N
N

N

HAL

open science

Default conceptual graph rules, atomic negation and
Tic-Tac-Toe

Jean-Francois Baget, Jérome Fortin

» To cite this version:

Jean-Francois Baget, Jérome Fortin. Default conceptual graph rules, atomic negation and Tic-Tac-Toe.
ICCS 2010 - 18th International Conference on Conceptual Structures, Jul 2010, Kuching, Sarawak,

Malaysia. pp.42-55, 10.1007/978-3-642-14197-3 8 . lirmm-00537338

HAL Id: lirmm-00537338
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00537338
Submitted on 18 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00537338
https://hal.archives-ouvertes.fr

Default Conceptual Graph Rules, Atomic Negation and
Tic-Tac-Toe

Jean-Francois Baget!? and Jérome Fortin®:2

! INRIA Sophia Antipolis, 2004 Route des Lucioles 06902 Sophia Antipolis, France
baget@lirmm. fr
2 LIRMM (CNRS & Université Montpellier 1), F-34392 Montpellier Cedex 5, France
3 IATE, UMR1208, F-34060 Montpellier Cedex 1, France
jerome. fortin@supagro.inra.fr

Abstract. In this paper, we explore the expressivity of default CG rules (a CG-
oriented subset of Reiter’s default logics) through two applications. In the first
one, we show that default CG rules provide a unifying framework for CG rules
as well as polarized CGs (CGs with atomic negation). This framework allows us
to study decidable subclasses of a new language mixing CG rules with atomic
negation. In the second application, we use default CG rules as a formalism to
model a game, an application seldom explored by the CG community. This model
puts into light the conciseness provided by defaults, as well as the possibilities
they offer to achieve efficient reasonings.

1 Introduction

Default CG Rules have been introduced in [[1] as a requirement for an agronomy ap-
plication. These rules encode a subset of Reiter’s default logics [2], with knowledge of
form “if hypothesis, then conclusion is generally true, unless drawing that conclusion
leads to contradict one of the justifications of the default”, where the hypothesis, con-
clusion, and justifications are simple conceptual graphs. These default rules have two
main interest. First they admit a natural graphical representation that extends the repre-
sentation of CG rules, and thus inherits from the user-friendly charateristics of the CG
formalism. Moreover, they form the corresponding fragment in Reiter’s default logic of
the rule fragment in FOL. We believe that the decidability arguments of the rule frag-
ment [3l4] will find their counterpart in default rules. In this paper, we focus on two
applications to study the expressiveness of that language.

The first uses default CG rules to encode atomic negation into conceptual graphs.
Indeed, important extensions of Sowa’s simple conceptual graphs [5] have concerned
CG rules [6] and polarized graphs [[7] (i.e. simple graphs enriched with atomic nega-
tion). There has been for now no unifying framework for these two extensions that relies
upon graph-based reasonings to compute deduction (the work of [7]], for example, that
extends conceptual graphs to handle the whole first-order logics, mixes graph-based
reasonings with a tableaux mechanism). We show here that default CG rules provide
such a unifying framework, and put that framework to use to begin to explore decidable
subclasses of a CG language that enriches CG rules with atomic negation.

M. Croitoru, S. Ferré, and D. Lukose (Eds.): ICCS 2010, LNAI 6208, pp. 42153, bo10.
(© Springer-Verlag Berlin Heidelberg 2010

Default Conceptual Graph Rules, Atomic Negation and Tic-Tac-Toe 43

In the second application, we have chosen to present an example using default CG
rules in a field seldom explored by the CG community: games. Our motivation was
twofold: 1) we wanted a new type of application that forced us to think “out of the
box”, as was done with the ICCS Sisyphus-I initiative [8]], and 2) we wanted a moti-
vating example for Master’s students in knowledge representation. This model has put
into light two main interests of default CG rules: 1) they mix the intuitive graphical
representation of CGs with the conciseness brought by Reiter’s defaults, and 2) though
default CG rules form a more complex language than rules, they offer mechanisms that
allow for more efficient reasonings.

2 From Simple CGs to Default CGs

In this first section, we recall main notations and results required for the default CG
rules used in this paper. In SECT. 2.1l we present the simple CGs of [3]], in SECT.[2.2]
the CG rules of [6], and finally in SECT. the default CG rules of [1]].

2.1 Simple Conceptual Graphs

Syntax With the simple CGs of [5], a knowledge base is structured into two objects: the
vocabulary (also called support) encodes hierarchies of types, and the conceptual graphs
(CGs) themselves represent entities and relations between them. Our simple CGs use
named generic markers, and are extended to handle conjunctive types, as done in [9].

Definition 1 (Vocabulary). We call vocabulary a tuple V = (C,R = (R1,...,Rk),
My, Mq) where C is a partially ordered set of concept types that contains a greatest
element T, each R; is a partially ordered set of relation types of arity ¢, M is a set
of individual markers, and M is a set of generic markers. Note that all these sets are
pairwise disjoint, and that we denote all the partial orders by <.

Definition 2 (Conjunctive types). A conjunctive concept type over a vocabulary V is
asetT = {t1,...,t,} (that we can note T = t1 M ... M t,) of concept types of arity k.
IfT = {t1,....tp} and T" = {t},...,t,} are two conjunctive concept types, then we
alsonote T <T' < Vt, € T',3t; € T such that t; < t.

Definition 3 (Simple CGs). A simple CG is a tuple G = (C, R,~, \) where C and R
are two finite disjoint sets (concept nodes and relations) and v and X two mappings:

- v : R — C™ associates to each relation a tuple of concept nodes ~(r) = (c,. ..,
¢k) called the arguments of 1, v;(r) = ¢; is its ith argument and degree(r) = k.

— A maps each concept node and each relation to its label. If ¢ € C is a concept node,
then \(c) = (type(c), marker(c)) where type(c) is a conjunctive concept type and
marker(c) is either an individual marker of My or a generic marker of M¢. If
r € R is a relation and degree(r) = k, then \(r) is a relation type of arity k.

A simple CG is said to be normal if all its concept nodes have different markers. Any
simple CG G can be put into its equivalent normal form nf(G) in linear time.

44 J.-F. Baget and J. Fortin

Semantics. We associate a first order logics (FOL) formula ¢(V) to a vocabulary V),
and a FOL formula &#(G) to a simple CG G. These formulae are obtained as follows:
Interpretation of a vocabulary Let V = (C,R = (R1,...,Rx), M1, M¢) be a vo-
cabulary. We can consider each concept type of C as a unary predicate name, each
relation type of R; as a predicate name of arity ¢, each individual marker of M as a
constant, and each generic marker of M as a variable. For each pair (¢,t¢') of con-
cept types of C such that t < ', we have a formula ¢((¢,t')) = Va(t(z) — t/(x)).
For each pair (¢,t¢') of relation types of arity i such that ¢ < ¢/, we have a formula
o((t,t)) = Var ... Va (t(x1,. .., 2;) — t/(x1,...,2;)). Then the FOL interpretation
&(V) of V is the conjunction of all ¢((¢,t")), for every pair (¢,¢') such that ¢’ < ¢'.
Interpretation of a simple CG Let G = (C, R,v,\) be a simple CG. We can asso-
ciate a formula to each concept node and relation of G: if ¢ € C and type(c) =
t1 M ...Mtg, then ¢(c) = ty(marker(c)) A ... A tx(marker(c)); and if r € R, with
v(r) = (c1,...,¢q) and A(r) = ¢, then ¢(r) = t(marker(c1), ..., marker(c,)). We
note ¢(G) = A cc é(c) A\, cr @(r). The FOL formula ¢(G) associated with a sim-
ple CG is the existential closure of the formula ¢(G).

Computing Deduction. Computing a graph homomorphism (known as projection in
CGs) is a sound and complete algorithm for deduction of the associated FOL formu-
lae. HOMOMORPHISM is an NP-complete problem, that becomes polynomial when the
question graph is a tree (see [910]] for more polynomial subclasses).

Definition 4 (Homomorphism). Let F' = (Cp, Rp,vr, Ar) and Q = (Cq, Rg,VQ,
AqQ) be two simple CGs defined over a vocabulary V. A homomorphism from @ to F is
a mapping 7 : Cq — Cp such that:

- ifc € Cq is individual, then marker(c) = marker(r(c));

— if cand ¢ are two generic concept nodes with same markers, then 7(c) = w(c');
~ Ve € Ca, type(n(c)) < type(c);

- Vr € Rg, 3r' € Rp such that A\(r') < X(r) and y(r") = w(y(r)).

Theorem 1. Let F' and Q) be two simple CGs defined over a vocabulary V. Then
®(V),d(F) F &(Q) iff there exists a homomorphism from @ to nf(F).

2.2 Conceptual Graph Rules

CG rules form an extension of CGs with knowledge of form “if hypothesis then conclu-
sion”. Introduced in [[L1], they have been further formalized and studied in [63]].

Syntax. A usual way to define CG rules is to establish co-reference relations between
the hypothesis and the conclusion. We rely here upon named generic markers: generic
nodes with same marker represent the same entity.

Definition 5 (CG rule). A conceptual graph rule, defined on a vocabulary V, is a pair
R = (H,C) where H and C are two simple CGs, respectively called the hypothesis
and the conclusion of the rule.

Default Conceptual Graph Rules, Atomic Negation and Tic-Tac-Toe 45

Semantics. We present here the usual ¢ semantics of a CG rule, and introduce an equiv-
alent semantics ¢/ using function symbols. Basically, &7 translates in a straightforward
way the skolemisation of existentially quantified variables. This equivalent semantics
makes for an easier definition of default rules semantics: since default rules are com-
posed of different formulas, we cannot rely upon the quantifier’s scope to link variables,
and thus have to link them through functional terms.

Let R = (H,C) be a CG rule. Then the FOL interpretation of R is the formula
S(R) = Vo1 .. Ver(p(H) — (Fyr ... 3y,¢(C))), where z1,. .., xy are all the vari-
ables appearing in ¢(H) and y1, . . ., y, are all the variables appearing in ¢(C') but not
in ¢(H). If R is a set of CG rules, then ®(R) = Az P(R).

As an alternate semantics, let G be a simple CG and X be a set of nodes. We denote
by F' = {f1,..., fp} the set of variables associated with generic markers that appear
both in G and in X. The formula gbg((G) is obtained from the formula ¢(G) by replac-
ing each variable y appearing in ¢(G) but not in F by a functional term f&(f1,. .., fp)-
Then the FOL interpretation (with function symbols) of a rule R = (H, C) is the for-
mula &/ (R) = Va1 ... Vop(p(H) — gbg((C)) where X is the set of nodes appearing
in H.If R is a set of CG rules, then &/ (R) = A pcr ¢/ (R).

The translations of the rule R = (H,C) where H = [Human : xx] and C' =
[Human : xx] < —(isParent) < —[Human : *y] (in linear form, meaning that
every human has a human parent) are:

&(R) =V, (Human(z) — Jy(Human(y) A isParent(y, x)))
&(R)! =Vz,(Human(x) — Human(fg(z)) AisParent(f(z), x))

Computing Deduction. We present here the forward chaining mechanism used to
compute deduction with CG rules. In general, this is an undecidable problem. The
reader can refer to [3]] for an up-to-date cartography of decidable subclasses of the
problem.

Definition 6 (Application of a rule). Let G be a simple CG, R = (H,C) be a rule,
and w be a homomorphism from H to G. The application of R on G according to 7
produces a normal simple CG oG, R,) = nf(G @ C;) where:

— Cy is a simple CG obtained as follows from a copy of C: (i) associate to each
generic marker x that appears in C' but not in H a new distinct generic marker
o(x); (ii) for every generic concept node ¢ of C whose marker x does not appear
in H, replace marker(c) with o(x); and (iii) for every generic concept node c of C,
if marker(c) also appears in H, then replace marker(c) with marker(r(c)).

— the operator @ generates the disjoint union of two simple CGs G and G': it is the
simple CG whose drawing is the juxtaposition of the drawings of G and G'.

Theorem 2. Let G and Q) be two simple CGs, and R be a set of CG rules, all defined
on a vocabulary V. Then the following assertions are equivalent:

- (1), 9(G),2(R) - 2(Q)

- V), ®(G), 9! (R) F (Q)

— there exists a sequence Gy = nf(G), G1, . .., Gy, of simple CGs such that: (i) V1 <
i < n, thereisarule R = (H,C) € R and a homomorphism 7 of H to G;_1 such
that G; = a(G;—1, R,), and (ii) there is a homomorphism from Q to G,.

46 J.-F. Baget and J. Fortin

Note that the forward chaining algorithm that relies upon the above characterization
is ensured to stop when the set of rules involved is range restricted, i.e. their logical
semantics ¢ does not contain any existentially quantified variable in the conclusion.

The “functional semantics” can provide us with an alternate rule application mech-
anism o . Let us begin by “freezing” the graph G, e.g. by replacing each occurrence
of a generic marker by a distinct individual marker. Then, when applying a rule R
on G (or a graph derived from () according to a projection 7, consider the formula
&/ (R) associated with R. Should the application of R = (H,C) produce a new
generic node c from the copy of a generic node having marker y, consider the func-
tional term fZ(x1, ...,) associated to the variable y. Then the marker of ¢ becomes
f&(m(x1),...,m(zx)). Thanks to the previous theorem, o/ makes for an equivalent
forward chaining mechanism, that has an added interest. It allows to have a “functional
constant” identifying every concept node generated in the derivation. This feature will
be used to explain default rules reasonings in an easier way than in [[L].

2.3 Default CG Rules

A brief introduction. Let us recall some basic definitions of Reiter’s default logics.
For a more precise description and examples, the reader should refer to [12/2].

Definition 7 (Reiter’s default logic). A Reiter’s default theory is a pair (A, W) where

W is a set of FOL formulae and A is a set of defaults of form § = () (f(%») BT

n >0, where @ = (x1,--+ ,) is a tuple of variables, (7)), 3;(2") and v(Z') are
FOL formulae for which each free variable is in T .

The intuitive meaning of a default § is “For all individuals (x1, - - - , zy) , if a(Z) is be-
lieved and each of 3, (), - - - , 3,(@) can be consistently believed, then one is allowed
to believe (@)”. (@) is called the prerequisite, 3;(Z) are called the justifications
and (') is called the consequent. A default is said closed if o(@), 3;(Z') and ()
are all closed FOL formulae.

Intuitively, an extension of a default theory (A, W) is a set of formulae that can be
obtained from (A, W) while being consistently believed. More formally, an extension
E of (A, W) is a minimal deductively closed set of formulae containing W such that
for any O‘WZ'H € A,ifa € E and -8 ¢ E, then v € E. The following theorem provides
an equivalent characterization of extensions that we use here as a formal definition.

Theorem 3 (Extension). Let (A, W) be a closed default theory and E be a set of
closed FOL formulae. We inductively define Ey = W and for all i > 0, E;41 =
Th(E;) U {7 | aﬁl; P Aja € E;and —By,- -+ ,—By ¢ E}, where Th(E;) is the
deductive closure of E;. Then E is an extension of (A, W) iff E = U2, E;.

Note that this characterization is not effective for computational purposes since both E;
and F = U2 E; are required for computing F; 1.

Some problems that are to be addressed in Reiter’s default logics are the following:
SKEPTICAL DEDUCTION: Given a default theory (A, W) and a formula @, does @
belong to all extensions of (A, W)? In this case we note (A, W) g Q.

CREDULOUS DEDUCTION: Given a default theory (A, W) and a formula @), does Q
belong to an extension of (A, 1W)? In this case we note (A, W) Fo Q?

Default Conceptual Graph Rules, Atomic Negation and Tic-Tac-Toe 47

Definition 8 (Default CGs (Syntax)). A default CG, defined on a vocabulary V), is a
tuple D = (H,C, Jy,...,Ji) where H, C, J1, ..., and Jy are simple CGs respectively
called the hypothesis, conclusion, and justifications of the default.

Semantics. The semantics of a default CG D = (H,C, Ju,..., Ji) is expressed by a
closed default A(D) in Reiter’s default logics.

AD) = YD 5 (C):mbhiy (1) s 0y ()
ok (C)
where X is the set of nodes of the hypothesis H and Y is the set of nodes of the
conclusion C. If D = (H,C, Jy,...,J;) is a default, we note std(D) = (H,C) its
standard part, which is a CG rule.

Computing Deduction. Our alternate derivation mechanism o/ makes for an easier
description of the sound and complete reasoning mechanism of [1]]. Let G and @ be two
simple CGs, R be a set of CG rules, and D be a set of default CG rules, all defined over
a vocabulary V. A node of the default derivation tree DDT(K) of the knowledge base
K = ((V,G,R), D) is always labelled by a simple CG called fact and a set of simple
CGs called constraints. A node of DDT(K) is said valid if there is no homomorphism
of one of its constraints or the constraints labelling one of its ancestors into its fact. Let
us now inductively define the tree DDT(K):

— its root is a node whose fact is G and whose constraint set is empty;

— if x is a valid node of DDT(K) labelled by a fact F' and constraints C, then for every
rule D in D, for every homomorphism 7 of the hypothesis of D into a simple CG F”
R-derived from F, x admits a successor whose fact is the fact of (F’, std(D),),
and whose constraints are the 7(.J;) iff that successor is valid.

Theorem 4. Let G and Q) be two simple CGs, R be a set of CG rules, and D be a set of
default CG rules, all defined over a vocabulary V. Then ®(Q) belongs to an extension
of the Reiter’s default theory ({&(V), ®(G), P(R)}, A(D)) iff there exists a node x of
DDT((V,G,R), D) labelled by a fact F such that &(V'), ®(F), P(R) + ¢(Q).
)

Intuitively, this result [1]] states that the leaves of DDT(K) encode extensions of the
default. What is interesting in this characterization is that: 1) though our default CGs
are not normal defaults in Reiter’s sense, they share the same important property: every
default theory admits an extension; and 2) if an answer to a query is found in any node
of the default derivation tree, the same answer will still be found in any of its successors.

3 Using Default CG Rules for Atomic Negation

Neither simple CGs nor CG rules can handle negation, even in its basic atomic form.
Indeed, their reasonings do not support branching, necessary in tableaux-like mecha-
nisms as soon as negation or disjunction is involved. We show that default CG rules
can handle as well the semantics of polarized graphs (simple CGs enriched with atomic
negation [13]]) as the semantics of their extension to polarized graphs rules.

48 J.-F. Baget and J. Fortin

3.1 Polarized Graphs

Simply put, polarized graphs [13] form an extension of simple CGs in which all types
are polarized: a type with a positive polarization is translated into a positive atom in
FOL, while a type with a negative polarization is translated by a negated atom.

Definition 9 (Signed types). Let V be a vocabulary. A signed concept (resp. relation)
type on V is a pair of form (+,t) or (—,t) where t is a concept type of V (resp. a
relation type of V). (—, T) is not an allowed signed type. A signed conjunctive concept
type is a set {s1, ..., Sp} of signed concept types.

Definition 10 (Polarized CGs). A polarized CG is defined as a simple CG with signed
types used in the labels of concept nodes and relations.

Though that transformation does not preserve reasonings, it is possible to encode a
polarized graph into a simple CG. Let us consider the following transformation sg:

For each type t # T appearing in a type hierarchy 7" of the vocabulary V, replace ¢
by the two types +¢ and —t in the same type hierarchy of the vocabulary sg(V'). Then
foreacht < ¢ # TinT, add +t < +t and —t' < —t in the type hierarchy T of
sg(V). T is also the maximal element in the obtained type hierarchy.

For each signed type (+,t) or (—, ¢) appearing in a polarized graph G, replace that
type by the corresponding type +¢ or —t in the simple CG sg(G)

Semantics. Let G = (C, R,7, A) be a polarized CG. We translate G by a FOL for-
mula ¢*(G) defined as follows: for every concept type ¢ with type (4,¢1) M ... 1
(+,tk) M (=, 1) M ... M (=, t;), we have the formula ¢ (c) = t;(marker(c)) A ... A
tx(marker(c)) A =t} (marker(c)) A ... A —t, (marker(c)). For every relation with type
(+,1), we have ¢*(r) = ¢(r), and for every relation with type (—,¢) we have ¢*(r) =
=(¢(r)). Then the formula ¢*(G) is built from the formulae ¢*(z) in the same way as
&(G) is built from the formulae ¢(x).

Computing Deduction. Though satisfiability of a polarized CG is easy to check in
linear time, the homomorphism mechanism is insufficient to compute deduction in this
formalism (a IT2P-complete problem). One has to rely upon completions.

Property 1 (Satisfiability). A polarized CG G, with nf(G) = (C, R,~, \), is unsatisfi-
able if and only if either there exists a concept node ¢ € C and concept types ¢, t’ such
that {(+,¢), (—, %)} C type(c), and t < t’; or there exists two relations 7 and " such
that v(r) = ('), A(r) = (+,t), A(r") = (—,¢) and t < t'.

Property 2. Let F and @) be two polarized CGs over a vocabulary V. Then &(sg(V)),
D(sg(F)) F P(sg(Q)) = &(V),d*(F) F &*(Q), but the converse is false in general.

We have here encoded part of the negation semantics with simple CGs, but we’re still
missing the axioms translating the excluded middle principle. Intuitively, let us consider
fact G asserting that a blue cube A is on top of a cube B that is itself on top of a cube
C that is not blue. Now our question () is: is there a blue cube x on top of a cube y that
is not blue ? Though there can be no homomorphism from @ to G, FOL asserts that the
cube B is either blue or not blue. And in both cases we find an answer to the question
@, thus proving deduction. This is the kind of reasonings that led [13]] to use the notion
of completion in order to obtain a sound and complete deduction mechanism.

Default Conceptual Graph Rules, Atomic Negation and Tic-Tac-Toe 49

Definition 11 (Completion). A completion of a polarized CG G is a satisfiable polar-
ized CG G’ obtained from G by a sequence of applications of the following rules. G' is
said maximal if no application of one of these rules produces new information.

AddC: If cis a concept node of G and t is a relation type appearing in G, then replace
marker(c) with marker(c) U {(+,)} or marker(c) U {(—,t)},

AddR: Ifci, ..., cp are concept nodes of G and t is a relation type of arity p appearing
in G, then add a relation r with y(r) = (c1,...,¢p) and X(r) = (+,t) or (—,).

Theorem 5. Let I and Q) be two satisfiable polarized CGs defined over V. Then (V),
&*(F) - &*(Q) iff, for every completion F' of F, ®(sg(V)), P(sg(F")) - P(sg(Q)).

3.2 Computing PG Deduction with Default CG Rules

Let us now show that default CG rules can handle negation of polarized graphs. We
consider a set D* of default rules that handles the completion mechanism. To each
concept type t we can associate two default CGs whose logical translation are:
_ 4T (z):—t(x) — _ 4T (z):+t(x)
Dr(t)=""1 4, " and D™ (t)=" T/
Intuitively, the first one asserts that for any concept node ¢ and any concept type ¢, we

can assert that ¢ has type ¢ unless something else makes us deduce that ¢ has type —t.
And to each relation type ¢ of arity k& we can also associate two defaults CGs:

D0 = ST) g () = T

Theorem 6. Let I and Q) be two satisfiable polarized CGs defined over V. Then ®(V),
P*(F) F 9*(Q) & K = ((2(sg(V)) A P(sg(F))); A(D*)) s P(sg(Q)).

Proof: The proof is immediate, and based on Th.[5 since we can easily check that the
fact labeling each node of DDT(K) is a completion of F', and then that the extensions
of IC encodes all the possible maximal completions of F. (]

A first remark is that encoding the completion mechanism in default CG rules seems
like overkill. Indeed, a simple negation as failure mechanism asserting, for example,
that for any concept node ¢, we can add him the type +t unless —t is already present
would provide us with the same result, without resorting to such a complex reasoning
mechanism. But that simple solution would not cope with polarized rules.

3.3 An Extension to Polarized Graphs Rules

We show here that the set of default rules D* used to represent the semantics of polar-
ized graphs is sufficient to handle those of a new CG language that combines rules and
atomic negation: polarized CG rules.

Definition 12 (Polarized CG rules). A polarized CG rule is a pair R = (H,C) of
polarized graphs where H is called the hypothesis of the rule and C' its conclusion.

50 J.-F. Baget and J. Fortin

Semantics. Let R = (H,C) be a polarized CG rule. Then the FOL interpretation
of the rule R is the formula &*(R) = Vz1...Vor(¢*(H) — (Jy1...Jy,¢*(C))),
where x1,...,xy are all the variables appearing in ¢(H) and y1, ..., y, are all the
variables appearing in ¢(C') but not in ¢(H). If R is a set of CG rules, then &*(R) is
the conjunction of the formulae ¢*(R), for every rule R € R.

Computing Deduction

Theorem 7. Let F' and Q) be two polarized CGs, and R be a set of polarized CG rules,
all defined over a vocabulary V. Then &(V), d*(F') = &*(Q) iff either 1) there exists an
unsatisfiable polarized CG U such that ®(sg(V)), ®(sg(F)), P(sg(R)) F @(sg(U)); or
2) (((sg(V)) A D(sg(F)) A P(sg(R))); A(D™)) Fs P(sg(Q))-

Proof: We provide here the reader with a sketch of proof since a complete one would
require a precise introduction of the combined Tableaux/CG reasoning mechanisms
of [[7]]. First see that if condition 1) is satisfied, then the knowledge base (V, F, R) is
unsatisfiable, and everything can be deduced from it. Then see that condition 2) means
that) can be deduced from any satisfiable polarized CG that can be obtained by a
sequence of completion and rule application. The possible completions correspond to
the different branchings in the tableaux algorithm of [[7]. (]

A range restricted rule is a rule where all generic markers of the conclusion are already
in the hypothesis (e.g. such that their logical interpretation ¢* admits no existentially
quantified variable in their conclusion). Finally, we can present a first decidability result
for polarized CG rules.

Theorem 8. Let R be a set of range restricted polarized CG rules. Then the deduction
problem is decidable.

Proof: Thanks to Theorem[7, we can encode that deduction problem into a skeptical de-
duction using a default theory whose “normal’rules are those of R, and whose defaults
are those of D*. Since the standard part of these defaults is range restricted, and the
union of two range restricted sets of rules is range restricted, we can conclude, thanks
to Theorem 9 of [[1], that the deduction problem is decidable. O

4 A Two-Players Game Artificial Intelligence Using Default CG
Rules

In this section, we present an original application of default reasoning based on a two
players board game. To ensure a maximum readability, we have chosen a very simple
board game: Tic-Tac-Toe. This model can be easily adapted for other kind of games
like Four in a Row. We begin to describe how to represent the initial state of the game
that is a simple CG drawing of a 3 x 3 grid and two players. Then using default CG
rules, we give the evolution rules that permits to obtain the tree of all possible states of
the game. Finally, we give some default rules that allow to find the best way to play.

Default Conceptual Graph Rules, Atomic Negation and Tic-Tac-Toe 51

Fig. 1. Initial state of the board game

4.1 Initial Game Board

The initial game board is presented in Figure [l Concept nodes typed Player rep-
resent the two who are engaged in the game. We present here the model of a two
player game, but it is possible to add as many players as we want in the same way.
A relation next (Player, Player) indicates who plays next someone. The state of
the board during the game is represented by a concept node State. A state is linked
with the player who has to play this turn by the relation moves(State, Player). The
State is also linked to several concept nodes that represent the current topology of the
game board. For our Tic-Tac-Toe game, the board is constructed with 9 concept nodes
Square, linked together by some relation up and right that indicates the relative
position of each square. All the squares of a given state are related to the concept node
State that it describes (see Figure [I).

4.2 Creating the Space of All Possible Games

Now let us see how to simulate a turn in a given state. To this purpose, we need some
rules that create a new state, with a new board in which one the square has been modi-
fied. One rule is used to create the new state and duplicate the played square, and several
ones are needed to rebuilt the whole board by cloning the squares of the precedent state.
Figure[21 A presents the main playing rule. This default CG rule can be applied in a state
in which there is an empty square. That means that the rule needs two justifications en-
suring that any player already played in the square (the justifications of the defaults are
represented here in dark nodes, please note that n different colors are needed to repre-
sent in a single graph n different justifications). We supposed that if a player has already
won in a given state, then the state is tagged with the relation over. The fact that such
a state can not be played is ensured by adding the needed justification. When applied,

52 J.-F. Baget and J. Fortin

sameNE | sameNE

sameNW | sameN | sameNE | sameNE

B R %

sameW [samelnit | sameE | sameE
% %

sameS | sameSE|sameSE

sameSW

Fig. 2. Playing rules

the rule creates a new state that is indicated as a successor of the previous one, linked
to the next player and a square linked to the player who just plays. This square is also
linked to its previous instantiation by the relation sameInit.

Once this default rule is applied, the whole grid has to be replicated from the played
square. The difficulty here is that we want to ensure that each square and relative po-
sition of the initial state is cloned once and only once, and linked to the correct player

Default Conceptual Graph Rules, Atomic Negation and Tic-Tac-Toe 53

mark. The method that we present here can be used to duplicate any kind of square-
checkered board. To do that we start from the first duplicated square that is the last
played one in the Tic-Tac-Toe game. This square is linked with its “father” by the spe-
cial relation sameInit. From this square, we can duplicate the squares that are in the
four cardinal directions with four different rules that use four specialized same rela-
tions named sameN, sameS, sameE and sameW which duplicate the squares in the
north, south, east and west direction. The propagation of the cloning process is shown
in Figure 2IB for a 4 by 4 grid.

Then four rules are needed to duplicate squares in each quarter of the plan. The rule
that duplicates the right upper quarter plan (in the direction North-East) is given in
Figure PID. To ensure that the duplication process runs correctly in each direction, it is
sufficient to use the special hierarchy relation shown in Figure PIC. It means that the
relation sameN can be used for the generation of both north-east quarter plan and north
west quarter plan. So all the duplication rules are directed and non—compatible (due to
the relation hierarchy), and each square is duplicated once and only once.

Some rules are needed to end the game. For example if we can match 3 aligned
squares (linked together by the relation right) played by the same player then we
conclude that this player wins, the other player looses and the corresponding state is
over. This rule is not a default one. Two other default rules are also needed, one to
end the party tagging over a state over if there is no more space on the grid, and
the other one to deduce that an over state is draw unless there is a winner. Applying
this set of rules permit to create the complete search tree of all possible games (see
Figure[3) which is the only extension of our model, and knowing who is the winner of
each terminal board.

4.3 Searching the Best Way to Play

Knowing who wins each terminal state in the graph of all possible state makes easy to
recursively deduce the status of each state of the game. That will allow to determine for
each state if a player is ensured to win, lose or can obtain a draw.

Board
description

Fig. 3. General model of playing game

54 J.-F. Baget and J. Fortin

Fig. 4. Status deduction rules

To do that we need the 3 more rules shown in Figure [which shows the rules that
permit to deduce the status of a state from the status of its successors. For a given
state, the status of the game can be draw or won by a player. The status information
is initialized in the terminal states, which are leaves of the tree of the possible states
according to ending rules. The status of the game is then recursively computed from the
leaves to the root of the possible states tree. For a state .5, if there is an immediate state
successor in which the current player of S is the winner, then S is a winning state for
its current player because there is a way for the player to win whatever the other player
does (first rule of Figured)). Otherwise, if there is an immediate successor for which the
game status is draw, then the status of the state S is draw, as it is possible for our player
to ensure at least a draw (second rule of Figure H)). To apply this rule, we need to add
that the current player is not already ensured to win, which is the justification of this
rule. If it is not possible for the current player of S to win, nor to obtain a draw, then
S is a loosing state for the current player. Note that in this presented rule, the two dark
nodes represent two different justifications. That means that if one of this dark nodes
can be projected, then the default can not be applied.

Finally, applying all this rules leads to one and only one extension in which we can
easily find what is the best way for a player in any state of the game. As we have only
one extension, the sceptical and credulous deductions are equivalent. This extension
contains 26 830 different possible states of the game. This huge search tree does not
take into account the fact that some states are equivalent up to reflexions and rotations
(that can be computed through rules).

To know if there is a best way to play in one state, one can just try to find in the
extension if the current player is linked to the initial state by the relation wins. If it is
the case, then one of the best way to play can be found in searching one successor of
the initial state in which our player is winning.

5 Conclusion

In this paper we have studied two applications of the default CG rules introduced in
[[L], in order to assess the expressivity of that new language for the CG family. We have
first shown that default CGs allowed to express the semantics of atomic negation in
FOL, with a concise and intuitive model (the set of defaults D*) that translated exactly
the knowledge present in the polarized graph algorithm of [13]. In the same time, we
have used default CGs to prove a new decidability result in an expressive CG language

Default Conceptual Graph Rules, Atomic Negation and Tic-Tac-Toe 55

that mixes CG rules with atomic negation. Then, we have exhibited a concise default
CGs model of the Tic-Tac-Toe game that shows that, though default CGs are more
complex than the usual CG rules, they offer possibilities to stop the generation of new
consequences and thus, as can be done for the cut in Prolog, to encode reasonings in
an efficient way. Our goal is now twofold: firstly, to encode a preference mechanism on
the defaults, allowing for example in our game to consider first the extensions in which
we can prove we will win, and only in case they are none the extensions in which we
do not lose; and secondly, to study efficient reasoning mechanisms in default CG rules,
building upon the results obtained for CG rules by [3].

References

10.

11.

12.

13.

. Baget, J., Croitoru, M., Fortin, J., Thomopoulos, R.: Default conceptual graph rules: prelim-

inary results for an agronomy application. In: Rudolph, S., Dau, F., Kuznetsov, S.O. (eds.)
Conceptual Structures: Leveraging Semantic Technologies. LNCS (LNAI), vol. 5662, pp.
86-99. Springer, Heidelberg (2009)

. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81-132 (1980)
. Baget, J.F., Leclere, M., Mugnier, M.L., Salvat, E.: Extending decidable cases for rules with

existential variables. In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, pp. 677-682 (2009)

. Cali, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query

answering over ontologies. In: Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS), pp. 77-86 (2009)

. Sowa, J.E.: Conceptual graphs for a database interface. IBM Journal of Research and Devel-

opment 20, 336-357 (1976)

. Salvat, E., Mugnier, M.L.: Sound and complete forward and backward chaining of graph

rules. In: Eklund, P., Mann, G.A., Ellis, G. (eds.) ICCS 1996. LNCS, vol. 1115, pp. 248-262.
Springer, Heidelberg (1996)

. Kerdiles, G.: Saying It with Pictures: a logical landscape of conceptual graphs. PhD thesis,

Univ. Amsterdam (2001)

. Tepfenhart, W., Cyre, W.: Proceedings of the 7th International Conference on Conceptual

Structures, ICCS 1999, Blacksburg, VA, USA, July 12-15. Springer, Heidelberg (1999)

. Baget, J.F.: Simple Conceptual Graphs Revisited: Hypergraphs and Conjunctive Types for

Efficient Projection Algorithms. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003.
LNCS (LNAI), vol. 2746, pp. 229-242. Springer, Heidelberg (2003)

Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition meth-
ods. Artificial Intelligence 124 (2000)

Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison
Wesley, Reading (1984)

Brewka, G., Eiter, T.: Prioritizing default logic: Abridged report. In: Festschrift on the occa-
sion of Prof.Dr. W. Bibel’s 60th birthday. Kluwer, Dordrecht (1999)

Mugnier, M., Leclere, M.: On querying simple conceptual graphs with negation. Data &
Knowledge Engineering 60(3), 468—493 (2007)

	Default Conceptual Graph Rules, Atomic Negation and Tic-Tac-Toe
	Introduction
	From Simple CGs to Default CGs
	Simple Conceptual Graphs
	Conceptual Graph Rules
	Default CG Rules

	Using Default CG Rules for Atomic Negation
	Polarized Graphs
	Computing PG Deduction with Default CG Rules
	An Extension to Polarized Graphs Rules

	A Two-Players Game Artificial Intelligence Using Default CG Rules
	Initial Game Board
	Creating the Space of All Possible Games
	Searching the Best Way to Play

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

