
HAL Id: lirmm-00537832
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00537832

Submitted on 24 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Containment of Conjunctive Queries with Negation:
Algorithms and Experiments

Khalil Ben Mohamed, Michel Leclère, Marie-Laure Mugnier

To cite this version:
Khalil Ben Mohamed, Michel Leclère, Marie-Laure Mugnier. Containment of Conjunctive Queries with
Negation: Algorithms and Experiments. DEXA 2010 - 21st International Conference on Database and
Expert Systems Applications, Aug 2010, Bilbao, Spain. pp.330-345, �10.1007/978-3-642-15251-1_27�.
�lirmm-00537832�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00537832
https://hal.archives-ouvertes.fr

Containment of Conjunctive Queries with Negation:
Algorithms and Experiments

Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

LIRMM (CNRS - University of Montpellier), France,
{benmohamed,leclere,mugnier}@lirmm.fr

Abstract. We consider the containment problem for conjunctive queries with
atomic negation. Firstly, we refine an existing algorithm based on homomorphism
checks, which itself improves other known algorithms in databases, and analyze
it experimentally. Secondly, we present a new algorithm based on the translation
of the containment problem into the problem of checking the unsatisfiability of
a propositional logical formula, which allows us to use a SAT solver, and we
experimentally compare both algorithms.

1 Introduction

The query containment problem is a fundamental problem in databases. It takes two
queries q1 and q2 as input, and asks if q1 is contained in q2 (noted q1 v q2), i.e. if
the set of answers to q1 is included in the set of answers to q2 for all databases (e.g.
[AHV95]). Algorithms based on query containment can be used to solve various prob-
lems, such as query evaluation and optimization [CM77][ASU79], rewriting queries
using views [Hal01], detecting independence of queries from database updates [LS93],
etc. In this paper, we consider the problem of deciding on containment for conjunc-
tive queries with atomic negation (denoted CQC¬ hereafter). The so-called (positive)
conjunctive queries form a class of natural and frequently used queries and are consid-
ered as the basic database queries [CM77]. Conjunctive queries with negation extend
this class with negation on atoms. Note that CQC¬ is equivalent to important prob-
lems in artificial intelligence, such that: checking entailment / deduction between two
first-order logic clauses (without function); query answering with boolean conjunctive
queries with negation on a knowledge base composed of a set of positive and negative
factual assertions (while making the open-world assumption).

When only positive conjunctive queries are considered, query containment checking
is NP-complete [AHV95]. When atomic negation is considered, the problem becomes
much more complex: it is πP

2 -complete1 [FNTU07][CM09] and very few algorithms
for solving it can be found in the literature.

This paper is devoted to refining and proposing algorithms solving CQC¬ and test-
ing them experimentally. An algorithm scheme was introduced in [LM07], which itself
improves the previous proposals in [Ull97] and [WL03]. All three algorithms use homo-
morphism as a core notion. We first compare experimentally several heuristics, which

1 πP
2 = (co-NP)NP

2 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

allows to refine this algorithm scheme. We then propose another approach, which con-
sists of building a propositional logical formula from the queries q1 and q2, such that q1
is contained in q2 if and only if this formula is valid, i.e. always true. Equivalently, the
negation of this formula is unsatisfiable, which allows to use a SAT solver (SAT is the
problem of deciding whether a given propositional formula is satisfiable) and benefit
from practical improvements achieved in this domain [Sai08]. However, the translation
of the queries into the propositional formula is generally exponential in the size of the
queries. Thus the question is whether –or when– the second algorithm can be better
than the first one. We provide first experimental answers to this question.

Due to the lack of benchmarks or real-world data available for CQC¬, we built a
random generator. We analyzed the influence of several parameter values on the prob-
lem instance difficulty in order to define difficult instances, on which the algorithms
were run. In databases, conjunctive queries with negation are generally imposed to be
safe, i.e. all variables in the query must occur in at least one positive subgoal. Hence,
even if all of our results hold for general conjunctive queries with negation, we restrict
the experiments to safe queries in this paper.

Paper layout. Section 2 recalls the framework of [LM07] and expresses previously pro-
posed algorithm schemes in this framework. In Section 3, we present our experimental
methodology and use it to compare several heuristics, which leads to propose a refined
algorithm. The second approach is presented and compared to the refined algorithm in
4. Section 5 outlines the prospects of this work.

2 Framework

We recall here some basic definitions about queries with Datalog-like notations. More
details can be found in [AHV95] for instance. A conjunctive query with negation (CQ¬)
is of the form: q = ans(x1 . . . xq) ← p1, . . . , pn, n1, . . . , nm, where each pi (resp. ni
) is a positive (resp. negative) subgoal, 1 ≤ n+m, and ans is a special relation (which
defines the answer part of the query). The left part of the query is called its head and
the right part is its body. Each subgoal is of form r(t1, . . . , tk) (positive subgoal) or
¬r(t1, . . . , tk) (negative subgoal) where r is a relation and t1, . . . , tk is a tuple of terms
(i.e. variables or constants). All variables x1 . . . xq occur at least once in the body of
the query. Without loss of generality, we assume that the same subgoal does not appear
twice in the body of the query. A CQ¬ is boolean if it has no variable in its head (we
note ans()). A CQ¬ is positive if it has no negative subgoal (m = 0). A CQ¬ is safe if
each variable occurring in a negative subgoal also occurs in a positive one.

In the following, we will focus on boolean queries because having a non-empty ans
part can only make the query containment problem easier. For the same reason, we can
consider that queries contain no constants. Note however that the framework and all
results hold for general CQ¬.

In [LM07], CQ¬ are seen as labeled graphs. This allows to rely on graph notions
that have no simple equivalent in logic (such as pure subgraphs, see later). More pre-
cisely, a CQ¬ q is represented as a bipartite, undirected and labeled graph Q, called
polarized graph (PG), with two kinds of nodes: term nodes and relation nodes. Each
term of the query becomes a term node, that is unlabeled if it is a variable, otherwise
it is labeled by the constant itself. A positive (resp. negative) subgoal with relation r

Containment of Conjunctive Queries with Negation: Algorithms and Experiments 3

becomes a relation node labeled +r (resp. −r) and it is linked to the nodes assigned to
its terms. The labels on edges correspond to the position of each term in the subgoal
(see Figure 1 for an example). For simplicity, the subgraph corresponding to a subgoal,
i.e. induced by a relation node and its neighbors, is also called a subgoal. We note it
+r(t1, . . . , tk) (resp. −r(t1, . . . , tk)) if the relation node has label +r (resp. −r) and
list of neighbors t1, . . . , tk. We note ∼r(t1, . . . , tk) a subgoal that can be positive or
negative, i.e. ∼ ∈ {+,−}. Subgoals +r(t1, . . . , tk) and −r(u1, . . . , un) with the same
relation but different signs are said to be opposite. Opposite Subgoals +r(t1, . . . , tk)
and −r(t1, . . . , tk) with the same list of arguments are said to be contradictory. Given
a relation node label (resp. subgoal) l, l denotes the complementary relation node label
(resp. subgoal) of l, i.e. it is obtained from l by reversing its sign. Queries are denoted by
small letters (q1 and q2) and the associated graphs by the corresponding capital letters
(Q1 and Q2). We note Q1 v Q2 iff q1 v q2. A PG is consistent if it does not contain
two contradictory subgoals.

Homomorphism is a core notion in this work. A homomorphism h from a PG Q2

to a PG Q1 is a mapping from nodes of Q2 to nodes of Q1, which preserves bipartition
(the image of a term -resp relation- node is a term -resp. relation- node), preserves
edges (if rt is an edge with label i in Q2 then h(r)h(t) is an edge with label i in Q1),
preserves relation node labels (a relation node and its image have the same label) and
can instantiate term node labels (if a term node is labeled by a constant, its image has
the same label, otherwise there is no constraint on the label of its image). Note that this
notion corresponds exactly to the well-known query homomorphism defined on positive
conjunctive queries; it can be seen as an extension of query homomorphism to negative
subgoals.

When there is a homomorphism h from Q2 to Q1, we say that Q2 maps to Q1 by h.
Q2 is called the source graph and Q1 the target graph. If Q2 and Q1 have only positive
subgoals, Q1 v Q2 iff Q2 maps to Q1. When we also consider negative subgoals, only
one side of this property remains true: if Q2 maps to Q1 then Q1 v Q2 ; the converse
is false, as shown in Example 1.

Example 1. See Figure 1:Q2 does not map toQ1 butQ1 v Q2. Indeed, if we complete
q1 w.r.t. relation p, we obtain the union of four queries q1,1 = ans()← p(t)∧ s(t, u)∧
s(u, v)∧s(v, w)∧¬p(w)∧p(u)∧p(v), q1,2 = ans()← p(t)∧s(t, u)∧s(u, v)∧s(v, w)∧
¬p(w)∧¬p(u)∧p(v), q1,3 = ans()← p(t)∧s(t, u)∧s(u, v)∧s(v, w)∧¬p(w)∧p(u)∧
¬p(v) and q1,4 = ans()← p(t)∧s(t, u)∧s(u, v)∧s(v, w)∧¬p(w)∧¬p(u)∧¬p(v).
Each of the queries is a way of completing q1 w.r.t. p. Q2 maps to each of the graphs
associated with them. Thus q1 is contained in q2.

One way to solve CQC¬ is therefore to generate all “complete” PGs obtained from
Q1 using relations appearing in Q1, and then to test if Q2 maps to each of these graphs.

Definition 1 (Complete graph and completion). Let Q be a consistent PG. It is com-
plete w.r.t. a set of relations P , if for each p ∈ P with arity k, for each k-tuple of
term nodes (not necessarily distinct) t1, . . . , tk in Q, it contains +p(t1, . . . , tk) or
−p(t1, . . . , tk). A completion Q′ of Q is a PG obtained from Q by repeatedly adding
new relation nodes (on term nodes present in Q) without yielding inconsistency. Each
addition is a completion step. A completion of Q is called total if it is a complete graph
w.r.t. the set of relations considered, otherwise it is called partial.

4 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

Q1

Q2

+p

+s+s +s

−p

+p

+s

−p

x y

1 1

1 1

1 1 22 2 1

1 2

ut v w

q1 = ans()← p(t) ∧ s(t, u) ∧ s(u, v) ∧ s(v, w) ∧ ¬p(w)
q2 = ans()← p(x) ∧ s(x, y) ∧ ¬p(y)

Fig. 1. Polarized graphs associated with q1 and q2.

Theorem 1. [LM07] Let Q1 and Q2 be two PGs (Q1 consistent), Q1 v Q2 iff Q2

maps to all total completions of Q1 w.r.t. the set of relations appearing in Q1.

We can further restrict the set of relations considered to those appearing in opposite
subgoals both in Q2 and in Q1 [LM07]. In the sequel, this set is called the completion
vocabulary of Q2 and Q1 and denoted V .

Let us outline previous algorithmic proposals for checking containment of CQ¬

queries in this framework. Although it is expressed in a different framework, the first
proposal [Ull97] can be recast as follows (see [LM07] for more details): it consists
of computing the set of total completions of Q1 and checking the existence of a ho-
momorphism from Q2 to each of them (say Qc

1). The complexity of this algorithm
is prohibitive: O(2(nQ1

)k×|V| × hom(Q2, Q
c
1)), where nQ1 is the number of term

nodes in Q1, k is the maximum arity of a relation, V is the completion vocabulary
and hom(Q2, Q

c
1) is the complexity of checking the existence of a homomorphism2

from Q2 to Qc
1.

Two kinds of improvements are defined in [WL03] and [LM07]: first, some neces-
sary conditions for containment are exhibited, which can be used to tentatively detect a
failure before generating completions; secondly, completions can be incrementally built
and checked.

In [WL03], the following necessary but not sufficient condition for containment is
exhibited (for safe queries but it remains true for general CQ¬): if Q1 v Q2 then
there must be a homomorphism, say h, from the positive part of Q2, say Qp

2, to Q1;
moreover, this homomorphism should not contradict the negative subgoals of Q2: for
all subgoals −r(t1, . . . , tk) in Q2, Q1 should not contain +r(h(t1), . . . , h(tk)). This
property can be used as a filter: if there is no such homomorphism from Qp

2 to Q1,
then Q1 6v Q2. It is generalized in [LM07] with the notion of pure subgraphs and
compatible homomorphism, as detailed below. Then we have: if Q1 v Q2 then, for
each pure subgraph Q′2 of Q2, there must be a compatible homomorphism from Q′2 to
Q1 w.r.t. Q2. In the following definitions, we add some notions and notations that we
will use in the sequel of this paper.

Definition 2 (pure subgraph). A PG is said to be pure if it does not contain opposite
subgoals (i.e. each relation appears only in one form, positive or negative). A pure sub-

2 Homomorphism checking is NP-complete. A brute-force algorithm solves it in O(nnQ2
Q1

),
where nQ2 is the number of term nodes in Q2.

Containment of Conjunctive Queries with Negation: Algorithms and Experiments 5

graph of Q2 is a subgraph of Q2 that contains all term nodes in Q2 (but not necessarily
all relation nodes)3 and is pure.

We will use the following notations for pure subgraphs of Q2:

– Qmax
2 denotes a pure subgraph that is maximal for inclusion;

– Q+
2 is the Qmax

2 with all positive relation nodes in Q2;
– Q−2 is the Qmax

2 with all negative relation nodes in Q2;
– QMax

2 denotes a Qmax
2 of maximal cardinality.

Note that if a relation label +r or −r in Q2 does not appear in Q1 then Q1 6v Q2.
Thus, we assume in the following that all relation labels in Q2 appear in Q1, which
implies that the subgraph induced by the relations not in V is pure, and allQmax

2 contain
it. Hence, we haveQp

2 (the positive part ofQ2)⊆ Q+
2 but the contrary is generally false.

Example 2. See Figure 1: there are two Qmax
2 (which are also of maximal cardinality):

the first one is Q+
2 , which contains +p(x) and +s(x, y), and the second one is Q−2 ,

which contains −p(x) and +s(x, y) (because V = {p}, thus s 6∈ V).

Intuitively, a homomorphism from a pure subgraph of Q2 to Q1 is “compatible” if
it can be extended to a homomorphism from Q2 to a total completion of Q1.

Definition 3 (Border, Compatible homomorphism). Let Q2 and Q1 be two PGs and
Q′2 be a pure subgraph of Q2. The relation nodes of Q2 \ Q′2 are called border rela-
tion nodes of Q′2 w.r.t. Q2. A homomorphism h from Q′2 to Q1 is said to be compatible
w.r.t. Q2 if, for each border relation node inducing the subgoal ∼ r(t1, . . . , tk), the
opposite subgoal ∼r(h(t1), . . . , h(tk)) is not in Q1 and for each pair of opposite bor-
der relation nodes respectively on (c1, . . . , ck) and (d1, . . . , dk), (h(c1), . . . , h(ck)) 6=
(h(d1), . . . , h(dk)).4

Now, let us consider the search space leading from Q1 to its total completions and
partially ordered by the relation “subgraph of”. In [LM07], this space is explored as a
binary tree with Q1 as root. The children of a node are obtained by adding, to the graph
associated with this node (say Q′1), a relation node in positive and negative form (each
of the two new graphs is thus obtained by a completion step fromQ′1). The aim is to find
a set of partial completions covering the set of total completions of Q1, i.e. the question
becomes: “is there a set of partial completions {Q1,1, . . . , Q1,n} ofQ1 such that (1)Q2

maps to each Q1,i for i = 1 . . . n; (2) each total completion Qc
1 of Q1 is covered by a

Q1,i (i.e.Q1,i is a subgraph ofQc
1) ?”. After each completion step, it is checked whether

Q2 maps to the current partial completion: if yes, this completion is one of the sought
Q1,i, otherwise the exploration continues. Figure 2 illustrates this method on the very
easy Example 1. Two graphs Q1,1 and Q1,2 are built from Q1, respectively by adding

3 Note that this subgraph does not necessarily correspond to a set of subgoals because some term
nodes may be isolated.

4 The last condition is necessary to ensure that a compatible homomorphism from Q′
2 to Q1

can be extended to a homomorphism from Q2 to a total completion of Q1. However, it is
necessarily satisfied ifQ′

2 is a pure subgraph that is maximal for inclusion. We only need it for
the second approach presented in this paper.

6 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

+p(v) and −p(v). Q2 maps to Q1,1, thus there is no need to complete Q1,1. Q2 does
not map to Q1,2: two graphs Q1,3 and Q1,4 are built from Q1,2, by adding +p(u) and
−p(u) to Q1,2. Q2 maps to Q1,3 and to Q1,4, respectively. Finally, the set proving that
Q1 is included in Q2 is {Q1,1, Q1,3, Q1,4} (and there are four total completions of Q1

w.r.t. p). Algorithm 1 implements this method (the numbers in the margin are relative
to the refinements studied in Section 3.2).

1,1Q Q1,2

Q1,3 Q1,4

Q1

+p(v) −p(v)

+p(u) −p(u) +p(u) −p(u)

Fig. 2. The search tree of Example 1. Each black dot represents a Qc
1 and each square a Q1,i.

Algorithm 1: recCheck(Q1)
Input: a consistent PG Q1

Data: Q2, V
Result: true if Q1 v Q2, false otherwise
begin

if there is a homomorphism from Q2 to Q1 then return true ;
if Q1 is complete w.r.t. V then return false ;

(3) *** Filtering step ***\
(1) Choose r ∈ V and t1, . . . , tk in Q1 such that +r(t1, . . . , tk) 6∈ Q1 and

−r(t1, . . . , tk) 6∈ Q1 ;
Let Q′1 be obtained from Q1 by adding +r(t1, . . . , tk) ;
Let Q′′1 be obtained from Q1 by adding −r(t1, . . . , tk) ;

(2) return recCheck(Q′1) AND recCheck(Q′′1) ;
end

The algorithm proposed in [WL03] can be seen as exploring the same space of
graphs but in a radically different way. At each step, it generates all homomorphisms
from Qp

2 to the current Q1. Then, for each compatible homomorphism in this set,
say h, and for each negative subgoal −p(t1, . . . , tk) in Q2 that cannot be mapped to
Q1 by extending h, a new query to test is generated from Q1 by adding the positive
subgoal +p(h(t1), . . . , h(tk)); intuitively, the idea is that each total completion of Q1

contains either +p(h(t1), . . . , h(tk)) or −p(h(t1), . . . , h(tk)); if −p(h(t1), . . . , h(tk))
were present, then h could be extended to −p(h(t1), . . . , h(tk)), thus it remains to test
the +p(h(t1), . . . , h(tk)) case. In Example 1 (see also Figure 1), only one homomor-
phism can be found at each step: the homomorphism {x 7→ t, y 7→ u} from Qp

2 to Q1

leads to Q′1 obtained by adding +p(u); at the next step, {x 7→ u, y 7→ v} from Qp
2 to

Q′1 leads to Q′′1 obtained by adding +p(v); finally, there is a homomorphism from Qp
2

to Q′′1 that can be extended to the negative subgoal, thus no new graph is generated.
This algorithm can be seen as developing an and/or tree: a homomorphism h leads to
success if all queries Q′i directly generated from it lead to containment; a query Q′i
leads to containment if there is a homomorphism from Qp

2 to Q′pi leading to success.

Containment of Conjunctive Queries with Negation: Algorithms and Experiments 7

The and/or tree is traversed in a breadth-first manner. Contrarily to Algorithm 1, partial
completions built by this algorithm do not partition the space (basically because only
positive subgoals are generated), which leads to the problem of detecting that a newly
generated graph is not the same as a graph already generated (see the discussion in
[LM07] for more details). In this paper, we focus in refining the algorithm in [LM07].
The experimental comparison of both ways of exploring the space of graphs remains to
be done.

3 Experimental methodology and algorithm refinements
In this section, we briefly present our experimental methodology, then we propose and
analyze three refinements of Algorithm 1.

3.1 Methodology

Due to the lack of benchmarks or real-world data available for the studied problem, we
built a random generator of polarized graphs. The chosen parameters are as follows:

– the number of term nodes (i.e. the number of terms in the associated query)5;
– the number of distinct relations;
– the arity of these relations (set at 2 in the following experiments);
– the density per relation, which is, for each relation r, the ratio of the number of

subgoals with relation r in the graph to the number of subgoals with relation r in a
total completion of this graph w.r.t. {r}.

– the percentage of negation per relation, which is, for each relation r, the percentage
of negative subgoals with relation r among all subgoals with relation r.

An instance of CQC¬ is obtained by generating a pair (Q1, Q2) of PGs correspond-
ing to safe queries. In this paper, we chose the same number of term nodes and the same
percentage of negation for both graphs. In the sequel we adopt the following notations:
nbT represents the number of term nodes, nbR the number of distinct relations and SD
(resp. TD) the Source (resp. Target) graph Density per relation. The difficulty of the
problem led us to restrict the value of nbT to between 5 and 8 (5 for the first experi-
ments, 8 after improvement 1 which greatly decreases the running time).

In order to discriminate between different techniques, we first experimentally stud-
ied the influence of the parameters on the “difficulty” of instances. We measured the dif-
ficulty in three different ways: the running time, the size of the search tree and the num-
ber of homomorphism checks (see [BLM10] for more details). Concerning the negation
percentage, we checked that the maximal difficulty is obtained when there are as many
negative relation nodes as positive relation nodes. One can expect that increasing the
number of relations occurring in graphs increases the difficulty, in terms of running
time as well as the size of the searched space. Indeed, the number of completions in-
creases exponentially (there are (2nQ1

2

)nbR total completions for nbR binary relations).
These intuitions are only partially validated by the experiments: see for instance Table

5 We do not generate constants; indeed, constants tend to make the problem easier to solve be-
cause there are fewer potential homomorphisms; moreover, this parameter does not influence
the studied heuristics.

8 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

1, which shows, for each number of relations, the density values at the difficulty peak.
We observe that the difficulty increases up to a certain number of relations (3 here, with
a CPU time of 14809 and a Tree size of 216911) and beyond this value, it continu-
ously decreases. Moreover, the higher the number of relations, the lower the SD that
entails the greatest difficulty peak, and the higher the difference between SD and TD
at the difficulty peak. In following experiments, we always take the SD and TD values
corresponding to a difficulty peak.

nbR SD TD CPU time (ms) Tree size
1 0.24 0.24 19 82
2 0.12 0.24 7168 111540
3 0.08 0.4 14809 216911
4 0.08 0.68 12793 119911
5 0.08 0.8 4556 42566

Table 1. Influence of the number of relations (nbT=5).

For each value of the varying parameter, we considered 500 instances and com-
puted the mean search cost of the results on these instances (with a timeout set at 5
minutes). The program is written in Java. The experiments were performed on a Sun
fire X4100 Server AMD Opteron 252, equipped with a 2.6 GHz Dual-Core CPU and
4G of RAM, under Linux. In the sequel we only show the CPU time when the three
difficulty measures are correlated.

3.2 Refinements

We now analyze three refinements of Algorithm 1, which concern the following aspects:

1. the choice of the next subgoal to add;
2. the choice of the child to explore first;
3. dynamic filtering at each node of the search tree.

1. Since the search space is explored in a depth-first manner, the choice of the next sub-
goal to add, i.e. ∼r(t1, . . . , tk) in Algorithm 1 (Point 1), is crucial. A brutal technique
consists of choosing r and t1, . . . , tk randomly. Our proposal is to guide this choice by
a compatible homomorphism, say h, from a Qmax

2 to the current Q1. More precisely,
the border relation nodes ∼r(e1, . . . , ek) w.r.t. this Qmax

2 can be divided into two cate-
gories. In the first category, we have the border nodes s.t. ∼r(h(e1), . . . , h(ek)) ∈ Q1,
which can be used to extend h; if all border nodes are in this category, h can be
extended to a homomorphism from Q2 to Q1. The choice of the subgoal to add is
based on a node ∼r(e1, . . . , ek) in the second category: r is its relation symbol and
t1, . . . , tk = h(e1), . . . , h(ek) are its neighbors (note that neither∼r(h(e1), . . . , h(ek))
nor ∼r(h(e1), . . . , h(ek)) is in Q1 since ∼r(e1, . . . , ek) is in the second category and
h is compatible). Intuitively, the idea is to give priority to relation nodes potentially
able to transform this compatible homomorphism into a homomorphism from Q2 to a
(partial) completion of Q1, say Q′1. If so, all completions including Q′1 are avoided.

Figure 3 shows the results obtained with the following choices:

Containment of Conjunctive Queries with Negation: Algorithms and Experiments 9

– random choice;
– random choice + filter: random choice and Q+

2 as filter (i.e. at each recCheck
step a compatible homomorphism from Q+

2 to Q1 is looked for: if none exists, the
false value is returned);

– guided choice: Q+
2 used both as a filter and as a guide.

Fig. 3. Influence of the completion choice : nbT=5, nbR=2, SD=0.12

Note that the guided choice comes with an implicit filter: indeed, when a compatible
homomorphism from Q+

2 to a partial completion of Q1 (say Q′1) is sought, the false
value is returned if none exists (since Q′1 6v Q2). In order to only discriminate choice
heuristics, we also considered a random choice with a filter. As expected, the guided
choice is always much better than the random choice (with or without filter).

2. Experiments have shown that the order in which the children of a node, i.e. Q′1
and Q′′1 in Algorithm 1 (Point 2), are explored is important. Assume that Point 1 in
Algorithm 1 relies on a guiding subgraph. Consider Figure 4, where Q+

2 is the guiding
subgraph (hence the border is composed of negative relation nodes), “Extension” means
“Q′′1 first” and “Contradiction” means the reverse order: we see that it is always better to
explore Q′1 before Q′′1 . If we take Q−2 as the guiding subgraph, then the inverse order is
better. More generally, let∼r(e1, . . . , ek) be the border node that defines the subgoal to
add. Let us call h-extension (resp. h-contradiction) the graph built from Q1 by adding
∼r(h(e1), . . . , h(ek)) (resp. ∼r(h(e1), . . . , h(ek))). See Example 3. It is better to first
explore the child corresponding to the h-contradiction. Intuitively, by contradicting the
compatible homomorphism found, this gives priority to failure detection.

Example 3. See Figure 1. Q+
2 = {+p(x),+s(x, y)}. Let Q+

2 be the guiding subgraph.
The only border node of Q+

2 w.r.t. Q2 is −p(y). h = {x 7→ t, y 7→ u} is the only
compatible homomorphism from Q+

2 to Q1. The h-extension (resp. h-contradiction) is
obtained by adding +p(u) (resp. −p(u)).

10 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

Fig. 4. Influence of the exploration order : nbT=8, nbR=3, SD=0.06

3. The last improvement consists of performing dynamic filtering at each node of the
search tree. Once again, the aim is to detect a failure sooner. More precisely, we consider
a set of Qmax

2 and check if there is a compatible homomorphism from each element in
this set to the newly generated graph. Table 2 shows the obtained results (at a difficulty
peak) with the following configurations:

– Max: QMax
2 as guide and no filter (other than QMax

2);
– Max-Max: QMax

2 as guide and QMax
2 (the subgraph on the relation nodes in Q2 \

QMax
2) as filter;

– Max-all: QMax
2 as guide and all Qmax

2 as filters.

Unsurprisingly, the stronger the dynamic filtering, the smaller the size of the search
tree. The CPU time is a bit higher for Max-all but this configuration checks much more
homomorphisms than the others. Since our current algorithm for (compatible) homo-
morphism checking can be considerably improved, these results show that Max-all is
the best choice.

Configuration CPU time (ms) Tree size Hom check
Max 7404 3810 5539

Max-Max 7421 3765 6209
Max-all 8427 2249 13331

Table 2. Influence of the dynamic filtering: nbT=8, nbR=3, SD=0.06, TD=0.54

The algorithm finally obtained is called recCheckPlus and it is shown in Algo-
rithm 2. It is initially called with (Q1, ∅). The second parameter is used to memorize
the compatible homomorphism found for the father of the current node, in the case
where this node is an h-extension of its father (see Q′′1 in the algorithm); otherwise,
the compatible homomorphism for its father has been contradicted and a new one has
to be computed, which is done in the chooseCompletionSubgoal subalgorithm. More

Containment of Conjunctive Queries with Negation: Algorithms and Experiments 11

precisely, this subalgorithm returns a completion literal as explained in Point 1 and a
new compatible homomorphism h if needed.

Algorithm 2: recCheckPlus(Q1, h)
Input: a consistent PG Q1 and a compatible homomorphism h from the guiding subgraph

to the father of Q1 (empty for the root)
Data: Q2, V
Result: true if Q1 v Q2, false otherwise
begin

if there is a homomorphism from Q2 to Q1 then return true ;
if Q1 is complete w.r.t. V then return false ;

(3) if dynamicFiltering(Q1) = failure then return false ;
(1) l, h← chooseCompletionSubgoal(Q1, h) ;

Let Q′
1 be obtained from Q1 by adding l ;

Let Q′′
1 be obtained from Q1 by adding l ;

(2) return recCheckPlus(Q′
1, ∅) AND recCheckPlus(Q′′

1 , h) ;
end

4 Second approach

In this section, we present the second method, which consists of translating the CQC¬

problem into the problem of checking unsatisfiability of a propositional formula in con-
junctive normal form (i.e. a conjunction of disjunctions of propositional literals), called
the UNSAT problem. This method is then experimentally compared to recCheckPlus.

4.1 Method

Let us first explain the main ideas of this method. Instead of exploring the space of
graphs in a depth-first manner in order to find a set of partial completions that covers all
total completions, a candidate covering set is built at once; it is built from all compatible
homomorphisms from a specific pure subgraph of Q2 to Q1; this candidate is indeed
a covering set if and only if a formula built from it is valid; this formula is built by
considering for each compatible homomorphism the relation nodes that should be added
toQ1 to obtain a homomorphism fromQ2. More specifically, we proceed in three steps:

1. Compute all compatible homomorphisms from Q′2 (the special subgraph of Q2) to
Q1;

2. Build a propositional formula Fprop, that is the disjunction of, for each compatible
homomorphism h of Step 1, the conjunction C of missing subgoals in Q1 for h to
be a homomorphism from Q2 to Q1 ∧ C;

3. Check if Fprop (an UNSAT instance) is unsatisfiable: if yes, then Q1 v Q2, other-
wise Q1 6v Q2.

Step 1: Compute the candidate covering set. The method is based on a specific pure
subgraph of Q2, which necessarily maps to the Q1 part of each total completion of Q1

when Q1 v Q2 (note that this is not true for all pure subgraphs of Q2).

12 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

Definition 4 (Stable subgraph). The stable subgraph of Q2, denoted Qs
2, contains all

term nodes in Q2 and all subgoals in Q2 with a relation that does not appear in the
completion vocabulary of Q1 and Q2 (note that Qs

2 is included in all Qmax
2).

Since the stable subgraph does not contain relations belonging to subgoals added to
Q1 during completion, we have the desired property:

Property 1. Let Q1 and Q2 be two PGs. If h is a homomorphism from Q2 to a total
completion of Q1, then h is a compatible homomorphism from Qs

2 to Q1.

Furthermore, we can replace, without incidence on the CQC¬ problem, each vari-
able in Q1 by a new constant. This modification preserves all homomorphisms to Q1.
In the sequel, we consider that Q1 contains only constants. In particular, the query q1
in Example 1 becomes: q1 = ans()← p(a)∧ s(a, b)∧ s(b, c)∧ s(c, d)∧¬p(d)). This
will allow to obtain a propositional formula in Step 2.

Example 4. Let Q1 and Q2 be PGs of Figure 1. Qs
2 = s(x, y). There are 3 compatible

homomorphisms from Qs
2 to Q1 : h1 = {x 7→ a, y 7→ b}, h2 = {x 7→ b, y 7→ c} and

h3 = {x 7→ c, y 7→ d}.

Step 2: Build the propositional formula. With each compatible homomorphism com-
puted at Step 1, we build a conjunction of the “missing” subgoals in Q1. Each partial
completion of Q1 obtained by adding these subgoals to Q1 is an element of the candi-
date covering set.

Definition 5 (Minimal conjunction). The minimal conjunction of Q1 w.r.t. a com-
patible homomorphism h, denoted Cm, is the conjunction composed of the atom �6

and the subgoals ∼ r(h(t1), . . . , h(tk)) such that ∼ r(t1, . . . , tk) ∈ (Q2 \ Qs
2) and

∼r(h(t1), . . . , h(tk)) 6∈ Q1.

Example 5. For h1 : Cm
1 = ¬p(b) ; for h2 : Cm

2 = p(b) ∧ ¬p(c) ; for h3 : Cm
3 = p(c).

Then we build the entire formula, which is the disjunction of all minimal conjunctions:

Definition 6 (Disjunction of Stable Minimal Conjunctions (DSMC)). We call
DSMC(Q2, Q1) the disjunction of the atom �7 and all minimal conjunctions w.r.t.
the compatible homomorphisms from Qs

2 to Q1 (i.e. � ∨ Cm
1 ∨ . . . ∨ Cm

i , denoted∨
Cm).

Example 6. DSMC(Q2, Q1) = ¬p(b) ∨ (p(b) ∧ ¬p(c)) ∨ p(c).

The theorem validating this approach is the following (Q1 is assumed to be consistent):

Theorem 2. Q1 v Q2 iff DSMC(Q2, Q1) is valid.

The following definitions and lemmas are used to prove the theorem.

6 � is the tautology: it is necessary when h is a homomorphism from Q2 to Q1, otherwise the
conjunction would be empty.

7 � is the absurd literal: it is necessary when there is no compatible homomorphism from Qs
2 to

Q1, otherwise the disjunction would be empty.

Containment of Conjunctive Queries with Negation: Algorithms and Experiments 13

Definition 7 (Total conjunction). Let Qc
1 be a total completion of Q1. The total con-

junction of Qc
1, denoted C, is the conjunction of all subgoals ∼r(t1, . . . , tk) ∈ (Qc

1 \
Q1).

Definition 8 (Disjunction of Total Conjunctions (DT C)). We call DT C(Q1) the dis-
junction of all total conjunctions of Q1 (i.e. C1 ∨ . . . ∨ Cj).
Lemma 1. DT C(Q1) is valid.
Lemma 2. If Q1 v Q2 then for all C ∈ DT C(Q1), there is a Cm ∈ DSMC(Q2, Q1)
such that Cm ⊆ C (i.e. all subgoals in Cm are also in C).
Property 2. LetCm be a minimal conjunction ofQ2 w.r.t. a compatible homomorphism
from Qs

2 to Q1. Q1 ∧ Cm v Q2.

Proof of Theorem 2:
⇐= Since DSMC(Q2, Q1) is valid, Q1 ≡ Q1 ∧

∨
Cm ≡

∨
(Q1 ∧ Cm). Accord-

ing to Property 2,
∨
(Q1 ∧ Cm) v Q2. Thus Q1 v Q2.

=⇒ Let Q1 v Q2. According to Lemma 2, for all C ∈ DT C(Q1), there is Cm ∈
DSMC(Q2, Q1) s.t. C = Cm ∧C ′ where C ′ is a conjunction of subgoals. By absurd:
AssumeDSMC(Q2, Q1) is not valid. Then there is an interpretation I s.t. for allCm ∈
DSMC(Q2, Q1), I |= ¬Cm.Thus for all C ∈ DT C(Q1), I |= ¬C.Thus DT C(Q1) is
not valid, which contradicts Lemma 1. Hence DSMC(Q2, Q1) is valid. ut

Step 3: Translate into UNSAT. The negation of DSMC(Q2, Q1) is a propositional
conjunctive normal form, which enables us to use a SAT solver.
Example 7. CF = DSMC(Q2, Q1) = p(b) ∧ (¬p(b) ∨ p(c)) ∧ ¬p(c). CF is unsatis-
fiable, thus DSMC(Q2, Q1) is valid and Q1 v Q2.

4.2 Algorithm and experiments

Algorithm 3: UNSATCheck(Q1)
Input: a consistent PG Q1

Data: Q2, Qs
2

Result: true if Q1 v Q2, false otherwise
begin
DSMC(Q2, Q1)← � ;
h1, . . . , hn ← findAllCompatibleHomomorphisms(Q2, Q

s
2, Q1) ;

foreach hi, i = 1...n do
foreach border node ∼r(t1, . . . , tk) ∈ Q2 \Qs

2 do
Cm

i ← � ;
if ∼r(hi(t1), . . . , hi(tk) 6∈ Q1 then

Cm
i ← Cm

i ∧ ∼r(hi(t1), . . . , hi(tk)) ;

DSMC(Q2, Q1)← DSMC(Q2, Q1) ∨ Cm
i ;

return UNSAT(DSMC(Q2, Q1))
end

Algorithm 3 implements this method. The UNSAT call uses the well-known Sat4J
solver8.

8 http://www.sat4j.org/

14 Khalil Ben Mohamed, Michel Leclère, and Marie-Laure Mugnier

To compare UNSATCheck and recCheckPlus, we used the size of the vocabu-
lary completion (directly correlated with the size of the stable subgraph) as the varying
parameter. Indeed, this parameter is crucial for UNSATCheck (note that this param-
eter has also an influence for recCheckPlus): the bigger the stable subgraph, the
lower the number of compatible homomorphisms and then the size of the obtained
formula. We built 1000 random instances for each value of |V| (for each relation, the
percentage of negation is equal to 0%, 50% or 100%) and compared UNSATCheck and
recCheckPlus on them: see Table 3.9

We observe that for both algorithms the maximal difficulty is for |V| = 3. Then
UNSATCheck is the worst because the stable subgraph contains only term nodes, thus
the number of compatible homomorphisms and then the size of the obtained formula are
exponential in the sizes of the initial queries. As expected, the increase of the size of the
stable graph makes the algorithms better. For |V| = 2, UNSATCheck is a little better
than recCheckPlus. When the size of the stable graph is the highest, the results for
both algorithms are similar. These results show that the choice of an algorithm rather
than another depends on the size of the stable graph. These are only preliminary results,
further experiments are needed to refine this choice.

Size of V Size of the stable subgraph recCheckPlus CPU time UNSATCheck CPU time
Total 1st step 2nd step 3rd step

3 0 6482 27038 10541 15378 1119
2 6 800 444 172 229 43
1 12 5 20 9 2 9
0 18 1 2 2 0 0

Table 3. Detailed comparison of the two algorithms : nbT=8, nbR=3, SD=0.06, TD=0.51.

5 Perspectives

In this paper, we have refined the algorithm proposed in [LM07] and checked experi-
mentally several choices. These refinements heavily rely on special subgraphs, called
pure subgraphs. Using pure subgraphs of maximal cardinality as guiding and filtering
graphs seems a good choice. However, the size of pure subgraphs is not the “ultimate”
criterion, as shown in Figure 5: for each instance, we ran recCheckPlus with all
possible QMax

2 (they all have the same size). The Maximum (resp. Minimum) curve
is obtained by choosing, for each instance, the worst (resp. best) QMax

2 , i.e. that leads
to the highest (resp. lowest) CPU time. We conclude that the choice of the QMax

2 used
to guide among all QMax

2 is a determining step. However, finding criteria allowing to
better discriminate between pure graphs is an open issue.

In [WL03] another way of exploring the query space is proposed. The associated
algorithm is much more complex to follow and implement than recCheck. Further-
more, some parts were not specified (for instance how to avoid generating a query that
was already generated). We are currently implementing this algorithm, while integrat-
ing the improvements designed for recCheck.

9 Note that 8 term nodes is the highest value that UNSATCheck can deal with (with |V| = 3
and our implementation): beyond 8, the memory space explodes.

Containment of Conjunctive Queries with Negation: Algorithms and Experiments 15

Fig. 5. Comparison between the worst and the best choice of QMax
2 : nbT=8, nbR=3, SD=0.06

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The Logical Level.
Addison-Wesley, 1995.

[ASU79] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational expressions.
SIAM J. Comput., 8(2):218–246, 1979.

[BLM10] K. Ben Mohamed, M. Leclère, and M.-L. Mugnier. Deduction in existential con-
junctive first-order logic: an algorithm and experiments. Technical Report RR-10010,
LIRMM, mar 2010.

[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in
relational databases. In 9th ACM Symposium on Theory of Computing, pages 77–90,
1977.

[CM09] M. Chein and M.-L. Mugnier. Graph-based Knowledge Representation and
Reasoning—Computational Foundations of Conceptual Graphs. Advanced Informa-
tion and Knowledge Processing. Springer, 2009.

[FNTU07] C. Farré, W. Nutt, E. Teniente, and T. Urpı́. Containment of conjunctive queries over
databases with null values. In ICDT 2007, volume 4353 of LNCS, pages 389–403.
Springer, 2007.

[Hal01] A. Y. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–
294, 2001.

[LM07] M. Leclère and M.-L. Mugnier. Some Algorithmic Improvments for the Containment
Problem of Conjunctive Queries with Negation. In Proc. of ICDT’07, volume 4353 of
LNCS, pages 401–418. Springer, 2007.

[LS93] A. Y. Levy and Y. Sagiv. Queries independent of updates. In VLDB ’93: Proceedings
of the 19th International Conference on Very Large Data Bases, pages 171–181, San
Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[Sai08] L. Sais. Problème SAT : progrès et défis. Hermes, 2008.
[Ull97] J. D. Ullman. Information Integration Using Logical Views. In Proc. of ICDT’97,

volume 1186 of LNCS, pages 19–40. Springer, 1997.
[WL03] F. Wei and G. Lausen. Containment of Conjunctive Queries with Safe Negation. In

International Conference on Database Theory (ICDT), 2003.

View publication stats

https://www.researchgate.net/publication/221464948

