibility of our approach

as the produced lattices enables us to identify possible

component substitutions and provides a readable com-

ponent classification.

• We also have proposed an approach based on for-

mal concept analysis (FCA) for classifying web ser-

vices [19], [18]. A web service lattice reveals the

invisible relations between web services in a certain

domain, showing the services that are able to replace

other ones. This facilitates service browsing, selection

and identification of possible substitutions. We ex-

plained how to exploit the resulting lattices to build web

services orchestrations and support them with backup

services.

VI. MAIN CHALLENGES

There still are numerous challenges to overcome in order

to build such a component farm:

• combine syntactical, semantic and pragmatic views of

components in order to be able to efficiently search

and select appropriated components (pertinence of the

classification).

6http://dream.ow2.org/

• automate component indexing and classification as well

as feedback collection in order not to put the burden on

component developers or component users. This task

could need to exploit automatically all the available

semantic information available (such as functionality

names, documentations, interaction protocols, etc.) us-

ing text mining techniques [20].

• try and capitalize coarser grained software parts by

classifying whole component assemblies,

• think about building techniques and browsing tech-

niques for each of the provided classifications but also

inter-classifications.

• propose replacement scenarios and tools,

• define the services that would motivate users in collab-

oratively providing usage feedback information,

• find means to conduct early experimentations of the

component farm. This is not easy as very few compo-

nent directories are available online, as for now.

As a response to the globalization challenge, software

engineering has the capability to positively react in provid-

ing software component catalogs, thus increasing software

quality while decreasing costs and time-to-market. As an

immaterial product market-place, the software component

industry benefits from great assets: software components

must not be stocked, they can be transported at no cost and

instantaneously, they are not perishable. To take advantage

of this, efforts should be focused not only on development,



as traditionally done, but also on better diffusion, sharing,

deployment and maintenance. We believe that component

farms could contribute to this objective.

REFERENCES

[1] W. Hoschek, “The web service discovery architecture,” in
Int’l. IEEE/ACM Supercomputing Conference (SC 2002),
I. C. S. Press, Ed., 2002.

[2] OMG, “Trading Object Service Specification (TOSS) v1.0,”
2000, http://www.omg.org/cgi-bin/doc?formal/2000-06-27.

[3] ebXML Registry Services Specification (RS) v3.0,
http://www.oasis-open.org/, May 2005.

[4] L. Clement, A. Hately, C. von Riegen, and T. Rogers,
“Uddi version 3.0.2. uddi spec technical committee draft
, dated 20041019. http://uddi.org/pubs/uddi v3.htm,” Tech.
Rep. [Online]. Available: http://uddi.org/pubs/uddiv3.htm

[5] Information Technology Open Distributed Pro-
cessing, “ODP Trading Function Specification
ISO/IEC 13235-1:1998(E),” December 1998,
http://webstore.iec.ch/preview/info isoiec13235-
1%7Bed1.0%7Den.pdf.

[6] L. Iribarne, J. M. Troya, and A. Vallecillo, “A trading service
for COTS components,” The Computer Journal, vol. 47, no. 3,
pp. 342–357, 2004.

[7] S. Dustdar and M. Treiber, “A view based analysis on
web service registries,” Distributed and Parallel Databases,
vol. 18, pp. 147–171, 2005.

[8] G. Arévalo, N. Desnos, M. Huchard, C. Urtado, and
S. Vauttier, “Precalculating component interface compatibility
using FCA,” in Proceedings of the 5th international
conference on Concept Lattices and their Applications (CLA
2007), CEUR Workshop Proceedings Vol. 331, J. Diatta,
P. Eklund, and M. Liquière, Eds., Montpellier, France,
October 2007, pp. 241–252. [Online]. Available: http://ceur-
ws.org/Vol-331/

[9] ——, “FCA-based service classification to dynamically build
efficient software component directories,” Int. Journ. of Gen-
eral Systems, vol. 38, no. 4, pp. 427–453, May 2009.

[10] N. A. Aboud, G. Arévalo, J.-R. Falleri, M. Huchard, C. Tiber-
macine, C. Urtado, and S. Vauttier, “Automated architec-
tural component classification using concept lattices,” in In
proceedings of the Joint Working IEEE/IFIP Conference on
Software Architecture 2009 (WICSA/ECSA’09). Cambridge,
UK: IEEE Computer Society Press, September 2009.

[11] A. M. Zaremski and J. M. Wing, “Specification matching
of software components,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 6, no. 4, pp.
333–369, 1997.

[12] B. Fischer, “Specification-based browsing of software com-
ponent libraries,” in Proc. of the 13th IEEE int. conf. on
Automated Software Engineering (ASE’98), 1998, pp. 74–83.

[13] B. Sigonneau and O. Ridoux, “Indexation multiple et automa-
tisée de composants logiciels orientés objet,” in AFADL —
Approches Formelles dans l’Assistance au Développement de
Logiciels, J. Julliand, Ed. Besançon, France: RTSI, Lavoisier,
Juin 2004.

[14] M. Barbut and B. Monjardet, Ordre et Classification. Ha-
chette, 1970.

[15] B. Ganter and R. Wille, Formal Concept Analysis: Mathe-
matical Foundations. Springer, 1999.

[16] M. Á. Corella and P. Castells, “Semi-automatic semantic-
based web service classification,” in Business Process Man-
agement Workshops, ser. LNCS 4103, J. Eder and S. Dustdar,
Eds. Springer, 2006, pp. 459–470.

[17] M. Bruno, G. Canfora, M. D. Penta, and R. Scognamiglio,
“An approach to support web service classification and an-
notation,” in Proc. of the IEEE Int. Conf. on e-Technology,
e-Commerce and e-Service (EEE’05), 2005, pp. 138–143.

[18] Z. Azmeh, M. Huchard, C. Tibermacine, C. Urtado, and
S. Vauttier, “Using concept lattices to support web service
compositions with backup services,” in To appear in Proceed-
ings of the 5th International Conference on Internet and Web
Applications and Services (ICIW 2010), Barcelona, Spain,
May 2010.

[19] ——, “WSPAB: A tool for automatic classification & se-
lection of web services using formal concept analysis,” in
Proceedings of the 6th IEEE European Conference on Web
Services (ECOWS 2008). Dublin, Ireland: IEEE, November
2008, pp. 31–40.

[20] J.-R. Falleri, Z. Azmeh, M. Huchard, and C. Tibermacine,
“Automatic tag identification in web service descriptions,”
in To appear in proceedings of the International Conference
on Web Information Systems and Technology (WEBIST’10),
Valencia, Spain, April 2010.


