Containment of Conjunctive Queries with Negation: Algorithms and Experiments

Khalil Ben Mohamed, Michel Leclère, Marie-Laure Mugnier

To cite this version:

Khalil Ben Mohamed, Michel Leclère, Marie-Laure Mugnier. Containment of Conjunctive Queries with Negation: Algorithms and Experiments. DEXA 2010-21st International Conference on Database and Expert Systems Applications, Aug 2010, Bilbao, Spain. pp.330-345, 10.1007/978-3-642-15251-1_27. lirmm-00537832

HAL Id: lirmm-00537832

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00537832
Submitted on 24 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Containment of Conjunctive Queries with Negation: Algorithms and Experiments

Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier
LIRMM (CNRS - University of Montpellier), France, \{benmohamed,leclere,mugnier\} @lirmm.fr

Abstract

We consider the containment problem for conjunctive queries with atomic negation. Firstly, we refine an existing algorithm based on homomorphism checks, which itself improves other known algorithms in databases, and analyze it experimentally. Secondly, we present a new algorithm based on the translation of the containment problem into the problem of checking the unsatisfiability of a propositional logical formula, which allows us to use a SAT solver, and we experimentally compare both algorithms.

1 Introduction

The query containment problem is a fundamental problem in databases. It takes two queries q_{1} and q_{2} as input, and asks if q_{1} is contained in q_{2} (noted $q_{1} \sqsubseteq q_{2}$), i.e. if the set of answers to q_{1} is included in the set of answers to q_{2} for all databases (e.g. [AHV95]). Algorithms based on query containment can be used to solve various problems, such as query evaluation and optimization [CM77][ASU79], rewriting queries using views [Hal01], detecting independence of queries from database updates [LS93], etc. In this paper, we consider the problem of deciding on containment for conjunctive queries with atomic negation (denoted CQC\urcorner hereafter). The so-called (positive) conjunctive queries form a class of natural and frequently used queries and are considered as the basic database queries [CM77]. Conjunctive queries with negation extend this class with negation on atoms. Note that CQC\urcorner is equivalent to important problems in artificial intelligence, such that: checking entailment / deduction between two first-order logic clauses (without function); query answering with boolean conjunctive queries with negation on a knowledge base composed of a set of positive and negative factual assertions (while making the open-world assumption).

When only positive conjunctive queries are considered, query containment checking is NP-complete [AHV95]. When atomic negation is considered, the problem becomes much more complex: it is π_{2}^{P}-complete ${ }^{1}$ [FNTU07][CM09] and very few algorithms for solving it can be found in the literature.

This paper is devoted to refining and proposing algorithms solving CQC\urcorner and testing them experimentally. An algorithm scheme was introduced in [LM07], which itself improves the previous proposals in [Ul197] and [WL03]. All three algorithms use homomorphism as a core notion. We first compare experimentally several heuristics, which

[^0]allows to refine this algorithm scheme. We then propose another approach, which consists of building a propositional logical formula from the queries q_{1} and q_{2}, such that q_{1} is contained in q_{2} if and only if this formula is valid, i.e. always true. Equivalently, the negation of this formula is unsatisfiable, which allows to use a SAT solver (SAT is the problem of deciding whether a given propositional formula is satisfiable) and benefit from practical improvements achieved in this domain [Sai08]. However, the translation of the queries into the propositional formula is generally exponential in the size of the queries. Thus the question is whether -or when- the second algorithm can be better than the first one. We provide first experimental answers to this question.

Due to the lack of benchmarks or real-world data available for CQC\urcorner, we built a random generator. We analyzed the influence of several parameter values on the problem instance difficulty in order to define difficult instances, on which the algorithms were run. In databases, conjunctive queries with negation are generally imposed to be safe, i.e. all variables in the query must occur in at least one positive subgoal. Hence, even if all of our results hold for general conjunctive queries with negation, we restrict the experiments to safe queries in this paper.
Paper layout. Section 2 recalls the framework of [LM07] and expresses previously proposed algorithm schemes in this framework. In Section 3, we present our experimental methodology and use it to compare several heuristics, which leads to propose a refined algorithm. The second approach is presented and compared to the refined algorithm in 4. Section 5 outlines the prospects of this work.

2 Framework

We recall here some basic definitions about queries with Datalog-like notations. More details can be found in [AHV95] for instance. A conjunctive query with negation ($C Q\urcorner$) is of the form: $q=\operatorname{ans}\left(x_{1} \ldots x_{q}\right) \leftarrow p_{1}, \ldots, p_{n}, n_{1}, \ldots, n_{m}$, where each p_{i} (resp. n_{i}) is a positive (resp. negative) subgoal, $1 \leq n+m$, and ans is a special relation (which defines the answer part of the query). The left part of the query is called its head and the right part is its body. Each subgoal is of form $r\left(t_{1}, \ldots, t_{k}\right)$ (positive subgoal) or $\neg r\left(t_{1}, \ldots, t_{k}\right)$ (negative subgoal) where r is a relation and t_{1}, \ldots, t_{k} is a tuple of terms (i.e. variables or constants). All variables $x_{1} \ldots x_{q}$ occur at least once in the body of the query. Without loss of generality, we assume that the same subgoal does not appear twice in the body of the query. A $C Q\urcorner$ is boolean if it has no variable in its head (we note ans()). A $C Q\urcorner$ is positive if it has no negative subgoal ($m=0$). A $C Q\urcorner$ is safe if each variable occurring in a negative subgoal also occurs in a positive one.

In the following, we will focus on boolean queries because having a non-empty ans part can only make the query containment problem easier. For the same reason, we can consider that queries contain no constants. Note however that the framework and all results hold for general $C Q\urcorner$.

In [LM07], $C Q\urcorner$ are seen as labeled graphs. This allows to rely on graph notions that have no simple equivalent in logic (such as pure subgraphs, see later). More precisely, a $C Q\urcorner q$ is represented as a bipartite, undirected and labeled graph Q, called polarized graph $(P G)$, with two kinds of nodes: term nodes and relation nodes. Each term of the query becomes a term node, that is unlabeled if it is a variable, otherwise it is labeled by the constant itself. A positive (resp. negative) subgoal with relation r
becomes a relation node labeled $+r$ (resp. $-r$) and it is linked to the nodes assigned to its terms. The labels on edges correspond to the position of each term in the subgoal (see Figure 1 for an example). For simplicity, the subgraph corresponding to a subgoal, i.e. induced by a relation node and its neighbors, is also called a subgoal. We note it $+r\left(t_{1}, \ldots, t_{k}\right)$ (resp. $-r\left(t_{1}, \ldots, t_{k}\right)$) if the relation node has label $+r$ (resp. $-r$) and list of neighbors t_{1}, \ldots, t_{k}. We note $\sim r\left(t_{1}, \ldots, t_{k}\right)$ a subgoal that can be positive or negative, i.e. $\sim \in\{+,-\}$. Subgoals $+r\left(t_{1}, \ldots, t_{k}\right)$ and $-r\left(u_{1}, \ldots, u_{n}\right)$ with the same relation but different signs are said to be opposite. Opposite Subgoals $+r\left(t_{1}, \ldots, t_{k}\right)$ and $-r\left(t_{1}, \ldots, t_{k}\right)$ with the same list of arguments are said to be contradictory. Given a relation node label (resp. subgoal) l, \bar{l} denotes the complementary relation node label (resp. subgoal) of l, i.e. it is obtained from l by reversing its sign. Queries are denoted by small letters (q_{1} and q_{2}) and the associated graphs by the corresponding capital letters (Q_{1} and Q_{2}). We note $Q_{1} \sqsubseteq Q_{2}$ iff $q_{1} \sqsubseteq q_{2}$. A PG is consistent if it does not contain two contradictory subgoals.

Homomorphism is a core notion in this work. A homomorphism h from a PG Q_{2} to a PG Q_{1} is a mapping from nodes of Q_{2} to nodes of Q_{1}, which preserves bipartition (the image of a term -resp relation- node is a term -resp. relation- node), preserves edges (if $r t$ is an edge with label i in Q_{2} then $h(r) h(t)$ is an edge with label i in Q_{1}), preserves relation node labels (a relation node and its image have the same label) and can instantiate term node labels (if a term node is labeled by a constant, its image has the same label, otherwise there is no constraint on the label of its image). Note that this notion corresponds exactly to the well-known query homomorphism defined on positive conjunctive queries; it can be seen as an extension of query homomorphism to negative subgoals.

When there is a homomorphism h from Q_{2} to Q_{1}, we say that Q_{2} maps to Q_{1} by h. Q_{2} is called the source graph and Q_{1} the target graph. If Q_{2} and Q_{1} have only positive subgoals, $Q_{1} \sqsubseteq Q_{2}$ iff Q_{2} maps to Q_{1}. When we also consider negative subgoals, only one side of this property remains true: if Q_{2} maps to Q_{1} then $Q_{1} \sqsubseteq Q_{2}$; the converse is false, as shown in Example 1.

Example 1. See Figure 1: Q_{2} does not map to Q_{1} but $Q_{1} \sqsubseteq Q_{2}$. Indeed, if we complete q_{1} w.r.t. relation p, we obtain the union of four queries $q_{1,1}=a n s() \leftarrow p(t) \wedge s(t, u) \wedge$ $s(u, v) \wedge s(v, w) \wedge \neg p(w) \wedge p(u) \wedge p(v), q_{1,2}=\operatorname{ans}() \leftarrow p(t) \wedge s(t, u) \wedge s(u, v) \wedge s(v, w) \wedge$ $\neg p(w) \wedge \neg p(u) \wedge p(v), q_{1,3}=\operatorname{ans}() \leftarrow p(t) \wedge s(t, u) \wedge s(u, v) \wedge s(v, w) \wedge \neg p(w) \wedge p(u) \wedge$ $\neg p(v)$ and $q_{1,4}=\operatorname{ans}() \leftarrow p(t) \wedge s(t, u) \wedge s(u, v) \wedge s(v, w) \wedge \neg p(w) \wedge \neg p(u) \wedge \neg p(v)$. Each of the queries is a way of completing q_{1} w.r.t. p. Q_{2} maps to each of the graphs associated with them. Thus q_{1} is contained in q_{2}.

One way to solve CQC ${ }^{\text {is }}$ is therefore to generate all "complete" PGs obtained from Q_{1} using relations appearing in Q_{1}, and then to test if Q_{2} maps to each of these graphs.

Definition 1 (Complete graph and completion). Let Q be a consistent PG. It is complete w.r.t. a set of relations \mathcal{P}, if for each $p \in \mathcal{P}$ with arity k, for each k-tuple of term nodes (not necessarily distinct) t_{1}, \ldots, t_{k} in Q, it contains $+p\left(t_{1}, \ldots, t_{k}\right)$ or $-p\left(t_{1}, \ldots, t_{k}\right)$. A completion Q^{\prime} of Q is a $P G$ obtained from Q by repeatedly adding new relation nodes (on term nodes present in Q) without yielding inconsistency. Each addition is a completion step. A completion of Q is called total if it is a complete graph w.r.t. the set of relations considered, otherwise it is called partial.

Fig. 1. Polarized graphs associated with q_{1} and q_{2}.

Theorem 1. [LM07] Let Q_{1} and Q_{2} be two PGs (Q_{1} consistent), $Q_{1} \sqsubseteq Q_{2}$ iff Q_{2} maps to all total completions of Q_{1} w.r.t. the set of relations appearing in Q_{1}.

We can further restrict the set of relations considered to those appearing in opposite subgoals both in Q_{2} and in Q_{1} [LM07]. In the sequel, this set is called the completion vocabulary of Q_{2} and Q_{1} and denoted \mathcal{V}.

Let us outline previous algorithmic proposals for checking containment of $C Q\urcorner$ queries in this framework. Although it is expressed in a different framework, the first proposal [Ul197] can be recast as follows (see [LM07] for more details): it consists of computing the set of total completions of Q_{1} and checking the existence of a homomorphism from Q_{2} to each of them (say Q_{1}^{c}). The complexity of this algorithm is prohibitive: $\mathcal{O}\left(2^{\left(n_{Q_{1}}\right)^{k} \times|\mathcal{V}|} \times \operatorname{hom}\left(Q_{2}, Q_{1}^{c}\right)\right)$, where $n_{Q_{1}}$ is the number of term nodes in Q_{1}, k is the maximum arity of a relation, \mathcal{V} is the completion vocabulary and $\operatorname{hom}\left(Q_{2}, Q_{1}^{c}\right)$ is the complexity of checking the existence of a homomorphism ${ }^{2}$ from Q_{2} to Q_{1}^{c}.

Two kinds of improvements are defined in [WL03] and [LM07]: first, some necessary conditions for containment are exhibited, which can be used to tentatively detect a failure before generating completions; secondly, completions can be incrementally built and checked.

In [WL03], the following necessary but not sufficient condition for containment is exhibited (for safe queries but it remains true for general $C Q\urcorner$): if $Q_{1} \sqsubseteq Q_{2}$ then there must be a homomorphism, say h, from the positive part of Q_{2}, say Q_{2}^{p}, to Q_{1}; moreover, this homomorphism should not contradict the negative subgoals of Q_{2} : for all subgoals $-r\left(t_{1}, \ldots, t_{k}\right)$ in Q_{2}, Q_{1} should not contain $+r\left(h\left(t_{1}\right), \ldots, h\left(t_{k}\right)\right)$. This property can be used as a filter: if there is no such homomorphism from Q_{2}^{p} to Q_{1}, then $Q_{1} \nsubseteq Q_{2}$. It is generalized in [LM07] with the notion of pure subgraphs and compatible homomorphism, as detailed below. Then we have: if $Q_{1} \sqsubseteq Q_{2}$ then, for each pure subgraph Q_{2}^{\prime} of Q_{2}, there must be a compatible homomorphism from Q_{2}^{\prime} to Q_{1} w.r.t. Q_{2}. In the following definitions, we add some notions and notations that we will use in the sequel of this paper.
Definition 2 (pure subgraph). A PG is said to be pure if it does not contain opposite subgoals (i.e. each relation appears only in one form, positive or negative). A pure sub-

[^1]graph of Q_{2} is a subgraph of Q_{2} that contains all term nodes in Q_{2} (but not necessarily all relation nodes $)^{3}$ and is pure.

We will use the following notations for pure subgraphs of Q_{2} :

- $Q_{2}^{\text {max }}$ denotes a pure subgraph that is maximal for inclusion;
- Q_{2}^{+}is the $Q_{2}^{\max }$ with all positive relation nodes in Q_{2};
- Q_{2}^{-}is the $Q_{2}^{\max }$ with all negative relation nodes in Q_{2};
- $Q_{2}^{\text {Max }}$ denotes a $Q_{2}^{\max }$ of maximal cardinality.

Note that if a relation label $+r$ or $-r$ in Q_{2} does not appear in Q_{1} then $Q_{1} \nsubseteq Q_{2}$. Thus, we assume in the following that all relation labels in Q_{2} appear in Q_{1}, which implies that the subgraph induced by the relations not in \mathcal{V} is pure, and all $Q_{2}^{\max }$ contain it. Hence, we have Q_{2}^{p} (the positive part of Q_{2}) $\subseteq Q_{2}^{+}$but the contrary is generally false.

Example 2. See Figure 1: there are two $Q_{2}^{\max }$ (which are also of maximal cardinality): the first one is Q_{2}^{+}, which contains $+p(x)$ and $+s(x, y)$, and the second one is Q_{2}^{-}, which contains $-p(x)$ and $+s(x, y)$ (because $\mathcal{V}=\{p\}$, thus $s \notin \mathcal{V}$).

Intuitively, a homomorphism from a pure subgraph of Q_{2} to Q_{1} is "compatible" if it can be extended to a homomorphism from Q_{2} to a total completion of Q_{1}.

Definition 3 (Border, Compatible homomorphism). Let Q_{2} and Q_{1} be two PGs and Q_{2}^{\prime} be a pure subgraph of Q_{2}. The relation nodes of $Q_{2} \backslash Q_{2}^{\prime}$ are called border relation nodes of Q_{2}^{\prime} w.r.t. Q_{2}. A homomorphism h from Q_{2}^{\prime} to Q_{1} is said to be compatible w.r.t. Q_{2} if, for each border relation node inducing the subgoal $\sim r\left(t_{1}, \ldots, t_{k}\right)$, the opposite subgoal $\sim r\left(h\left(t_{1}\right), \ldots, h\left(t_{k}\right)\right)$ is not in Q_{1} and for each pair of opposite border relation nodes respectively on $\left(c_{1}, \ldots, c_{k}\right)$ and $\left(d_{1}, \ldots, d_{k}\right),\left(h\left(c_{1}\right), \ldots, h\left(c_{k}\right)\right) \neq$ $\left(h\left(d_{1}\right), \ldots, h\left(d_{k}\right)\right) .^{4}$

Now, let us consider the search space leading from Q_{1} to its total completions and partially ordered by the relation "subgraph of". In [LM07], this space is explored as a binary tree with Q_{1} as root. The children of a node are obtained by adding, to the graph associated with this node (say Q_{1}^{\prime}), a relation node in positive and negative form (each of the two new graphs is thus obtained by a completion step from Q_{1}^{\prime}). The aim is to find a set of partial completions covering the set of total completions of Q_{1}, i.e. the question becomes: "is there a set of partial completions $\left\{Q_{1,1}, \ldots, Q_{1, n}\right\}$ of Q_{1} such that (1) Q_{2} maps to each $Q_{1, i}$ for $i=1 \ldots n$; (2) each total completion Q_{1}^{c} of Q_{1} is covered by a $Q_{1, i}$ (i.e. $Q_{1, i}$ is a subgraph of Q_{1}^{c}) ?". After each completion step, it is checked whether Q_{2} maps to the current partial completion: if yes, this completion is one of the sought $Q_{1, i}$, otherwise the exploration continues. Figure 2 illustrates this method on the very easy Example 1. Two graphs $Q_{1,1}$ and $Q_{1,2}$ are built from Q_{1}, respectively by adding

[^2]$+p(v)$ and $-p(v) . Q_{2}$ maps to $Q_{1,1}$, thus there is no need to complete $Q_{1,1} . Q_{2}$ does not map to $Q_{1,2}$: two graphs $Q_{1,3}$ and $Q_{1,4}$ are built from $Q_{1,2}$, by adding $+p(u)$ and $-p(u)$ to $Q_{1,2} \cdot Q_{2}$ maps to $Q_{1,3}$ and to $Q_{1,4}$, respectively. Finally, the set proving that Q_{1} is included in Q_{2} is $\left\{Q_{1,1}, Q_{1,3}, Q_{1,4}\right\}$ (and there are four total completions of Q_{1} w.r.t. p). Algorithm 1 implements this method (the numbers in the margin are relative to the refinements studied in Section 3.2).

Fig. 2. The search tree of Example 1. Each black dot represents a Q_{1}^{c} and each square a $Q_{1, i}$.

```
Algorithm 1: \(\operatorname{recCheck}\left(Q_{1}\right)\)
    Input: a consistent PG \(Q_{1}\)
    Data: \(Q_{2}, \mathcal{V}\)
    Result: true if \(Q_{1} \sqsubseteq Q_{2}\), false otherwise
    begin
        if there is a homomorphism from \(Q_{2}\) to \(Q_{1}\) then return true;
        if \(Q_{1}\) is complete w.r.t. \(\mathcal{V}\) then return false;
            \(\backslash * * *\) Filtering step \({ }^{* * *} \backslash\)
        Choose \(r \in \mathcal{V}\) and \(t_{1}, \ldots, t_{k}\) in \(Q_{1}\) such that \(+r\left(t_{1}, \ldots, t_{k}\right) \notin Q_{1}\) and
        \(-r\left(t_{1}, \ldots, t_{k}\right) \notin Q_{1}\);
        Let \(Q_{1}^{\prime}\) be obtained from \(Q_{1}\) by adding \(+r\left(t_{1}, \ldots, t_{k}\right)\);
        Let \(Q_{1}^{\prime \prime}\) be obtained from \(Q_{1}\) by adding \(-r\left(t_{1}, \ldots, t_{k}\right)\);
        return recCheck\(\left(Q_{1}^{\prime}\right)\) AND recCheck \(\left(Q_{1}^{\prime \prime}\right)\);
    end
```

The algorithm proposed in [WL03] can be seen as exploring the same space of graphs but in a radically different way. At each step, it generates all homomorphisms from Q_{2}^{p} to the current Q_{1}. Then, for each compatible homomorphism in this set, say h, and for each negative subgoal $-p\left(t_{1}, \ldots, t_{k}\right)$ in Q_{2} that cannot be mapped to Q_{1} by extending h, a new query to test is generated from Q_{1} by adding the positive subgoal $+p\left(h\left(t_{1}\right), \ldots, h\left(t_{k}\right)\right)$; intuitively, the idea is that each total completion of Q_{1} contains either $+p\left(h\left(t_{1}\right), \ldots, h\left(t_{k}\right)\right)$ or $-p\left(h\left(t_{1}\right), \ldots, h\left(t_{k}\right)\right)$; if $-p\left(h\left(t_{1}\right), \ldots, h\left(t_{k}\right)\right)$ were present, then h could be extended to $-p\left(h\left(t_{1}\right), \ldots, h\left(t_{k}\right)\right)$, thus it remains to test the $+p\left(h\left(t_{1}\right), \ldots, h\left(t_{k}\right)\right)$ case. In Example 1 (see also Figure 1), only one homomorphism can be found at each step: the homomorphism $\{x \mapsto t, y \mapsto u\}$ from Q_{2}^{p} to Q_{1} leads to Q_{1}^{\prime} obtained by adding $+p(u)$; at the next step, $\{x \mapsto u, y \mapsto v\}$ from Q_{2}^{p} to Q_{1}^{\prime} leads to $Q_{1}^{\prime \prime}$ obtained by adding $+p(v)$; finally, there is a homomorphism from Q_{2}^{p} to $Q_{1}^{\prime \prime}$ that can be extended to the negative subgoal, thus no new graph is generated. This algorithm can be seen as developing an and/or tree: a homomorphism h leads to success if all queries Q_{i}^{\prime} directly generated from it lead to containment; a query Q_{i}^{\prime} leads to containment if there is a homomorphism from Q_{2}^{p} to $Q_{i}^{\prime p}$ leading to success.

The and/or tree is traversed in a breadth-first manner. Contrarily to Algorithm 1, partial completions built by this algorithm do not partition the space (basically because only positive subgoals are generated), which leads to the problem of detecting that a newly generated graph is not the same as a graph already generated (see the discussion in [LM07] for more details). In this paper, we focus in refining the algorithm in [LM07]. The experimental comparison of both ways of exploring the space of graphs remains to be done.

3 Experimental methodology and algorithm refinements

In this section, we briefly present our experimental methodology, then we propose and analyze three refinements of Algorithm 1.

3.1 Methodology

Due to the lack of benchmarks or real-world data available for the studied problem, we built a random generator of polarized graphs. The chosen parameters are as follows:

- the number of term nodes (i.e. the number of terms in the associated query) ${ }^{5}$;
- the number of distinct relations;
- the arity of these relations (set at 2 in the following experiments);
- the density per relation, which is, for each relation r, the ratio of the number of subgoals with relation r in the graph to the number of subgoals with relation r in a total completion of this graph w.r.t. $\{r\}$.
- the percentage of negation per relation, which is, for each relation r, the percentage of negative subgoals with relation r among all subgoals with relation r.

An instance of CQC\urcorner is obtained by generating a pair $\left(Q_{1}, Q_{2}\right)$ of PGs corresponding to safe queries. In this paper, we chose the same number of term nodes and the same percentage of negation for both graphs. In the sequel we adopt the following notations: $n b T$ represents the number of term nodes, $n b R$ the number of distinct relations and $S D$ (resp. TD) the Source (resp. Target) graph Density per relation. The difficulty of the problem led us to restrict the value of $n b T$ to between 5 and 8 (5 for the first experiments, 8 after improvement 1 which greatly decreases the running time).

In order to discriminate between different techniques, we first experimentally studied the influence of the parameters on the "difficulty" of instances. We measured the difficulty in three different ways: the running time, the size of the search tree and the number of homomorphism checks (see [BLM10] for more details). Concerning the negation percentage, we checked that the maximal difficulty is obtained when there are as many negative relation nodes as positive relation nodes. One can expect that increasing the number of relations occurring in graphs increases the difficulty, in terms of running time as well as the size of the searched space. Indeed, the number of completions increases exponentially (there are $\left(2^{n_{Q_{1}}{ }^{2}}\right)^{n b R}$ total completions for $n b R$ binary relations). These intuitions are only partially validated by the experiments: see for instance Table

[^3]1, which shows, for each number of relations, the density values at the difficulty peak. We observe that the difficulty increases up to a certain number of relations (3 here, with a CPU time of 14809 and a Tree size of 216911) and beyond this value, it continuously decreases. Moreover, the higher the number of relations, the lower the $S D$ that entails the greatest difficulty peak, and the higher the difference between $S D$ and $T D$ at the difficulty peak. In following experiments, we always take the $S D$ and $T D$ values corresponding to a difficulty peak.

nbR	SD	TD	CPU time (ms)	Tree size
1	0.24	0.24	19	82
2	0.12	0.24	7168	111540
3	0.08	0.4	14809	216911
4	0.08	0.68	12793	119911
5	0.08	0.8	4556	42566

Table 1. Influence of the number of relations ($n b T=5$).
For each value of the varying parameter, we considered 500 instances and computed the mean search cost of the results on these instances (with a timeout set at 5 minutes). The program is written in Java. The experiments were performed on a Sun fire X4100 Server AMD Opteron 252, equipped with a 2.6 GHz Dual-Core CPU and 4G of RAM, under Linux. In the sequel we only show the CPU time when the three difficulty measures are correlated.

3.2 Refinements

We now analyze three refinements of Algorithm 1, which concern the following aspects:

1. the choice of the next subgoal to add;
2. the choice of the child to explore first;
3. dynamic filtering at each node of the search tree.
4. Since the search space is explored in a depth-first manner, the choice of the next subgoal to add, i.e. $\sim r\left(t_{1}, \ldots, t_{k}\right)$ in Algorithm 1 (Point 1), is crucial. A brutal technique consists of choosing r and t_{1}, \ldots, t_{k} randomly. Our proposal is to guide this choice by a compatible homomorphism, say h, from a $Q_{2}^{\max }$ to the current Q_{1}. More precisely, the border relation nodes $\sim r\left(e_{1}, \ldots, e_{k}\right)$ w.r.t. this $Q_{2}^{\max }$ can be divided into two categories. In the first category, we have the border nodes s.t. $\sim r\left(h\left(e_{1}\right), \ldots, h\left(e_{k}\right)\right) \in Q_{1}$, which can be used to extend h; if all border nodes are in this category, h can be extended to a homomorphism from Q_{2} to Q_{1}. The choice of the subgoal to add is based on a node $\sim r\left(e_{1}, \ldots, e_{k}\right)$ in the second category: r is its relation symbol and $t_{1}, \ldots, t_{k}=h\left(e_{1}\right), \ldots, h\left(e_{k}\right)$ are its neighbors (note that neither $\sim r\left(h\left(e_{1}\right), \ldots, h\left(e_{k}\right)\right)$ nor $\overline{\sim r}\left(h\left(e_{1}\right), \ldots, h\left(e_{k}\right)\right)$ is in Q_{1} since $\sim r\left(e_{1}, \ldots, e_{k}\right)$ is in the second category and h is compatible). Intuitively, the idea is to give priority to relation nodes potentially able to transform this compatible homomorphism into a homomorphism from Q_{2} to a (partial) completion of Q_{1}, say Q_{1}^{\prime}. If so, all completions including Q_{1}^{\prime} are avoided.

Figure 3 shows the results obtained with the following choices:

- random choice;

- random choice + filter: random choice and Q_{2}^{+}as filter (i.e. at each recCheck step a compatible homomorphism from Q_{2}^{+}to Q_{1} is looked for: if none exists, the false value is returned);
- guided choice: Q_{2}^{+}used both as a filter and as a guide.

Fig. 3. Influence of the completion choice : $n b T=5, n b R=2, S D=0.12$

Note that the guided choice comes with an implicit filter: indeed, when a compatible homomorphism from Q_{2}^{+}to a partial completion of Q_{1} (say Q_{1}^{\prime}) is sought, the false value is returned if none exists (since $Q_{1}^{\prime} \nsubseteq Q_{2}$). In order to only discriminate choice heuristics, we also considered a random choice with a filter. As expected, the guided choice is always much better than the random choice (with or without filter).
2. Experiments have shown that the order in which the children of a node, i.e. Q_{1}^{\prime} and $Q_{1}^{\prime \prime}$ in Algorithm 1 (Point 2), are explored is important. Assume that Point 1 in Algorithm 1 relies on a guiding subgraph. Consider Figure 4, where Q_{2}^{+}is the guiding subgraph (hence the border is composed of negative relation nodes), "Extension" means " $Q_{1}^{\prime \prime}$ first" and "Contradiction" means the reverse order: we see that it is always better to explore Q_{1}^{\prime} before $Q_{1}^{\prime \prime}$. If we take Q_{2}^{-}as the guiding subgraph, then the inverse order is better. More generally, let $\sim r\left(e_{1}, \ldots, e_{k}\right)$ be the border node that defines the subgoal to add. Let us call h-extension (resp. h-contradiction) the graph built from Q_{1} by adding $\sim r\left(h\left(e_{1}\right), \ldots, h\left(e_{k}\right)\right)$ (resp. $\overline{\sim r}\left(h\left(e_{1}\right), \ldots, h\left(e_{k}\right)\right)$). See Example 3. It is better to first explore the child corresponding to the h-contradiction. Intuitively, by contradicting the compatible homomorphism found, this gives priority to failure detection.

Example 3. See Figure 1. $Q_{2}^{+}=\{+p(x),+s(x, y)\}$. Let Q_{2}^{+}be the guiding subgraph. The only border node of Q_{2}^{+}w.r.t. Q_{2} is $-p(y)$. $h=\{x \mapsto t, y \mapsto u\}$ is the only compatible homomorphism from Q_{2}^{+}to Q_{1}. The h-extension (resp. h-contradiction) is obtained by adding $+p(u)$ (resp. $-p(u)$).

Fig. 4. Influence of the exploration order : $n b T=8, n b R=3, S D=0.06$
3. The last improvement consists of performing dynamic filtering at each node of the search tree. Once again, the aim is to detect a failure sooner. More precisely, we consider a set of $Q_{2}^{\max }$ and check if there is a compatible homomorphism from each element in this set to the newly generated graph. Table 2 shows the obtained results (at a difficulty peak) with the following configurations:

- Max: $Q_{2}^{M a x}$ as guide and no filter (other than $Q_{2}^{M a x}$);
- Max- $\overline{M a x}: Q_{2}^{M a x}$ as guide and $Q_{2}^{\overline{M a x}}$ (the subgraph on the relation nodes in $Q_{2} \backslash$ $\left.Q_{2}^{M a x}\right)$ as filter;
- Max-all: $Q_{2}^{M a x}$ as guide and all $Q_{2}^{\max }$ as filters.

Unsurprisingly, the stronger the dynamic filtering, the smaller the size of the search tree. The CPU time is a bit higher for Max-all but this configuration checks much more homomorphisms than the others. Since our current algorithm for (compatible) homomorphism checking can be considerably improved, these results show that Max-all is the best choice.

Configuration	CPU time (ms)	Tree size	Hom check
Max	7404	3810	5539
Max- $\overline{\text { Max }}$	7421	3765	6209
Max-all	8427	2249	13331

Table 2. Influence of the dynamic filtering: $n b T=8, n b R=3, S D=0.06, T D=0.54$

The algorithm finally obtained is called recCheckPlus and it is shown in Algorithm 2 . It is initially called with $\left(Q_{1}, \emptyset\right)$. The second parameter is used to memorize the compatible homomorphism found for the father of the current node, in the case where this node is an h-extension of its father (see $Q_{1}^{\prime \prime}$ in the algorithm); otherwise, the compatible homomorphism for its father has been contradicted and a new one has to be computed, which is done in the chooseCompletionSubgoal subalgorithm. More
precisely, this subalgorithm returns a completion literal as explained in Point 1 and a new compatible homomorphism h if needed.

```
Algorithm 2: recCheckPlus \(\left(Q_{1}, h\right)\)
    Input: a consistent PG \(Q_{1}\) and a compatible homomorphism \(h\) from the guiding subgraph
            to the father of \(Q_{1}\) (empty for the root)
    Data: \(Q_{2}, \mathcal{V}\)
    Result: true if \(Q_{1} \sqsubseteq Q_{2}\), false otherwise
    begin
        if there is a homomorphism from \(Q_{2}\) to \(Q_{1}\) then return true ;
        if \(Q_{1}\) is complete w.r.t. \(\mathcal{V}\) then return false ;
        if dynamicFiltering \(\left(Q_{1}\right)=\) failure then return false;
        \(l, h \leftarrow\) chooseCompletionSubgoal \(\left(Q_{1}, h\right)\);
        Let \(Q_{1}^{\prime}\) be obtained from \(Q_{1}\) by adding \(\bar{l}\);
        Let \(Q_{1}^{\prime \prime}\) be obtained from \(Q_{1}\) by adding \(l\);
        return recCheckPlus \(\left(Q_{1}^{\prime}, \emptyset\right)\) AND recCheckPlus \(\left(Q_{1}^{\prime \prime}, h\right)\);
    end
```


4 Second approach

In this section, we present the second method, which consists of translating the $\mathrm{CQC}{ }^{\urcorner}$ problem into the problem of checking unsatisfiability of a propositional formula in conjunctive normal form (i.e. a conjunction of disjunctions of propositional literals), called the UNSAT problem. This method is then experimentally compared to recCheckPlus.

4.1 Method

Let us first explain the main ideas of this method. Instead of exploring the space of graphs in a depth-first manner in order to find a set of partial completions that covers all total completions, a candidate covering set is built at once; it is built from all compatible homomorphisms from a specific pure subgraph of Q_{2} to Q_{1}; this candidate is indeed a covering set if and only if a formula built from it is valid; this formula is built by considering for each compatible homomorphism the relation nodes that should be added to Q_{1} to obtain a homomorphism from Q_{2}. More specifically, we proceed in three steps:

1. Compute all compatible homomorphisms from Q_{2}^{\prime} (the special subgraph of Q_{2}) to Q_{1};
2. Build a propositional formula $F_{\text {prop }}$, that is the disjunction of, for each compatible homomorphism h of Step 1, the conjunction C of missing subgoals in Q_{1} for h to be a homomorphism from Q_{2} to $Q_{1} \wedge C$;
3. Check if $\overline{F_{\text {prop }}}$ (an UNSAT instance) is unsatisfiable: if yes, then $Q_{1} \sqsubseteq Q_{2}$, otherwise $Q_{1} \nsubseteq Q_{2}$.

Step 1: Compute the candidate covering set. The method is based on a specific pure subgraph of Q_{2}, which necessarily maps to the Q_{1} part of each total completion of Q_{1} when $Q_{1} \sqsubseteq Q_{2}$ (note that this is not true for all pure subgraphs of Q_{2}).

Definition 4 (Stable subgraph). The stable subgraph of Q_{2}, denoted Q_{2}^{s}, contains all term nodes in Q_{2} and all subgoals in Q_{2} with a relation that does not appear in the completion vocabulary of Q_{1} and Q_{2} (note that Q_{2}^{s} is included in all $Q_{2}^{\max }$).

Since the stable subgraph does not contain relations belonging to subgoals added to Q_{1} during completion, we have the desired property:

Property 1. Let Q_{1} and Q_{2} be two PGs. If h is a homomorphism from Q_{2} to a total completion of Q_{1}, then h is a compatible homomorphism from Q_{2}^{s} to Q_{1}.

Furthermore, we can replace, without incidence on the CQC\urcorner problem, each variable in Q_{1} by a new constant. This modification preserves all homomorphisms to Q_{1}. In the sequel, we consider that Q_{1} contains only constants. In particular, the query q_{1} in Example 1 becomes: $\left.q_{1}=a n s() \leftarrow p(a) \wedge s(a, b) \wedge s(b, c) \wedge s(c, d) \wedge \neg p(d)\right)$. This will allow to obtain a propositional formula in Step 2.

Example 4. Let Q_{1} and Q_{2} be PGs of Figure 1. $Q_{2}^{s}=s(x, y)$. There are 3 compatible homomorphisms from Q_{2}^{s} to $Q_{1}: h_{1}=\{x \mapsto a, y \mapsto b\}, h_{2}=\{x \mapsto b, y \mapsto c\}$ and $h_{3}=\{x \mapsto c, y \mapsto d\}$.

Step 2: Build the propositional formula. With each compatible homomorphism computed at Step 1, we build a conjunction of the "missing" subgoals in Q_{1}. Each partial completion of Q_{1} obtained by adding these subgoals to Q_{1} is an element of the candidate covering set.
Definition 5 (Minimal conjunction). The minimal conjunction of Q_{1} w.r.t. a compatible homomorphism h, denoted C^{m}, is the conjunction composed of the atom \square and the subgoals $\sim r\left(h\left(t_{1}\right), \ldots, h\left(t_{k}\right)\right)$ such that $\sim r\left(t_{1}, \ldots, t_{k}\right) \in\left(Q_{2} \backslash Q_{2}^{s}\right)$ and $\sim r\left(h\left(t_{1}\right), \ldots, h\left(t_{k}\right)\right) \notin Q_{1}$.

Example 5. For $h_{1}: C_{1}^{m}=\neg p(b)$; for $h_{2}: C_{2}^{m}=p(b) \wedge \neg p(c)$; for $h_{3}: C_{3}^{m}=p(c)$.
Then we build the entire formula, which is the disjunction of all minimal conjunctions:
Definition 6 (Disjunction of Stable Minimal Conjunctions ($\mathcal{D S M C}$)). We call $\mathcal{D S M C}\left(Q_{2}, Q_{1}\right)$ the disjunction of the atom \square^{7} and all minimal conjunctions w.r.t. the compatible homomorphisms from Q_{2}^{s} to Q_{1} (i.e. $\square \vee C_{1}^{m} \vee \ldots \vee C_{i}^{m}$, denoted $\bigvee C^{m}$).

Example 6. $\mathcal{D S M C}\left(Q_{2}, Q_{1}\right)=\neg p(b) \vee(p(b) \wedge \neg p(c)) \vee p(c)$.
The theorem validating this approach is the following (Q_{1} is assumed to be consistent):
Theorem 2. $Q_{1} \sqsubseteq Q_{2}$ iff $\mathcal{D S M C}\left(Q_{2}, Q_{1}\right)$ is valid.
The following definitions and lemmas are used to prove the theorem.
${ }^{6} \square$ is the tautology: it is necessary when h is a homomorphism from Q_{2} to Q_{1}, otherwise the conjunction would be empty.
${ }^{7} \square$ is the absurd literal: it is necessary when there is no compatible homomorphism from Q_{2}^{s} to Q_{1}, otherwise the disjunction would be empty.

Definition 7 (Total conjunction). Let Q_{1}^{c} be a total completion of Q_{1}. The total conjunction of Q_{1}^{c}, denoted C, is the conjunction of all subgoals $\sim r\left(t_{1}, \ldots, t_{k}\right) \in\left(Q_{1}^{c} \backslash\right.$ Q_{1}).
Definition 8 (Disjunction of Total Conjunctions $(\mathcal{D} \mathcal{T})$). We call $\mathcal{D} \mathcal{T} \mathcal{C}\left(Q_{1}\right)$ the disjunction of all total conjunctions of Q_{1} (i.e. $C_{1} \vee \ldots \vee C_{j}$).
Lemma 1. $\mathcal{D} \mathcal{T} \mathcal{C}\left(Q_{1}\right)$ is valid.
Lemma 2. If $Q_{1} \sqsubseteq Q_{2}$ then for all $C \in \mathcal{D} \mathcal{T} \mathcal{C}\left(Q_{1}\right)$, there is a $C^{m} \in \mathcal{D S \mathcal { M C }}\left(Q_{2}, Q_{1}\right)$ such that $C^{m} \subseteq C$ (i.e. all subgoals in C^{m} are also in C).
Property 2. Let C^{m} be a minimal conjunction of Q_{2} w.r.t. a compatible homomorphism from Q_{2}^{s} to $Q_{1} . Q_{1} \wedge C^{m} \sqsubseteq Q_{2}$.
Proof of Theorem 2:
\Longleftarrow Since $\mathcal{D} \mathcal{S} \mathcal{M C}\left(Q_{2}, Q_{1}\right)$ is valid, $Q_{1} \equiv Q_{1} \wedge \bigvee C^{m} \equiv \bigvee\left(Q_{1} \wedge C^{m}\right)$. According to Property $2, \bigvee\left(Q_{1} \wedge C^{m}\right) \sqsubseteq Q_{2}$. Thus $Q_{1} \sqsubseteq Q_{2}$.
\Longrightarrow Let $Q_{1} \sqsubseteq Q_{2}$. According to Lemma 2, for all $C \in \mathcal{D} \mathcal{T C}\left(Q_{1}\right)$, there is $C^{m} \in$ $\mathcal{D S} \mathcal{M C}\left(Q_{2}, Q_{1}\right)$ s.t. $C=C^{m} \wedge C^{\prime}$ where C^{\prime} is a conjunction of subgoals. By absurd: Assume $\mathcal{D} \mathcal{S} \mathcal{M C}\left(Q_{2}, Q_{1}\right)$ is not valid. Then there is an interpretation \mathcal{I} s.t. for all $C^{m} \in$ $\mathcal{D} \mathcal{S M C}\left(Q_{2}, Q_{1}\right), \mathcal{I} \models \neg C^{m}$. Thus for all $C \in \mathcal{D} \mathcal{T} \mathcal{C}\left(Q_{1}\right), \mathcal{I} \vDash \neg C$. Thus $\mathcal{D} \mathcal{T} \mathcal{C}\left(Q_{1}\right)$ is not valid, which contradicts Lemma 1 . Hence $\mathcal{D} \mathcal{S} \mathcal{M C}\left(Q_{2}, Q_{1}\right)$ is valid.

Step 3: Translate into UNSAT. The negation of $\mathcal{D} \mathcal{S M C}\left(Q_{2}, Q_{1}\right)$ is a propositional conjunctive normal form, which enables us to use a SAT solver.
Example 7. $C F=\overline{\mathcal{D S \mathcal { S C }}\left(Q_{2}, Q_{1}\right)}=p(b) \wedge(\neg p(b) \vee p(c)) \wedge \neg p(c) . C F$ is unsatisfiable, thus $\mathcal{D} \mathcal{S} \mathcal{M C}\left(Q_{2}, Q_{1}\right)$ is valid and $Q_{1} \sqsubseteq Q_{2}$.

4.2 Algorithm and experiments

```
Algorithm 3: UNSATCheck \(\left(Q_{1}\right)\)
    Input: a consistent PG \(Q_{1}\)
    Data: \(Q_{2}, Q_{2}^{s}\)
    Result: true if \(Q_{1} \sqsubseteq Q_{2}\), false otherwise
    begin
        \(\mathcal{D S} \mathcal{M C}\left(Q_{2}, Q_{1}\right) \leftarrow \square ;\)
        \(h_{1}, \ldots, h_{n} \leftarrow\) findAllCompatibleHomomorphisms \(\left(Q_{2}, Q_{2}^{s}, Q_{1}\right)\);
        foreach \(h_{i}, i=1 \ldots n\) do
            foreach border node \(\sim r\left(t_{1}, \ldots, t_{k}\right) \in Q_{2} \backslash Q_{2}^{s}\) do
                \(C_{i}^{m} \leftarrow \square\);
                if \(\sim r\left(h_{i}\left(t_{1}\right), \ldots, h_{i}\left(t_{k}\right) \notin Q_{1}\right.\) then
                    \(C_{i}^{m} \leftarrow C_{i}^{m} \wedge \sim r\left(h_{i}\left(t_{1}\right), \ldots, h_{i}\left(t_{k}\right)\right) ;\)
            \(\mathcal{D S M C}\left(Q_{2}, Q_{1}\right) \leftarrow \mathcal{D S M C}\left(Q_{2}, Q_{1}\right) \vee C_{i}^{m} ;\)
        return \(\boldsymbol{U N S A T}\left(\overline{\mathcal{D S M C}\left(Q_{2}, Q_{1}\right)}\right)\)
    end
```

Algorithm 3 implements this method. The UNSAT call uses the well-known Sat4J solver ${ }^{8}$.

[^4]To compare UNSATCheck and recCheckPlus, we used the size of the vocabulary completion (directly correlated with the size of the stable subgraph) as the varying parameter. Indeed, this parameter is crucial for UNSATCheck (note that this parameter has also an influence for recCheckPlus): the bigger the stable subgraph, the lower the number of compatible homomorphisms and then the size of the obtained formula. We built 1000 random instances for each value of $|\mathcal{V}|$ (for each relation, the percentage of negation is equal to $0 \%, 50 \%$ or 100%) and compared UNSATCheck and recCheckPlus on them: see Table $3 .{ }^{9}$

We observe that for both algorithms the maximal difficulty is for $|\mathcal{V}|=3$. Then UNSATCheck is the worst because the stable subgraph contains only term nodes, thus the number of compatible homomorphisms and then the size of the obtained formula are exponential in the sizes of the initial queries. As expected, the increase of the size of the stable graph makes the algorithms better. For $|\mathcal{V}|=2$, UNSATCheck is a little better than recCheckPlus. When the size of the stable graph is the highest, the results for both algorithms are similar. These results show that the choice of an algorithm rather than another depends on the size of the stable graph. These are only preliminary results, further experiments are needed to refine this choice.

Size of \mathcal{V}	Size of the stable subgraph	recCheckPlus CPU time	UNSATCheck CPU time			
			Total	1st step	2nd step	3rd step
3	0	6482	27038	10541	15378	1119
2	6	800	444	172	229	43
1	12	5	20	9	2	9
0	18	1	2	2	0	0

Table 3. Detailed comparison of the two algorithms : $n b T=8, n b R=3, S D=0.06, T D=0.51$.

5 Perspectives

In this paper, we have refined the algorithm proposed in [LM07] and checked experimentally several choices. These refinements heavily rely on special subgraphs, called pure subgraphs. Using pure subgraphs of maximal cardinality as guiding and filtering graphs seems a good choice. However, the size of pure subgraphs is not the "ultimate" criterion, as shown in Figure 5: for each instance, we ran recCheckPlus with all possible $Q_{2}^{\text {Max }}$ (they all have the same size). The Maximum (resp. Minimum) curve is obtained by choosing, for each instance, the worst (resp. best) $Q_{2}^{M a x}$, i.e. that leads to the highest (resp. lowest) CPU time. We conclude that the choice of the $Q_{2}^{M a x}$ used to guide among all $Q_{2}^{M a x}$ is a determining step. However, finding criteria allowing to better discriminate between pure graphs is an open issue.

In [WL03] another way of exploring the query space is proposed. The associated algorithm is much more complex to follow and implement than recCheck. Furthermore, some parts were not specified (for instance how to avoid generating a query that was already generated). We are currently implementing this algorithm, while integrating the improvements designed for recCheck.

[^5]

Fig. 5. Comparison between the worst and the best choice of $Q_{2}^{M a x}: n b T=8, n b R=3, S D=0.06$

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The Logical Level. Addison-Wesley, 1995.
[ASU79] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational expressions. SIAM J. Comput., 8(2):218-246, 1979.
[BLM10] K. Ben Mohamed, M. Leclère, and M.-L. Mugnier. Deduction in existential conjunctive first-order logic: an algorithm and experiments. Technical Report RR-10010, LIRMM, mar 2010.
[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in relational databases. In 9th ACM Symposium on Theory of Computing, pages 77-90, 1977.
[CM09] M. Chein and M.-L. Mugnier. Graph-based Knowledge Representation and Reasoning-Computational Foundations of Conceptual Graphs. Advanced Information and Knowledge Processing. Springer, 2009.
[FNTU07] C. Farré, W. Nutt, E. Teniente, and T. Urpí. Containment of conjunctive queries over databases with null values. In ICDT 2007, volume 4353 of $L N C S$, pages 389-403. Springer, 2007.
[Hal01] A. Y. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270294, 2001.
[LM07] M. Leclère and M.-L. Mugnier. Some Algorithmic Improvments for the Containment Problem of Conjunctive Queries with Negation. In Proc. of ICDT'07, volume 4353 of LNCS, pages 401-418. Springer, 2007.
[LS93] A. Y. Levy and Y. Sagiv. Queries independent of updates. In VLDB '93: Proceedings of the 19th International Conference on Very Large Data Bases, pages 171-181, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.
[Sai08] L. Sais. Problème SAT : progrès et défis. Hermes, 2008.
[Ul197] J. D. Ullman. Information Integration Using Logical Views. In Proc. of ICDT'97, volume 1186 of $L N C S$, pages 19-40. Springer, 1997.
[WL03] F. Wei and G. Lausen. Containment of Conjunctive Queries with Safe Negation. In International Conference on Database Theory (ICDT), 2003.

[^0]: ${ }^{1} \pi_{2}^{P}=(c o-N P)^{N P}$

[^1]: ${ }^{2}$ Homomorphism checking is NP-complete. A brute-force algorithm solves it in $\mathcal{O}\left(n_{Q_{1}}^{n_{Q_{2}}}\right)$, where $n_{Q_{2}}$ is the number of term nodes in Q_{2}.

[^2]: ${ }^{3}$ Note that this subgraph does not necessarily correspond to a set of subgoals because some term nodes may be isolated.
 ${ }^{4}$ The last condition is necessary to ensure that a compatible homomorphism from Q_{2}^{\prime} to Q_{1} can be extended to a homomorphism from Q_{2} to a total completion of Q_{1}. However, it is necessarily satisfied if Q_{2}^{\prime} is a pure subgraph that is maximal for inclusion. We only need it for the second approach presented in this paper.

[^3]: ${ }^{5}$ We do not generate constants; indeed, constants tend to make the problem easier to solve because there are fewer potential homomorphisms; moreover, this parameter does not influence the studied heuristics.

[^4]: ${ }^{8}$ http://www.sat4j.org/

[^5]: ${ }^{9}$ Note that 8 term nodes is the highest value that UNSATCheck can deal with (with $|\mathcal{V}|=3$ and our implementation): beyond 8 , the memory space explodes.

