
HAL Id: lirmm-00534901
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00534901

Submitted on 10 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software (re)modularization: Fight against the structure
erosion and migration preparation

Nicolas Anquetil, Simon Denier, Stéphane Ducasse, Jannik Laval, Damien
Pollet, Roland Ducournau, Rodolphe Giroudeau, Marianne Huchard,

Jean-Claude König, Abdelhak-Djamel Seriai

To cite this version:
Nicolas Anquetil, Simon Denier, Stéphane Ducasse, Jannik Laval, Damien Pollet, et al.. Software
(re)modularization: Fight against the structure erosion and migration preparation. 2010. �lirmm-
00534901�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00534901
https://hal.archives-ouvertes.fr

Software (re)modularization:

Fight against the structure erosion and migration preparation

N. Anquetil, S. Denier, S. Ducasse, J. Laval, D. Pollet

RMoD INRIA

stephane.ducasse@inria.fr

R. Ducournau, R. Giroudeau, M. Huchard, J.C. König, D. Seriai

LIRMM - CNRS UMR 5506 - Université de Montpellier II - Montpellier (France)

huchard@lirmm.fr

I. CONTEXT

Software systems, and in particular, Object-Oriented sys-

tems are models of the real world that manipulate representa-

tions of its entities through models of its processes. The real

world is not static: new laws are created, concurrents offer

new functionalities, users have renewed expectation toward

what a computer should offer them, memory constraints

are added, etc. As a result, software systems must be

continuously updated or face the risk of becoming gradually

out-dated and irrelevant [34]. In the meantime, details and

multiple abstraction levels result in a high level of com-

plexity, and completely analyzing real software systems is

impractical. For example, the Windows operating system

consists of more than 60 millions lines of code (500,000

pages printed double-face, about 16 times the Encyclopedia

Universalis). Maintaining such large applications is a trade-

off between having to change a model that nobody can

understand in details and limiting the impact of possible

changes. Beyond maintenance, a good structure gives to

the software systems good qualities for migration towards

modern paradigms as web services or components, and

the problem of architecture extraction is very close to the

classical remodularization problem.

II. A SIGNIFICANT PROBLEM

Most of the effort while developing and maintaining a

software system is spent in supporting its evolution [50]. It

is well-known that up to 80% of the total cost of software

development project is spent in maintenance and evolution

of existing applications [15], [19]. Large IT applications

including applications running central and critical business

(e.g., command tracking, banking, railway) have to run and

evolve over decades.

Such situations are crystallized in the following two laws

of Lehman and Belady. These laws, known as the laws

of software evolution, stress the fact that software must

continuously evolve to stay useful and that this evolution

is accompanied by an increase of complexity.

Continuous Changes. “an E-type program—i.e.,

a software system that solves a problem or imple-

ments a computer application in the real world—

that is used must be continually adapted else it

becomes progressively less satisfactory” [34]

Increasing Complexity. “As a program is evolved

its complexity increases unless work is done to

maintain or reduce it.”[34]

From a business perspective, maintenance is mandatory

and vital. It is worth to note that the Year 2000 Bug was also

revealing some business occasions. For example in France

SOPRA which was mainly an SSII, has since the year 2000

developed its TMA (Tierce Maintenance Applicative) branch

to get into the maintenance business. SOPRA TMA now

represents 2500 developers working on maintenance on a

total of 11000 developers.

If many organizations use third party software (e.g.

COTS) which they don’t have to maintain, this is less

true for their core business applications where their market

differential must be implemented in the applications that

help running day to day activities. As highlighted by the

law of Lehman and Belady, these in-house applications

must evolve and in this process will extend far beyond

their initial structure, in many independent (and sometimes

even conflicting) directions. After some time, it becomes

mandatory to restructure the application to federate these

evolutions inside a more general and renewed architecture

to foster possible future evolutions.

Supporting evolution and prepare migration of applica-

tions will be always mandatory. Different programming

paradigms have been invented to cope with changes: late-

binding, the cornerstone of object-oriented programming, is

a typical illustration. But we think that no paradigm will

eradicate the need for evolution and changes and that the

only possible approach is to guide evolution or to repair the

damages caused by an inevitable erosion.

III. THE FAILURE OF CURRENT SOLUTIONS

Whereas software (re-)modularization is a relatively old

research field in the context of C or Cobol, it is still

really important and requires innovative approaches to deal

with the complexity of modern systems especially those

developed in OOP languages. Our analysis — also confirmed

in the recent literature (e.g., [1], [7], [47]) — is that this

failure is a direct consequence of: (1) the complexity of the

manipulated concepts and the variety of modular abstrac-

tions (subsystems, packages, classes, class hierarchies, late-

binding, aspects, various import relationships....) as well as

(2) a monolithic approach: the use of one type of algorithms

(clustering) and one kind of system representation (software

components interactions found in the source code).

A. Modular Abstractions

Modular constructs have been the focus of a large body

of research. Here we give a non-exhaustive list. A lot of

work is currently underway in the context of aspect-oriented

programming. Module and package systems have been the

focus on a large amount of work. The recent work on

Units [22], Jiazzi [42], Mixjuice [28], MJ [14], JAM [52],

mixin layers [48] shows that this topic is a crucial research

area. Bergel et al. conducted a survey on modular language

constructs that reflects such a diversity [6].

Modular constructs have also been considered at a lower

level than classes, e.g., with mixins [9], traits [17]. These

constructs denote, here, sets of properties that somewhat

represent the differentia in the Aristotelian genus-differentia

definition. Overall, remodularization must address both mod-

ular construct levels, by clustering related properties for

defining classes and related classes for defining packages.

Recursively nested class models have also been proposed

[20], [44]—however they cannot be considered as long as

the point with non-recursive models is not fixed.

Component-based software approach proposed to build

software systems by assembling prefabricated reusable com-

ponents [54]. Assembly consists in connecting matching

interfaces of the components: in a connection, a required

interface (describing the services a component needs) is

connected to a provided interface (describing the services

another component offers). Extracting a component architec-

ture from an object-oriented software has many in common

with remodularization because classes need to be grouped

based on their dependencies to form the components [11].

Current Issues – The class notion is the only univer-

sally accepted modular abstraction. Higher and lower level

abstractions are often still in flux. Different languages use

different concepts such as modules, packages, namespaces.

Hence, current issues involve both identifying adequate

abstractions and adapting remodularization algorithms to

the various alternative abstractions. Moreover, assessing

the modularity of software requires specific tools (e.g.,

metrics, visualization) that must be adapted to each modular

abstraction.

B. Remodularization Approaches

Class hierarchy analysis: Class hierarchy analysis has

been largely investigated, for restructuring purposes or find-

ing separate concerns (aspects, traits). As it has been shown

in [26], most of the refactorization approaches use explicitly

or implicitly substructures of those obtained by Formal

Concept Analysis (FCA).

The application of clustering algorithms for software

remodularization has been intensively studied [2]. Thou-

sands of experiments were conducted to compare different

clustering algorithms, different representation schemes and

different coupling metrics between files. Although the exper-

iments used procedural systems, many conclusions may be

applied to OO systems as well. The extraction of class views

based on Formal Concept Analysis has been proposed in [3].

They evaluated how FCA supports the identification of traits

in existing hierarchies [8], [35]. Godin [24] developed FCA

algorithms to infer a non-redundant form for implementation

and interface hierarchies and carried out experiments on sev-

eral Smalltalk applications. For dealing with UML models,

Relational Concept Analysis, an extension of FCA, takes

the relations into account [27]. Other approaches analyze

class hierarchies using access or usage information. [49],

[51] analyze the usage of the hierarchy by a set of client

programs. Mining aspects has been considered in the context

of FCA [10].

Current Issues – Factorization is by nature a com-

binatorial process. Recent studies [21] show that Rela-

tional Concept Analysis, applied to rich UML descriptions

including references between concepts, produces a huge

number of artefacts which is quite impossible to analyze

by hand. Execution time can become a problem for large

size software, but the actual difficulty is the result size.

Other modular construct discovery: Clustering ap-

proaches are, by far, the preferred algorithmic approach to

the problem. They have been proposed to identify modules

in applications that are not specifically object-oriented (e.g.

[29], [30], [38], [43]).

Finding components in object-oriented software is pro-

posed in [12]. Simulated annealing is used to gather classes

into components by optimizing metrics measuring cohesion

and coupling. The problem has similarity with package

mining.

It is a well-known practice to layer applications with

bottom layers being more stable that top layers [41]. Until

now few works have been done in practice to identify layers:

Mudpie [55] is a first cut at identifying cycles between

packages as well as package groups potentially representing

layers. DSM (dependency structure matrix) [53], [46] are

adapted for such a task but there is a lack of detail informa-

tion. From the side of remodularization algorithms, a lot of

them were defined for procedural languages [31]. However

object-oriented programming languages bring some specific

problems linked with late-binding and the fact that a package

does not have to be systematically cohesive since it can be

an extension of another one [18], [57].

Current Issues – These approaches are often not cus-

tomized for object-oriented applications. Existing solutions

propose modules at a very low level of abstraction that do

not reduce enough the size of the system comprehension

problem. Solutions that may offer larger (potentially more

abstract) modules, result in modules that have no meaning

for the software engineers.

C. Techniques for module assessment

Software Metrics: Re-modularization of software sys-

tems is geared toward producing highly cohesive and loosely

coupled modules. Many different cohesion/coupling metrics

were proposed (including a study by [2]). In the more

specific case of object-oriented programming, assessing co-

hesion and coupling has been the focus of several metrics.

However their success is rather mitigated as the number of

critics raised. For example, LCOM [13] has been highly

criticized [4]. Other approaches have been proposed such

as RFC and CBO [13] to assess coupling between classes.

However, many other metrics have not been the subject of

careful analysis such as Data Abstraction Coupling (DAC)

and Message Passing Coupling (MPC) [5], or some metrics

are not clearly specified (MCX, CCO, CCP, CRE) [36].

New cohesion measures were proposed [40], [45] taking

class usage into account. The Cohesion/Coupling dogma,

however, started to receive critics in recent times [1], [47].

People argue that software engineers do not base clustering

on this criterion but rather use more semantical approaches.

Software Visualization: There is a significant effort

to create efficient software visualizations to support the

understanding and analyses of applications [32], [37], [39],

[56]. Lanza and Ducasse worked on system level under-

standing combining metrics and visualization [33] and class

understanding support [16].

Current Issues – Existing cohesion and coupling metric

resulting values are difficult to map back to the actual

situation, they lead to packages that seem artificial and are

not understood by experts of the systems. There is a lack for

package cohesion and coupling software metrics in presence

of late-binding promoted by object-oriented programming.

There is a need for program visualization to support the

understanding of packages and procedural code. In addition,

there is a need for new metrics that would yield more

“natural” packages.

IV. SCIENTIFIC CHALLENGES AND TRACKS OF

RESEARCH

The main scientific challenges are as follows.

Abstraction Diversity: One of the major problems to

solve when tackling remodularization of object-oriented sys-

tems is the choice of good abstractions and the appropriate

relations between them.

Complementary Remodularization Algorithms: There

is a need for a global remodularization infrastructure in

terms of analyses (algorithms, information presentation,

metrics) that can take into account the diversity of the

abstractions in presence (different module semantics, differ-

ent abstractions and relationships including different levels,

functions, classes, packages, etc.).

Complexity and approximation: In the point of view of

graph theory, the central problem seems to be close to the

classic k-cuts problem [23], [25]. Nevertheless, we must add

several new criteria, like the quality of the proposed solution.

The first step of the research will be the characterization

of an optimization criterion. We also think useful to study

and analyse the sensibility of the problem with respect to

the operations: add/delete of vertices/edges. It is a major

challenge to be able to propose robust approximations.

Scalability: Computational complexity of algorithms

has a limit, already known for Formal Concept Analysis

(FCA/RCA) and foreseeable for exact methods. Checking

the scalability of these algorithms is thus an additional

challenge. Another issue is the combinatorial explosion

which may occur in the remodularization results. Because

of the size of current applications, presenting these results

to the engineers and guiding them to take a decision is an

additional challenge.

Reengineer inputs and quality of the solution: Engi-

neers should drive the remodularization. Fully automated

approaches are applicable only to a very limited context. In

reality, external constraints have to be specified and taken

into account by the remodularization algorithms (such as

the inclusion of a class in a specific package). Software

engineers should guide the process possibly confronted to

different solutions and their relative impacts. Often favoring

minimum impact on existing code has to be considered.

Finally the quality of the resulting modularizations has to

be taken into account.

As a conclusion: The problems of software evolution

are many and varied, in this proposal we plan to consider

one of these problems: software remodularization. We think

urgent to drive such a complete study of the problem, both

“vertically” by studying all the aspects of the modularization

problem (modeling of the software, modularization quality

metrics, modularization algorithms, presentation of the re-

sults), and, “horizontally”, by considering different modu-

larization approaches. The solution will not apply one single

method, but a combination of various skills in different

research domains. Such a research would also be guided

by platforms for testing ideas on real-world applications.

REFERENCES

[1] F. B. Abreu and M. Goulao. Coupling and cohesion as
modularization drivers: are we being over-persuaded? In
Fifth European Conference on Software Maintenance and
Reengineering, pages 47–57, Mar. 2001.

[2] N. Anquetil and T. Lethbridge. Comparative study of clus-
tering algorithms and abstract representations for software
remodularization. IEE Proceedings - Software, 150(3):185–
201, 2003.

[3] G. Arévalo, S. Ducasse, and O. Nierstrasz. X-Ray views:
Understanding the internals of classes. In Proceedings of 18th
Conference on Automated Software Engineering (ASE’03),
pages 267–270. IEEE Computer Society, Oct. 2003. Short
paper.

[4] E. Arisholm, L. C. Briand, and A. Foyen. Dynamic coupling
measurement for object-oriented software. IEEE Transactions
on Software Engineering, 30(8):491–506, 2004.

[5] J. Bansiya, L. Etzkorn, C. Davis, and W. Li. A class cohesion
metric for object-oriented designs. Journal of Object-Oriented
Programming, 11(8):47–52, Jan. 1999.

[6] A. Bergel, S. Ducasse, and O. Nierstrasz. Analyzing
module diversity. Journal of Universal Computer Science,
11(10):1613–1644, Nov. 2005.

[7] P. Bhatia and Y. Singh. Quantification criteria for optimization
of modules in oo design. In Software Engineering Research
and Practice, pages 972–979, 2006.

[8] A. P. Black, N. Schärli, and S. Ducasse. Applying traits
to the Smalltalk collection hierarchy. In Proceedings of
17th International Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA’03),
volume 38, pages 47–64, Oct. 2003.

[9] G. Bracha and W. Cook. Mixin-based inheritance. In
Proceedings OOPSLA/ECOOP ’90, ACM SIGPLAN Notices,
volume 25, pages 303–311, Oct. 1990.

[10] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwé. Applying and combining three different aspect
mining techniques. Software Quality Journal, 14(3):209–231,
2006.

[11] S. Chardigny, A. Seriai, M. Oussalah, and D. Tamzalit. Ex-
traction of component-based architecture from object-oriented
systems. In WICSA, pages 285–288. IEEE Computer Society,
2008.

[12] S. Chardigny, A. Seriai, M. C. Oussalah, and D. Tamzalit. Ex-
traction d’Architecture à Base de Composants d’un Système
Orienté Objet. In INFORSID, pages 487–502, 2007.

[13] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering,
20(6):476–493, June 1994.

[14] J. Corwin, D. F. Bacon, D. Grove, and C. Murthy. MJ: a
rational module system for Java and its applications. In Pro-
ceedings of the 18th ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications,
pages 241–254. ACM Press, 2003.

[15] A. M. Davis. 201 Principles of Software Development.
McGraw-Hill, 1995.

[16] S. Ducasse and M. Lanza. The Class Blueprint: Visually
supporting the understanding of classes. Transactions on
Software Engineering (TSE), 31(1):75–90, Jan. 2005.

[17] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and
A. P. Black. Traits: A mechanism for fine-grained reuse.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 28(2):331–388, Mar. 2006.

[18] A. Dunsmore, M. Roper, and M. Wood. Object-oriented
inspection in the face of delocalisation. In Proceedings
of ICSE ’00 (22nd International Conference on Software
Engineering), pages 467–476. ACM Press, 2000.

[19] L. Erlikh. Leveraging legacy system dollars for e-business.
IT Professional, 2(3):17–23, 2000.

[20] E. Ernst. Higher-order hierarchies. In Proceedings Euro-
pean Conference on Object-Oriented Programming (ECOOP
2003), LNCS, pages 303–329, Heidelberg, July 2003.
Springer Verlag.

[21] J.-R. Falleri, M. Huchard, and C. Nebut. A generic approach
for class model normalization (short paper). In ASE 2008:
23th IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2008.

[22] M. Flatt and M. Felleisen. Units: Cool modules for hot
languages. In Proceedings of PLDI ’98 Conference on
Programming Language Design and Implementation, pages
236–248. ACM Press, 1998.

[23] A. Freize and M. Jerrum. Improved approximation algorithm
for max−k-cut and max bisection. Algorithmica, 18:67–81,
1997.

[24] R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and
T.-T. Chau. Design of Class Hierarchies based on Concept
(Galois) Lattices. Theory and Application of Object Systems,
4(2):117–134, 1998.

[25] O. Goldschmidt and D. Hochbaum. Polynomial algorithm for
the k-cut problem. In I. C. Society, editor, Proc. 29th Annual
IEEE Symposium on Foundations of Computer Science, pages
444–451, 1988.

[26] M. Huchard, H. Dicky, and H. Leblanc. Galois lattice as a
framework to specify building class hierarchies algorithms.
ITA, 34(6):521–548, 2000.

[27] M. Huchard, M. R. Hacene, C. Roume, and P. Valtchev.
Relational concept discovery in structured datasets. Ann.
Math. Artif. Intell., 49(1-4):39–76, 2007.

[28] Y. Ichisugi and A. Tanaka. Difference-based modules: A class
independent module mechanism. In Proceedings ECOOP
2002, volume 2374 of LNCS, Malaga, Spain, June 2002.
Springer Verlag.

[29] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice Hall, Englewood Cliffs, 1988.

[30] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a
review. ACM Computing Surveys, 31(3):264–323, 1999.

[31] R. Koschke. Atomic Architectural Component Recovery for
Program Understanding and Evolution. PhD thesis, Univer-
sität Stuttgart, 2000.

[32] G. Langelier, H. A. Sahraoui, and P. Poulin. Visualization-
based analysis of quality for large-scale software systems. In
ASE ’05: Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages 214–
223, New York, NY, USA, 2005. ACM.

[33] M. Lanza and S. Ducasse. Polymetric views—a lightweight
visual approach to reverse engineering. Transactions on
Software Engineering (TSE), 29(9):782–795, Sept. 2003.

[34] M. Lehman. Laws of software evolution revisited. In
European Workshop on Software Process Technology, pages
108–124, Berlin, 1996. Springer.

[35] A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits
with formal concept analysis. In Proceedings of 20th Con-
ference on Automated Software Engineering (ASE’05), pages
66–75. IEEE Computer Society, Nov. 2005.

[36] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A
Practical Guide. Prentice-Hall, 1994.

[37] J. I. Maletic and A. Marcus. Supporting program com-
prehension using semantic and structural information. In
Proceedings of the 23rd International Conference on Software
Engineering (ICSE 2001), pages 103–112, May 2001.

[38] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner.
Bunch: A Clustering Tool for the Recovery and Maintenance
of Software System Structures. In Proceedings of ICSM ’99
(International Conference on Software Maintenance), Oxford,
England, 1999. IEEE Computer Society Press.

[39] A. Marcus, L. Feng, and J. I. Maletic. 3D representations for
software visualization. In Proceedings of the ACM Symposium
on Software Visualization, pages 27–ff. IEEE, 2003.

[40] A. Marcus and D. Poshyvanyk. The conceptual cohesion of
classes. In Proceedings International Conference on Software
Maintenance (ICSM 2005), pages 133–142, Los Alamitos
CA, 2005. IEEE Computer Society Press.

[41] R. C. Martin. Agile Software Development. Principles,
Patterns, and Practices. Prentice-Hall, 2002.

[42] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New age
components for old fashioned Java. In Proceedings OOPSLA
2001, ACM SIGPLAN Notices, pages 211–222, Oct. 2001.

[43] B. S. Mitchell and S. Mancoridis. On the automatic mod-
ularization of software systems using the bunch tool. IEEE
Transactions on Software Engineering, 32(3):193–208, 2006.

[44] N. Nystrom, X. Qi, and A. C. Myers. J&: nested intersection
for scalable software composition. In OOPSLA ’06: Proceed-
ings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications,
pages 21–36, New York, NY, USA, 2006. ACM.

[45] L. Ponisio and O. Nierstrasz. Using context information to
re-architect a system. In Proceedings of the 3rd Software
Measurement European Forum 2006 (SMEF’06), pages 91–
103, 2006.

[46] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
dependency models to manage complex software architecture.
In Proceedings of OOPSLA’05, pages 167–176, 2005.

[47] R. Sindhgatta and K. Pooloth. Identifying software decompo-
sitions by applying transaction clustering on source code. In
COMPSAC ’07: Proceedings of the 31st Annual International
Computer Software and Applications Conference, pages 317–
326, Washington, DC, USA, 2007. IEEE Computer Society.

[48] Y. Smaragdakis and D. Batory. Mixin layers: An object-
oriented implementation technique for refinements and
collaboration-based designs. ACM Trans. Soft. Eng. Meth.,
11(2):215–255, 2002.

[49] G. Snelting and F. Tip. Reengineering Class Hierarchies using
Concept Analysis. In ACM Trans. Programming Languages
and Systems, 1998.

[50] I. Sommerville. Software Engineering. Addison Wesley, fifth
edition, 1996.

[51] M. Streckenbach and G. Snelting. Refactoring class hier-
archies with KABA. In OOPSLA ’04: Proceedings of the
19th annual ACM SIGPLAN Conference on Object-oriented
programming, systems, languages, and applications, pages
315–330, New York, NY, USA, 2004. ACM Press.

[52] R. Strniša, P. Sewell, and M. Parkinson. The java module
system: core design and semantic definition. In OOPSLA ’07:
Proceedings of the 22nd annual ACM SIGPLAN conference
on Object oriented programming systems and applications,
pages 499–514, New York, NY, USA, 2007. ACM.

[53] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The
structure and value of modularity in software design. In
ESEC/FSE 2001, 2001.

[54] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[55] D. Vainsencher. Mudpie: layers in the ball of mud. Computer
Languages, Systems & Structures, 30(1-2):5–19, 2004.

[56] R. Wettel and M. Lanza. Program comprehension through
software habitability. In Proceedings of ICPC 2007 (15th
International Conference on Program Comprehension), pages
231–240. IEEE CS Press, 2007.

[57] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engineer-
ing, SE-18(12):1038–1044, Dec. 1992.

