
HAL Id: lirmm-00536323
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00536323v1

Submitted on 15 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Haptic Interaction with Virtual Avatars
François Keith, Paul Evrard, Jean-Rémy Chardonnet, Sylvain Miossec,

Abderrahmane Kheddar

To cite this version:
François Keith, Paul Evrard, Jean-Rémy Chardonnet, Sylvain Miossec, Abderrahmane Kheddar. Hap-
tic Interaction with Virtual Avatars. EuroHaptics’2008: 6th International Conference, Jun 2008,
Madrid, Spain. pp.630-639, �10.1007/978-3-540-69057-3_80�. �lirmm-00536323�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00536323v1
https://hal.archives-ouvertes.fr


Haptic Interaction with Virtual Avatars

François Keith, Paul Evrard, Jean-Rémy Chardonnet, Sylvain Miossec, and
Abderrahmane Kheddar

AIST/CNRS Joint Japanese-French Robotics Laboratory, Tsukuba, Japan
{francois.keith,evrard.paul,jr-chardonnet,sylvain.miossec,

abderrahmane.kheddar}@aist.go.jp

Abstract. In this paper we present an interactive dynamic simulator
for virtual avatars. It allows creation and manipulation of objects in a
collaborative way by virtual avatars or between virtual avatars and users.
The users interact with the simulation environment using a haptic probe
which provides force feedback. This dynamic simulator uses fast dyna-
mics computation and constraint-based methods with friction. It is part
of a general framework that is being devised for studies of collaborative
scenarios with haptic feedback.

Key words: Dynamic simulator, constraint-based methods, user-object-
avatar haptic interaction

1 Introduction

Recently, several simulators for virtual avatars have been developed for many
purposes and applications. In the computer graphics community, avatars dy-
namic simulators are proposed with physics-based controllers for off-line or in-
teractive realistic animation in gaming or motion generation of digital actors,
e.g. see [1][2], but interactivity with haptic feedback has not been of a major
concern. In the robotics field, dynamic simulators have also been developed for
the purpose of planning or sensory control simulation. For example, Son et al. [3]
proposed a general framework for robotic dynamic simulation with interactive ca-
pabilities including force feedback. This simulator accounts for constraint-based
contact modeling with friction; it uses a hybrid method to switch between dif-
ferent contact statuses. Khatib’s team proposed an impressive framework, called
SAI, for interactive dynamic simulation [4] using the operational space formu-
lation with prioritized tasks [5] and was probably among the firsts to use hap-
tic feedback for interaction with a virtual avatar. At AIST, an open platform
named OpenHRP has been developed to be dedicated to the general humanoid
studies [6]. The next release (version 3) is forecast to be distributed freely with
open source code. However, OpenHRP is not interactive and does not include
force feedback. There are other one that are or will be commercially available
(e.g. R-Station or Microsoft Robotic Studio). In virtual prototyping, Duriez et
al. [7] showed interactive simulation for deformable objects using constraint-
based methods and solving contact with friction using iterative algorithms that



2 Keith et al.

include haptic feedback. Using the same basis as in [4], Chardonnet et al. [8]
proposed a fast dynamic simulator for humanoids without discrete Coulomb’s
friction cones and able of handling complex shapes.

This work extends our previous framework to handle fast constrained-based
dynamic computation with force feedback. Comparing to the state-of-the-art, we
demonstrate that our simulator is able to handle complex shapes in real-time and
integrate force feedback without any specific treatment. Our framework intends
to include not only task-driven simulations, but also cognitive aspects linked to
haptic interaction such as haptic patterns of communication and advanced inter-
action with digital actors that can be either virtual or real (robots). This paper
focuses only on the dynamic and computer haptics with details concerning the
proposed integrative software architecture. This framework is devised to inte-
grate developments in digital actors control with a focus on haptic collaborative
tasks and communication.

2 Software Architecture

2.1 Main requirements

Our goal is to realize a high fidelity haptic interaction with virtual avatars that
are driven by an autonomous or a preprogrammed behavior. The user will be
interacting with the virtual avatar using any haptic device. A large paradigm of
possible scenarios are envisaged; as a result the contact space formulation must
comply with several constraints such as allowing dynamic interaction between
bodies of different kinematics structure and with different materials composing
the surrounding virtual environment. The contact space formulation needs to
subtly integrate the avatar dynamics together with other phenomena such as
impacts, static and dynamic friction, and deformations. Altogether, behavioral
knowledge will be integrated within a haptic module to drive virtual avatar
interactions. In this study we distinguish two behavioral modules:

– haptic interaction induced from tasks (e.g. a human operator manipulates a
virtual object in a collaborative way with an autonomous virtual avatar);

– haptic interaction induced from communication (e.g. a human operator touch-
ing directly a virtual avatar: hand shaking, taping, etc.).

2.2 Implementation of the Direct Dynamic Model

To compute the direct dynamic model, we use Featherstone’s Articulated Body
Method [9, 10], which focuses on a chain of joints with a single degree of freedom.

We detail the algorithm with multiple DOF joints merely presented in [9].
Using null-inertia virtual bodies and joints to model a joint with multiple DOF
(like in the SAI framework) causes numerical problems and may induce insta-
bility of the simulation. Hence we have to consider multiple DOF joints as a
specific joint, without calling to any artifacts. We give as an example the case
of 3DOF spherical joints (found in humans and animals).



Haptic Interaction with Virtual Avatars 3

Articulated Body Method for multiple DOF joints. We use the spatial
notations similarly to [9], for more concise writing. In particular, the ˆ symbol
represents spatial variables. The explanations of spatial notations are given in [9,
10]. We simply rewrite the three recursions with the extension to nDOF–DOF
joints. For the sake of clarity, we restrict the reasonning to serial chain robots.
The extension to a branched robot is straightforward and detailed in [9].

We first present the recursive kinematic equations. At the same time we
present the kinematic model of the joints. Let aX̂b be the transformation from
frame attached to b to frame attached to a, Li the link i and Ji the joint i.

Fig. 1. Frames associated to links and joints.

The frame of a body is attached to its CoM, the frame of a joint is attached
to its center of rotation. Only JiX̂Li is computed from the joint parameteriza-
tion. Its computation will be detailed later for the spherical joint and different
parameterization. The recursion equations at the position level are:

0X̂Ji = 0X̂L(i−1)L(i−1)X̂Ji

0X̂Li = 0X̂JiJiX̂Li
(1)

At the velocity level, the recursion relation is given by:

v̂i = v̂i−1 + Ŝiv̂ri (2)

where Ŝi(6 × nDOF) maps the reduced spatial relative velocity v̂ri(nDOF × 1) of
joint i to the relative velocity in the world coordinates. It is obtained from:

Ŝi = 0X̂JiŜri (3)

where Ŝri maps v̂ri to the local coordinates. Ŝri will be constant if the joint
velocity parameters in v̂ri are simply translational and rotational velocity com-
ponents. Ŝri could be non-constant for other velocity parameters. We will choose
such v̂ri to have Ŝri constant. The acceleration recursive relation is obtained by
derivation of (2).

âi = âi−1 + Ŝiâri + v̂i−1×̂Ŝiv̂ri (4)

If Ŝri is not constant, the term 0X̂i
˙̂Sriv̂ri will be added.



4 Keith et al.

Given the introduction of multiple-DOF joints, the first recursion writes:

Ŝi = 0X̂JiŜri

v̂i = v̂i−1 + Ŝiv̂ri

ĉi = v̂i−1×̂Ŝiv̂ri

(5)

where ĉi is an intermediate computation needed in following recursions coming
from (4). If Ŝri is not constant, the previously presented term is added.

In order to write the second recursion, we need first to define the multiple-
DOF actuator model. The spatial force produced by the actuator f̂a is:

f̂a
i = F̂iQi (6)

where Qi(nDOF×1) is the vector of actuator forces and/or torques, F̂i maps Qi to
the spatial force produced by the actuator f̂a expressed in the world coordinates.
It is obtained from:

F̂i = 0X̂JiF̂ri (7)

F̂ri will be later given for the spherical joint.
The second recursion equations are then given by

p̂v
i = v̂i×̂Îiv̂i − fE

ÎA
i = Îi + ÎA

i+1 − ĥi+1di+1
−1ĥS

i+1

p̂i = p̂v
i + p̂i+1 + ÎA

i+1ĉi+1 + ĥi+1di+1
−1ui+1

ĥi = ÎA
i Ŝi

di = ŜS
i ĥi

ui = ŜS
i F̂iQi − ĥS

i ĉi − ŜS
i p̂i

(8)

where ĥi(6 × nDOF), di(nDOF × nDOF), ui(nDOF × 1) depends on the number of
DOF, while other terms have the same size as in the algorithm for 1-DOF joints.
For the last body of the chain, the i+1 terms of the two first rows are eliminated.
The notation S is the spatial transpose defined by

∀ Â =
[
Aup

Adn

]
, ÂS =

[
AT

dn AT
up

]
(9)

where Aup and Adn are two 3× nDOF matrices.
The third recursion is given by:

â0 = −Î−1
0 p̂0

˙̂vri = di
−1(ui − ĥS

i âi−1)
âi = âi−1 + ĉi + Ŝi

˙̂vri

(10)

Case of spherical joints. Whatever the spherical joints position parameteri-
zation, we use relative rotation velocity and acceleration as velocity and accele-
ration parameters. This choice gives a simple expression for Ŝri,

Ŝri =
[
I3×3

03×3

]
(11)



Haptic Interaction with Virtual Avatars 5

The spherical joint will be used to simulate human elbow joint and hip joint.
The actuator system is composed of several muscles in parallel. The real model
for such an actuation system is very complex. We choose an abstract actuator
model which allows to apply three components of torque around the three axis
of the joint frame. Subsequently, the matrix F̂ri, representing the spherical joint
model, can be written as:

F̂ri =
[
03×3

I3×3

]
(12)

The previous choice of parameterization in velocity has the advantage to
be independent of the choice of parameterization in position. Many position
parameterizations are possible for spherical joints: quaternion, Euler angles or
exponential map. One can refer to [11] for a comparison of those parameteriza-
tions. For simulation, we choose to use the quaternion for two reasons: (i) there
is no singularity and (ii) the computation of the jacobian is faster (there are few
calculations). The fact that there are four parameters instead of possibly only
three is not a problem for simulation.

We present how to compute the rotation matrix and the derivative of the
position parameterization for integration purpose. We use the notation ω = v̂ri.

The quaternions, noted q = (q0,q) = (q0, q1, q2, q3), do not have singularity
and a normalized quaternion represents a rotation of angle q0 around the q axis.
The corresponding rotation matrix JiRLi is [12]:

JiRLi =




q0
2 + q1

2 − 1
2 q1q2 + q0q3 q1q3 − q0q2

q1q2 − q0q3 q0
2 + q2

2 − 1
2 q2q3 + q0q1

q1q3 + q0q2 q2q3 − q0q1 q0
2 + q3

2 − 1
2


 (13)

The derivative of quaternion can be linked to the angular velocity [13]:

q̇ =
1
2
ω′ ◦ q where ω′ = (0, ω) (14)

2.3 Constraint-based force computation

The general forward dynamics equation for multi-body articulated systems is
generally written in the following closed-form:

q̈ = A(q)−1 (Γ(q)− b (q, q̇)− g(q)) + A(q)−1JT
c fc (15)

where A is the inertia matrix, Γ the joint torques, b the Coriolis effect and the
known external forces, g the gravity and fc the external forces, typically con-
tact forces. This equation can be written in operational space (here the contact
space):

ac = Λ−1
c fc + afree (16)

where Λ−1
c = JcA−1JT

c is the operational space inertia matrix [14], afree is the
free acceleration of the contact points that is computed using Featherstone’s
algorithm [9]. Considering contact forces is not an easy issue because they are



6 Keith et al.

unknown in simulation. We use constraint-based methods to solve this problem;
they explicitly enforces for non-penetration constraints in the equations that is:

0 ≤ fc⊥ac ≥ 0 (17)

The last two equations form a linear complementary problem (LCP) and can be
easily solved using for example Lemke’s algorithm. However, adding Coulomb’s
friction introduces a non-linearity in equation (16). This is generally written as:

‖ft‖ ≤ µfn (18)

where µ is the coefficient of friction. Keeping an LCP form to solve friction
requires discreet friction cones which highly increases the size of the Operational
Matrix and the computation time with a compromise on accuracy. Thus we favor
iterative methods, more specifically a Gauss-Seidel type method [15, 7, 8], which
does not require friction cone discretization. Compared to LCP formulation,
Gauss-Seidel type method is much faster and more precise [7]. Once contact
forces are computed, the dynamics are updated. We get an overall computation
in O(nm+m2) with n the number of bodies and m the number of contact points.

2.4 Integration

Our software developments were realized under an object oriented integrative
framework called AMELIF1 developed in C++. This framework is still under
development and is forecast to be published in the future. It proposes a structure
and an API for the representation of virtual scenes including articulated bodies,
and interfaces for driving simulations and manipulating the elements of the scene.
AMELIF has been created in order to allow fast and easy prototyping of virtual
reality algorithms, and most particularly algorithms related to virtual avatars.
The modularity of our framework allows the customization and replacement
of most components without modifying the core application, thus guarantying
consistency between the developments and interoperability between customized
components. AMELIF is a cross platform framework and has been successfully
tested under the Windows and Ubuntu Linux operating systems.

AMELIF includes a core application for displaying and running the simula-
tions, and a core library that provides, among others, interfaces for communica-
tion with the core application and a set of components for the creation, display
and manipulation of virtual scenes. One of the communication interfaces allows
writing simulations that can be run from the core application. This interface has
three main methods: one that is responsible for the initialization of the scene, one
that drives one simulation step, and one for the cleanup. The state of the virtual
scene is accessible from these methods. Each implementation of this interface
has to be compiled as a dynamic library that will be loaded by the application.
The application will automatically call the methods for initialization, simulation
and cleanup.
1 Avatar Multimodal Environment Libraries and Integrative Framework



Haptic Interaction with Virtual Avatars 7

The simulator we developed under this framework is built upon four modules.
Since each module has an abstract interface, each of these modules is independent
of the implementation of the other components. Some of them have their own
representation of the virtual scene, which is updated by reading data from the
core virtual scene. These modules are:

– the dynamics algorithms: its main role is to implement the computation
of accelerations for each body and joint of the scene as a function of joint
torques and external forces and moments applied on the bodies. We imple-
mented the Featherstone algorithm described in section 2.2 in this module.

– the collision detection: its purpose is to detect collisions and to provide their
description on demand to the other modules. Each collision is described by
the coordinates of collision point, as well as the normal and one tangent
vector to one of the colliding triangles. Now, this module encapsulates the
PQP library for the collision detection.

– the collision handler : this component interacts with the collision detection to
compute constraint-based forces resulting from the contact between bodies,
and uses the dynamics algorithms to compute the resulting acceleration of
the bodies.

– the dynamic simulator, which is a black-box that encapsulates the dynamic
simulation: it uses these three modules to compute at each step the accele-
rations of each body and of each joint. It then integrates these accelerations
to update the state of the virtual scene.

Fig. 2. Program structure.

3 Haptic feedback interfacing

Our simulator is centered on haptic interaction with virtual environments and
with virtual avatars. An example of such a haptic interaction is the realiza-
tion of a collaborative manipulation task with haptic feedback. For this pur-
pose, we need to integrate a haptic device to our simulator. We interfaced the



8 Keith et al.

PHANTOM c© OmniTM device commercialized by SensAble Technologies2. This
device has six degrees of freedom with a three degree-of-freedom force feedback.
The hardware limits of velocity we can apply are given by the maker.

For the time being, we consider two different ways of interacting: touching
or dragging objects (including avatars). In both cases, interaction will add an
external force fe to the dynamics of the objects:

q̈ = A−1 (Γ(q)− b (q, q̇)− g(q)) + A−1JT
c fc + A−1JT

e fe (19)

When an object is touched, the feedback force is obtained via the Sensable
OpenHapticsTM Toolkit. This library provides a collision detection algorithm
that computes the feedback force due to contact between the virtual tip of the
device handle and the virtual environment, as well as the coordinates of the con-
tact point. The interaction force at the contact point is computed by weighting
the feedback force with an arbitrary chosen coefficient.

Dragging objects is useful for tasks like pick-and-place, pushing or collabo-
rative tasks (with avatars). As the user moves the device, the object behaves
accordingly while the user feels its weight. To achieve this, the most common
way used in interactive simulations is to model a virtual coupling intermediary
between the device and the object, which is a spring-damper model:

fe = kp(xdevice − xcontact) + kv(ẋdevice − ẋcontact) (20)

where xdevice and xcontact are the positions/orientations of the haptic device and
of the object, respectively. kv is chosen so that kv =

√
2mkp, with m the mass

of the object.

4 Experiments

We ran simulations on a 1.66GHz notebook PC running under Windows. The
time step of the simulation is 1msec and we use a simple Euler integration. The
avatar is either the 32-DOF HRP-2 robot or a human avatar with spherical joints.
In these simulations, we place an object on a table. Once the avatar takes it, we
interact with the avatar via the object that we pull and push using the haptic
device. For these examples, the avatar is not constrained to its initial position
and follows the lead given by the user. Also, all bodies are position-controlled,
but the compliance is only applied from the body touched by the haptic device
to the waist. Thus we can move in a co-operative way the object from a place
to another on the table.

For these simulations, the virtual avatar was position-controlled using the
following PD law:

Γ = kp(qd − q)− kvq̇ (21)

where kp and kv are positive coefficients. To make the robot compliant to the
interaction force with the haptic device, the desired joint vector qd is defined by
2 www.sensable.com



Haptic Interaction with Virtual Avatars 9

the following equation:
Mq̈d + Bq̇d = JT

e fe (22)

where M and B are diagonal positive matrices corresponding to a virtual inertia
and a virtual damping, fe is the interaction force with the haptic device, and Je is
the jacobian relating joint velocities to Cartesian velocities and angular velocities
for the kinematics chain that contains all the compliant bodies. When the object
handled by the avatar is grabbed with the haptic device, the additional force is
transported to the wrists frames (where the force sensors are located on the real
robot). The desired joint positions qd are computed from these forces. Screen-
shots of these manipulations are on figure 3. The thin orange bar represents the
haptic probe linked with the force feedback device.

Fig. 3. Collaborative haptic manipulation with the HRP-2 and a human avatar.

The simulation with the human avatar raises a problem: the computation
time. Indeed, due to the important number of collision points (more than 100),
it took 300sec to simulate 10sec of simulation. For the HRP-2 with 32 collision
points, it only takes 92sec. The number of contact points, at each foot, is big
enough so that the simulation is slowed down, which does not allow a real-time
motion of the avatar.

5 Conclusion and future work

In this paper, we presented a dynamic simulator centered on virtual avatars and
haptics. This simulator is based on fast dynamics computation and constraint-
based forces with friction without discretization. This simulator has been develo-
ped under an integrative framework called AMELIF, which provides components
and generic interfaces for algorithm prototyping.

As mentioned in the previous section, simulations slow down as the number of
contact points increases, thus penalizing haptic interaction. We will improve this
aspect by optimizing the number of contact points (e.g. working with collision
zones) and by computing the resulting contact forces per body rather than forces
per contact point. The integrated simulator has been used to demonstrate haptic
interaction with virtual avatars. The virtual avatar was enhanced with a low



10 Keith et al.

level behavior, implemented as a compliant motion control law, to comply with
external forces applied by an operator with a haptic device. In the future, higher
level behaviors will be integrated, based on semantics that will be associated
to patterns of interaction force between avatars and their environment. These
behaviors will be based on an optimization of task sequences, allowing smoother
and faster motions and thus more realistic haptic interaction with virtual avatars.

Acknowledgments. This work is partially supported by grants from the Im-
merSence EU CEC project, Contract No. 27141 www.immersence.info/ (FET-
Presence) under FP6.

References

1. J. Hodgins and W. Wooten, “Animating human athletes,” Robotics Research, pp.
356–367, 1998.

2. A. Shapiro, D. Chu, B. Allen, and P. Faloutsos, “The dynamic controller toolkit,”
in The 2nd Annual ACM SIGGRAPH Sandbox Symposium on Videogames, San
Diego, CA, August 2007.

3. W. Son, K. Kim, and N. M. Amato, “A generalized framework for interactive
dynamic simulation for multirigid bodies,” IEEE Trans. on Systems, Man, and
Cybernetics, vol. 34, no. 2, pp. 912–924, April 2004.

4. D. C. Ruspini and O. Khatib, “Collision/contact models for dynamics simulation
and haptic interaction,” in Int. Symp. of Robotics Research, 1999.

5. L. Sentis, “Synthesis and control of whole-body behaviors in humanoid systems,”
Ph.D. dissertation, Stanford University, July 2007.

6. H. Hirukawa, F.Kanehiro, and S.Kajita, “Openhrp: Open architecture humanoid
robotics platform,” in Int. Symp. Robotics Research, 2001.

7. C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, “Realistic haptic rendering of
interacting deformable objects in virtual environments,” IEEE Trans. on Vizual-
ization and Computer Graphics, vol. 12, no. 1, pp. 36–47, January-February 2006.

8. J.-R. Chardonnet, S. Miossec, A. Kheddar, H. Arisumi, H. Hirukawa, F. Pierrot,
and K. Yokoi, “Dynamic simulator for humanoids using constraint-based method
with static friction,” in IEEE Int. Conf. Robot. and Biomimetics, December 2006.

9. R. Featherstone, Robot dynamics algorithms. Kluwer Academic Publishers, 1987.
10. B. Mirtich, “Impulse-based dynamic simulation of rigid body systems,” Ph.D. dis-

sertation, University of California at Berkeley, 1996.
11. F. S. Grassia, “Practical parameterization of rotations using the exponential map,”

J. Graph. Tools, vol. 3, no. 3, pp. 29–48, 1998.
12. D. H. Eberly, Game Physics. New York, NY, USA: Elsevier Science Inc., 2003.
13. A. L. Schwab, “Quaternions, finite rotation and euler parameters,” 2002. [Online].

Available: http://audiophile.tam.cornell.edu/∼als93/quaternion.pdf
14. O. Khatib, “A unified approach for motion and force control of robot manipulators:

the operational space formulation,” IEEE J. Robot. and Autom., vol. RA-3, no. 1,
pp. 43–53, 1987.

15. T. Liu and M. Y. Wang, “Computation of three-dimensional rigid-body dynamics
with multiple unilateral contacts using time-stepping and gauss-seidel methods,”
IEEE Trans. on Automation Science and Engineering, vol. 2, no. 2, pp. 19–31,
January 2005.


