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Abstract. In this paper we propose a novel approach to represent
coalitional games, called a Coalition-Flow Network (CF-NET), that
builds upon a generalization of the network flow literature. Specifi-
cally, this representation is based on our observation that the coalition
formation process can be viewed as the problem of directing the flow
through a network where every edge has certain capacity constraints.

1 Introduction
One of the key issues in multi-agent coalition formation [2] is the
Coalition Structure Generation (CSG) problem, which involves di-
viding the set of agents into subsets (i.e., coalitions) so that the overall
efficiency of the system is maximized. Such a division is referred to
as a coalition structure. This problem has recently attracted consider-
able attention in the multi-agent system literature [6, 5, 4]. The input
is typically represented using a characteristic function which assigns
a value for every possible coalition representing its optimal perfor-
mance. Such representation of coalitional games is widely known as
the Characteristic Function Game (CFG) representation.

A key issue when developing efficient solutions to the CSG prob-
lem is how the game is represented. This is important since a straight-
forward listing of the values of all the possible coalitions, as is the
case with the conventional CFG representation, requires a space of
exponential size (e.g., the fact that two agents are identical is com-
pletely disregarded when using this representation). In contrast, a
well-crafted representation may be able to exploit the structure of
the system and, therefore, model it in a much more concise manner.
This can also facilitate significantly more effective solutions to the
computational problem at hand [1, 2, 3]. In this paper we address
the above issue by proposing a novel approach to model coalitional
games based on a generalization of the network flow literature[7].

2 Preliminaries
A characteristic function game (CFG) representation of a coalitional
game is a tuple (A, v), where A = {a1, . . . , an} is a set of agents
and v : 2A → R is a characteristic function that assigns to every
coalition its value expressed as a real number. Intuitively, v(C) is the
total payoff that the members of coalition C can attain when working
together and coordinating their activities. A usually implicit game
rule is that every agent can belong to exactly one coalition. Given
this, let us consider the following example:

Example 1 (CFG) There are four unmanned aerial vehicles
(UAVs) patrolling an area in order to locate potential enemies. The
cooperation between aircrafts is desirable, as the quality of the
data transmitted to the base is substantially enhanced if more UAVs
monitor the same object. However, suppose that the radio equipment

Figure 1: Components of the CF-NET network
fitted to each aircraft allows for effective communication, i.e., to
create a profitable coalition, with only one other aircraft. The CFG
representation of this game is (A, v), where A = {a1, a2, a3, a4}
and a possible characteristic function v is (assuming symmetry):

v({a1}) = 1 v({a1, a3}) = 2.5 v({a1, a2, a3}) = 3.5
v({a2}) = 1 v({a1, a4}) = 2.5 v({a1, a2, a4}) = 3.5
v({a3}) = 1 v({a2, a3}) = 2.5 v({a1, a3, a4}) = 3.5
v({a4}) = 1 v({a2, a4}) = 2.5 v({a2, a3, a4}) = 3.5
v({a1, a2})=2.5 v({a3, a4}) = 2.5 v({a1, a2, a3, a4})=4.8

3 The CF-NET Representation
In this section we propose our representation for coalitional games,
which is based on a generalization of the network flow literature.
Specifically, a network is a directed graph with a starting node (a
source) and an end node (a sink). Moreover, each edge in the net-
work has a certain capacity associated with it. Now, let us assume
that there is a flow in the network which must satisfy the following
two conditions: (1) the flow that goes through an edge must not ex-
ceed the capacity of that edge and (2) for every node other than the
source and the sink, the total flow that enters that node must be equal
to the total flow that leaves it. The second condition is called a flow
conservation rule. Subject to the above two conditions, the problem
of directing the flow through the network so that it is maximized is
widely known as the maximum flow problem.

Our representation, which we call Coalition-Flow Network (CF-
NET), is a generalization of flow networks, defined as follows:

Definition 2 A Coalition-Flow Network (CF-NET) is a tuple
(N , E , max, min), where (N , E) is an acyclic digraph with a set
of nodesN and a multiset of directed edges E . Specifically:

1. The set of nodes N is the union of the following disjoint sets: Ns

contains the source node from which the flow is pushed into the
network; Nk contains the sink node to which the flow needs to be
maximized; Na is the set of agent nodes which represent unique
agents; Nc is the set of coalition nodes which all are connected
directly to sink and represent subsets of agents; N t is the set of
transit nodes which also represent subsets of agents, but are not
directly connected to the sink.



Figure 2: The CF-NET representation of Example 1.

2. The underlying set of edges is E = (Ns×Na)∪(Nc×Nk)∪E′,
where E′ ⊆ {(ni, nj) : ni ∈ Na ∪N t ∧ nj ∈ Nc ∪N t ∧ ni 6=
nj}. The weight of an edge (ni, nj) ∈ E is the multiplicity of that
edge in E , which is equal to 1 unless ni ∈ Nc ∪N t, in which case
it is greater than or equal to 1.

3. Functions min : E → N+ ∪ {0}, max : E → N+ ∪ {0} denote
the minimum and maximum capacity of the edges respectively.

The nodes in Ns and Nk will simply be denoted source and sink
respectively. To visually represent our network we use the graphical
primitives shown in Figure 1. The flow that goes from the source,
through the network, to the sink will be called a CF-flow. Formally:

Definition 3 (CF-flow) Let us consider a CF-NET (N , E , max,
min). A coalition formation flow in CF-NET, or CF-flow, is a func-
tion f : E → N+ ∪ {0} satisfying the following properties:1

• ∀(ni, nj) ∈ E : min(ni, nj) ≤ f(ni, nj) ≤ max(ni, nj) ∨
f(ni, nj) = 0;

• ∀nj ∈ Na ∪Nc ∪Nt,
∑

(ni,nj)∈E

f(ni, nj) =
∑

(nj ,nk)∈E

f(nj , nk).2

Intuitively, a CF-flow can be interpreted as agents (or types of
agents) going through the network, and the process of directing that
CF-flow can be interpreted as the process of determining which coali-
tions these agents (or types) should form. Basically, a CF-flow is
pushed from the source to the agent nodes (hence E ⊃ Ns × Na),
and then to coalition nodes that connect different agent nodes, and
then finally to the sink (hence E ⊃ Nc ×Nk).

Example 4 (CF-NET example) The game from Example 1 can be
represented with the CF-NET shown in Figure 2. In particular, this
CF-NET contains four agent nodes, each assigned a value of 1 to
represent the values of singleton coalitions. The edges going from the
source to these nodes have a capacity of 1 each to reflect the fact that
every agent in Example 1 can only join one coalition. The CF-NET
also has one coalition node to which all the agents are connected. The
value assigned to this node is 0.5 when the total flow going through
it is 2 or 3, and 0.8 when that flow equals 4.

The values assigned to the coalition node in Figure 2 can be
interpreted as follows. The synergy that results from the coopera-
tion of any two or three agents is 0.5. Thus, the value of coalition
{a1, a3} equals v({a1}) + v({a3}) + 0.5 = 2.5. Similarly, the
synergy from the cooperation of all four agents is 0.8. Therefore,
v({a1, a2, a4, a4}) = 1 + 1 + 1 + 1 + 0.8 = 4.8. As can be seen

1 For convenience, for any edge (ni, nj) ∈ E, we write
f(ni, nj), min(ni, nj), max(ni, nj) as a shorthand for
f((ni, nj)), min((ni, nj)), max((ni, nj)) respectively.

2 This means an agent node or transit node satisfies the flow conservation rule.

in Figure 2, this — as well as any other — CF-NET contains im-
plicit edges connecting every agent node to the sink, to ensure that
agents can choose to play the game as singletons. It can also be seen
in Figure 2 how the possible CF-flows represent the possible ways
of partitioning the agents. For example, a CF-flow going from the
agent nodes representing a1 and a2 to the coalition node, and from
those representing a3 and a4 to the sink (through the implicit edges),
would represent the coalition structure {{a1, a2}, {a3}, {a4}}. Also
note that the weight of the edge leaving the coalition node is 2. This
means there are actually two such edges in the network. Now, con-
sider the case where the flow goes from all the agent nodes to the
coalition node. In this case, controlling the flow such that all 4 units
of the flow leave the coalition node through one edge means that the
agents will form the grand coalition (and thus get a synergy of 0.8).
On the other hand, by controlling the flow such that every two units
leave from a different edges, the agents will form two coalitions of
size 2 (thus getting, at every edge, a synergy of 0.5).

4 Conclusions
In this paper we proposed CF-NET, a representation for coalitional
games inspired by network flows. We showed that the coalition struc-
ture generation problem, given our representation, becomes similar
to the maximum flow problem.

REFERENCES
[1] X. Deng and C. Papadimitriou, ‘On the complexity of cooperative so-

lution concepts.’, Mathematical Oprerational Research, (19), 257–266,
(1994).

[2] S. Ieong and Y. Shoham, ‘Marginal contribution nets: A complact repre-
sentation scheme for coalitional games’, ACM EC-06, 170–179, (2006).

[3] T. Michalak, T. Rahwan andn J. Sroka, A. Dowell, M. Wooldridge,
P. PcBurney, and N. R. Jennings, ‘On representing coalitional games with
externalities’, in In Proceedings of the Tenth ACM conference on Elec-
tronic Commerce (ACM-EC 09), pp. 11–20, (2009).

[4] T. Rahwan and N. R. Jennings, ‘Coalition structure generation: Dynamic
programming meets anytime optimisation’, in Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 156–
161. AAAI Press / The MIT Press, (2008).

[5] T. Rahwan and N. R. Jennings, ‘An improved dynamic programming al-
gorithm for coalition structure generation’, in In Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), pp. 1417–1420, (2008).

[6] T. Rahwan, S. D. Ramchurn, V. D. Dang, and N. R. Jennings, ‘Near-
optimal anytime coalition structure generation’, in In Proceedings of
the 20th International Joint Conference on Artificial Intelligence (IJCAI
2007), ed., M. Veloso, pp. 2365–2371, (2007).

[7] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency,
Springer, 2003.


