A P

Polynomial Pregroup Grammars parse Context Sensitive Languages

Keywords: type logical grammar, pregroup grammar, proof graph, complement control, cross-serial dependency, mildly context sensitive

Pregroup grammars with a possibly infinite number of lexical entries are polynomial if the length of type assignments for sentences is a polynomial in the number of words. Polynomial pregroup grammars are shown to generate the standard mildly context sensitive formal languages as well as some context sensitive natural language fragments of Dutch, Swiss-German or Old Georgian. A polynomial recognition and parsing algorithm handles the various grammars uniformly. It also computes a planar graph for the semantic cross-serial dependencies in the case of natural languages.

Introduction

The Pregroup Calculus was introduced by Lambek (1999) as a simplification of the earlier Syntactic Calculus in [START_REF] Lambek | The mathematics of sentence structure[END_REF]. According to [START_REF] Buszkowski | Lambek Grammars based on pregroups[END_REF], a pregroup grammar consists of a finite set of basic types and a dictionary (or lexicon) containing a finite number of words, each listed with a finite number of types from the Pregroup Calculus. These finite grammars are proved in [ibidem] to be weakly equivalent to context free grammars.

Both [START_REF] Francez | Commutation Augmented Pregroup Grammars and Mildly Context Sensitive Languages[END_REF] and Stabler (2008) extend pregroup grammars to mildly context-sensitive formal languages by adding new rules and/or constraints to the Pregroup Calculus. Lambek (2008a) discusses the Dutch subordinate clause and remarks that a law of commutativity would solve the problem, but dismisses it as 'not allowed'.

The approach taken here is based on the belief that the computational efficiency and the semantic expressivity of pregroup grammars is based on the planar graphs representing derivations of the Pregroup Calculus. To keep them intact, the definition of a lexicon is relaxed allowing an infinite number of types per word. The only restriction is that some polynomial in l bounds the length of the concatenated type T 1 . . . T l associated to w 1 . . . w l for every type assignment w i : T i , 1 ≤ i ≤ l with a reduction to the sentence type. In the case of context free languages or the standard formal mildly context sensitive languages it is of degree 1, for Dutch or Swiss-German subordinate clauses it is of degree 2. The pregroup grammar generating [START_REF] Michaelis | Semilinearity as a syntactic invariant[END_REF]'s version of Old Georgian noun phrases is polynomial of degree 2. The description of the same noun phrases in [START_REF] Bhatt | Semilinearity is a syntactic invariant: A reply to Michaelis and Kracht[END_REF]) can be handled by a polynomial pregroup grammar of degree 1.

The natural language dictionaries presented here have entries that are triples formed by a word, a type and a meaning expression. The meaning of a sentence is computed from the chosen meanings of the words by substitution. The dictionaries are compositional in the sense of [START_REF] Kracht | Compositionality: The Very Idea[END_REF]. Moreover, a linear parsing and tagging algorithm generates the (cross-serial) semantic dependencies.

Section 2 recalls the Pregroup Calculus and the geometrical structure of reductions, followed by an example how to compute the meaning of a sentence involving complement control in English. Section 3 introduces polynomial pregroup grammars for formal and natural context sensitive languages. Finally, Section 4 presents the parsing algorithm based on the geometrical structure of reductions, illustrated by an example of Dutch subordinate clauses.

Pregroup Calculus, Proof Graphs and Meaning

Pregroup Calculus and Reductions

The set of pregroup types P(B) generated by a partially ordered set B = B, ≤ is the free monoid generated by the set of simple types S(B) = a (z) : a ∈ B, z ∈ Z .

The notation a (z) designates the ordered pair formed by the element a of B and the integer z . Elements T ∈ P(B) are called types. In an equality T = t 1 . . . t n , it is always understood that the lower case t i 's are simple types. In the case where n = 0, the string t 1 . . . t n is empty, denoted 1 . It is the unit for the binary operation of concatenation in the free monoid. A basic type is a simple type of the form a (0) . With a convenient lack of precision, a and a (0) are identified and the elements of B are referred to as basic types. The left adjoint and the right adjoint of a simple type t = a (z) are defined as left adjoint t ℓ = (a (z)) ℓ = (a (z-1)) right adjoint t r = (a (z)) r = (a (z+1)) .

The binary derivability relation on types, denoted →, is the smallest transitive relation containing 1 → 1 satisfying

(1) (Induced step) S a (z) T → S b (z) T (Generalized contraction) S a (z) b (z+1) T → S T (Generalized expansion) S T → S a (z+1) b (z) T
where either z is even and a ≤ b or z is odd and b ≤ a .

Note that the derivability relation → coincides with the partial order ≤ on the set of basic types. It is a partial preorder on types, but not an order, because it is not antisymmetric. Indeed, a → a(a r a) by generalized expansion and (aa r)a → a by generalized contraction, see Buszkowski (2002). Definition 1. (Dictionaries) Let Σ be a non-empty set. A pregroup dictionary for Σ based on B is a map D defined on Σ with values in the set of subsets of P(B). A type assignment of w 1 . . . w n is a sequence of types T 1 , . . . , T n for which T i ∈ D(w i), 1 ≤ i ≤ n . A lexical entry w : T of D is an ordered pair w ∈ Σ and T ∈ D(w) . A dictionary is discrete if it is based on a discrete set, i.e. a set ordered by equality.

A pregroup grammar G = D, s for Σ based on B consists of a pregroup dictionary D based on B and a distinguished basic type s ∈ B. The language of G is the following subset of Σ * L G = {w 1 . . . w n : T 1 . . . T n → s for some

T i ∈ D(w i), 1 ≤ i ≤ n} .
By definition, T → T ′ if and only if there is a sequence of types T 1 , . . . , T n such that T 1 = T , T n = T ′ and T i → T i+1 is 1 → 1 or an instance of the pairs in (1) for 1 ≤ i < n. The derivations of the Pregroup Calculus can be characterized geometrically by proof graphs that have underlinks, overlinks and vertical links, see [START_REF] Preller | Free compact 2categories[END_REF]. Underlinks are edges between simple types in the upper line (the antecedent) and stand for generalized contractions. Overlinks are edges between simple types in the lower line (the conclusion) and represent generalized expansions. Vertical links are edges between a simple type in the upper line and a simple type in the lower line. They code induced steps. The proof graph below represents a derivation from the type a ℓ a a ℓ a a ℓ a a r as to the type c r a ℓ a b r bs c c ℓ

0 0 0 0 0 0 0 0 0 × × × × × × × × × × × ! ! ! ! ! ! ! ! ! ! a ℓ a a ℓ aa ℓ aa r a s c r c a ℓ a b r b s c c ℓ .
To check grammaticality of a string of words, only derivations without instances of Generalized Expansion are to be considered, see Lambek (1999). The corresponding proof graphs are called reductions. If the set of basic types is discretely ordered the lower line and the vertical links can be omitted, as both are determined by the unlinked simple types in the upper line. Moreover, for a fixed type T , a reduction is determined by the position numbers of the links. This representation of a reduction as a set of unordered pairs of position numbers assures an easy formulation of the parsing algorithm in Section 4.

(2) s a ℓ aa ℓ aa r a s 1 2 3 4 5 6 7

{1, 6} {2, 5} {3, 4} s a ℓ aa ℓ aa r a s 1 2 3 4 5 6 7

{1, 2} {3, 6} {4, 5}
Note that there may be more than one reduction between two given types. The next subsection gives an example how a reduction to the sentence type assembles the meaning of the words into a meaning of the sentence.

Definition 2. (Reduction) Let 1 ≤ i 1 < • • • < i k ≤ n, T = t 1 . . . t n and T ′ = t i 1 . . . t i k be given. A reduction R from T to T ′ , in symbols R : T ⇒ T ′ , is a non-directed graph R = {1, . . . , n} , R such that 1) for i ∈ {1, . . . , n} -{i 1 , . . . , i k } there is exactly one j ≤ n such that {i, j} ∈ R 2) if {i, j} ∈ Rthen i j, i {i 1 , . . . , i k } , j {i 1 , . . . , i k } 3) for {i, j} ∈ R and i < l < j then there is m such that i < m < j
and {l, m} ∈ R 4) t i t j → 1 for i < j and {i, j} ∈ R .

The vertices in {1, . . . , n} are called positions and the edges in R underlinks.

Follow a few properties that intervene repeatedly in the proofs of Section 3. Definition 3. (Simple type occurrence) An arbitrary type T is said to be in D if w : T is a lexical entry for some word w . A simple type t occurs in T = t 1 . . . t n if t = t i for some i ≤ n. It occurs in D, if it occurs in the type of some lexical entry of D.

For example, a ℓ and s occur in sa ℓ , but not the basic type a . Definition 4. (Modest type) A type is modest, if all simple types occurring in it are basic, or right or left adjoints of basic types, but no basic type occurs with both its right and left adjoint. A dictionary is modest if it is based on a discrete set and every type obtained by concatenating types in the dictionary is modest.

A type T = t 1 . . .

t n is irreducible if t i t i+1 → 1 for 1 ≤ i < n . A type T ′ is an irreducible form of T if T ′ is irreducible and T → T ′ .
For example, if a and b are basic then aa ℓ b r b is modest and irreducible. Every simple type is irreducible. The type constituting the top line of (2) is not modest.

The proofs of lemmas 2.2. -2.6. below are straight forward. Lemma 2.1. is a special case of Lemma 4.5 in Preller (2007a). Lemma 2.1. (Uniqueness) Every modest type has a unique irreducible form and a unique reduction to its irreducible form.

The property does not hold in general. Indeed, ba ℓ aa r a has the two irreducible forms b and ba r a, whereas (2) gives a type with two distinct reductions to the same irreducible form. Lemma 2.2. Let T ′ be the irreducible form of a modest type T = t 1 . . . t m and suppose that t i . . .

t j → 1 for some 1 ≤ i < j ≤ m. Then t 1 . . . t i-1 t j+1 . . . t m → T ′ .
Again, the property above does not hold in general. For example, ba ℓ aa r a → b, a ℓ a → 1, but ba r a → b. However, the next lemma, a sort of converse of Lemma 2.2., holds for arbitrary types.

Lemma 2.3. If t 1 . . . t m → T ′ and S = s 1 . . . s n → 1 then t 1 . . . t i S t i+1 . . . t m → T ′ .
The next two lemmas state sufficient conditions for a simple type to remain present in every irreducible form of the original type. We say that t i t j is a block of T = t 1 . . . t m if i < j and t i is immediately followed by t j in every irreducible form of T . Lemma 2.4. Let t 1 . . . t m = T be modest and i < j positions satisfying 1) t i t j → 1 and t i+1 . . . t j-1 → 1 2) for all k < i, t k is not a left adjoint of t i 3) for all l > j, t l is not a right adjoint of t j .

Then t i t j is a block of T . In particular, T does not reduce to a single simple type nor the empty type. Lemma 2.5. Suppose T → T ′ and t occurs at k distinct positions in T but neither the right nor the left adjoint of t occurs in T . Then t has k occurrences in T ′ . Lemma 2.6. Assume that T = t 1 . . . t n is modest and that T → t. Then there is a unique position i such that t = t i .

Moreover, t i+1 . . . t n → 1. In addition, t i+1 . . .

t i+k → 1 implies t i+k+1 . . . t n → 1, for all 1 < k ≤ n -i. Similarly, t 1 . . . t i-1 → 1 . In addition, t i-k . . . t i-1 → 1 implies t 1 . . . t i-k-1 → 1, for all 1 < k ≤ i -1.

Semantic Pregroup Grammars

In a semantic pregroup grammar, see Preller (2007b), each lexical entry w : T is enriched by a (string of) logical expression(s) E, yielding a triple w : T :: E, in analogy with the triples word :

Type :: Term of CCG's by [START_REF] Steedman | Surface Structure and Interpretation[END_REF]. The interpretation of a sentence is a variable-free expression, computed from the chosen interpretation of the words. The result of the computation depends on the chosen reduction to the sentence type. Semantic pregroup grammars are compositional in the sense of [START_REF] Kracht | Compositionality: The Very Idea[END_REF]. This is best explained by replacing the (string of) logical expression(s) associated to an entry by the corresponding 2-cell of compact 2categories, a proof that is beyond the scope of this paper. Consider instead the following example sentences Eva promised Jan to come (Subject Control) Eva asked Jan to come (Object Control) .

The implicit agent of the infinitive is either the subject of promised or the object of asked. In the first sentence it is Eva who is supposed to come, in the second it is Jan. Consider the following semantical dictionary Eva : NP :: eva promised : NP r sδ īℓ NP ℓ :: promise(x 1 , x 2 , x 3) id(x 1) asked : NP r sδ īℓ NP ℓ ::

ask(x 1 , x 2 , x 3) id(x 3) Jan : NP :: jan to : īi ℓ :: to(y) come : iδ r :: come(z)
The basic types NP, i and ī stand for noun phrase, infinitive and infinitival phrase. Finally, δ is a basic type that plays the role of a marker similar to an index in HPS Grammars of [START_REF] Pollard | Head-driven phrase structure grammar[END_REF]. Models interpret all logical expressions as functions, including 0-ary functions like eva and jan . Some functions take their values in a 'set of truth values Ω' like promise, ask, come. Classical models interpret Ω as the two-element Boolean algebra and distributed models as a subset of real numbers.

Functional symbols correspond to basic types in the order in which they occur. Variables correspond to occurrences of non-basic types, indexed in the order of the occurrences of the types. For example,

NP r s δ īℓ NP ℓ x 1 ask id x 2 x 3 .
The variables on which a logical expression depends render the intuitive meaning of semantical dependency. The translations of promised : NP r sδ īℓ NP ℓ and asked : NP r sδ īℓ NP ℓ differ by the variable on which the translation id of the basic type δ depends, namely on x 1 in the case of promise and on x 3 in the case of ask .

The links of a reduction to the sentence type indicate how the variables are to be replaced. For computing the logical expression corresponding to

Eva

promised Jan to come

(NP) (NP r s δ īℓ NP ℓ) (NP)(īi ℓ)(iδ r)
do the following -write the corresponding logical symbols above the simple types2

eva x 1 promise id x 2 x 3 jan to y come z NP (NP r s δ īℓ NP ℓ) NP (ī i ℓ) (i δ r)
-omit the types and put the links under the corresponding logical symbols eva x 1 promise id x 2 x 3 jan to y come z -define the substitutions according to the links (3)

x 1 → eva x 2 → to(y) x 3 → jan y → come(z) z → id(x 1)
Substituting in promise(x 1 , x 2 , x 3), one obtains the logical expression that translates the sentence promise(eva, to(come(id(eva))), jan)

The meaning of id is determined by the logic, i.e. it is interpreted in every model as the identity function. This is guaranteed by the axiom id(x) = x

Finally, the translation is equivalent to the variable-free expression (4) promise(eva, to(come(eva)), jan)

Note that eva is the agent of come.

The procedure applied to the second sentence Eva asked Jan to come

(NP) (NP r s δ īℓ NP ℓ) (NP)(īi ℓ)(iδ r) ,
yields the same substitutions as in (3) except for the last which is replaced by z → id(x 3) .

The resulting interpretation of the sentence is now equivalent to (5) ask(eva, to(come(jan)), jan)

Now, jan is the agent of come in opposition to (4). The semantical dependency, expressed above as embedding of subexpressions corresponds to the embedding of boxes in the DRstructures in citek-r.

Polynomial Pregroup Grammars

Polynomial pregroup grammars generalize the notion of finite pregroup grammars in [START_REF] Buszkowski | Lambek Grammars based on pregroups[END_REF] Definition 5. A pregroup grammar is polynomial of degree n if the length of T 1 . . . T l is O(l n) for every every type assignment w 1 : T 1 , . . . , w l : T l for which T 1 . . . T l → s .

If the length of types occurring in the dictionary does not exceed a constant α, then the corresponding grammar is linear polynomial, i.e. of degree 1. Indeed, for every string of words w 1 . . . w l the length of the assigned type T 1 . . . T l is bounded by the αl. A fortiori, finite pregroup grammars are polynomial of degree 1. Hence all context free languages are generated by polynomial pregroup grammars of degree 1 . The grammars for the semilinear mildly context sensitive formal languages below are also linear polynomial. The context sensitive natural language fragments considered in subsection 3.2 are generated by a square polynomial. In fact, the latter is the polynomial used in (Michaelis and [START_REF] Michaelis | Semilinearity as a syntactic invariant[END_REF] for proving non semilinearity of languages.

Mildly Context Sensitive Formal Languages

Consider the three standard mildly context sensitive formal languages, namely

L 1 = {vv : v ∈ Σ + } L 2 = {a n b n c n : n ≥ 1, a, b, c ∈ Σ, a b, b c} L 3 = {a m b n c m d n : m ≥ 1, n ≥ 1, a, b, c, d ∈ Σ, a b, b c, c d} . 3.1.1. Duplication L 1 = vv : v ∈ Σ +
The set of basic types is constructed from Σ by adding a new symbol s called sentence type and a 'copy' ā for every a ∈ Σ . The elements of {s} ∪ {ā : a ∈ Σ} are pairwise distinct symbols not in Σ. The set of basic types B 1 = B 1 , = is ordered by equality, where

B 1 = {s} ∪ Σ ∪ {ā : a ∈ Σ} .
The dictionary D 1 maps an element a ∈ Σ to the following infinite subset of P(B 1)

D 1 (a) = {a} ∪ {ā r } ∪ b r 1 . . . b r i a r s b1 . . . bi : b 1 . . . b i ∈ Σ * .
This dictionary is modest (recall Definition 4.).

Lemma 3.1. The language L G 1 of the pregroup grammar

G 1 = D 1 , s contains L 1 .
Proof. Assume that X = a 1 . . . a m ∈ L 1 . Hence m = 2n and a n+i = a i , 1 ≤ i ≤ n, for some n ≥ 1.

Case n = 1: Choose T 1 = a 1 and T 2 = a r 1 s. From the assumption follows that T 1 , T 2 is a type assignment for a 1 a 2 . Clearly, T 1 T 2 → s.

Case n ≥ 2: Define

T j =              a j for 1 ≤ j ≤ n a r n . . . a r 2 a r j s ān . . . ā2 for j = n + 1 ār j for n + 1 < j ≤ 2n.
The assumption implies ā j = ān+ j and thus ā j ār n+ j → 1, for 1 ≤ j ≤ n. Hence T 1 . . . T m → s. Thus the language L 1 is included in the language defined by G 1 . The type assignment T 1 , . . . , T m defined above is called the canonical type assignment and the concatenated type T 1 . . . T m the canonical type. The unique index k such that the sentence type occurs in T k is called the key-index.

Lemma 3.2. Suppose T j ∈ D 1 (a j), 1 ≤ j ≤ m, is a type assignment for X = a 1 . . . a m ∈ Σ * such that T 1 . . . T m → s. Then X ∈ L 1 and T 1 . . . T m is the canonical type assignment for X.
Proof. Two things are to be proved: t m = 2n for some n ≥ 1 and that a n+i = a i for 1 ≤ i ≤ n. The assumption T = T 1 . . . T m → s implies that s has a unique occurrence in T , by Lemma 2.6.. Therefore there is a unique k such that 1 ≤ k ≤ m and s occurs in

T k . Hence T k = b r 1 . . . b r i a k r s b1 . . . bi
for some i ∈ N and some string b 1 . . . b i ∈ Σ * . Moreover, if j k then T j = a j or T j = ār j . From Lemma 2.6. follows that b1 . . . bi T k+1 . . .

T m → 1 T 1 . . . T k-1 b r 1 . . . b r i a k r → 1 .
Under the assumption that b1 . . . bi T k+1 . . . T m → 1, use induction on i to show that (6)

T k+ j = ār k+ j for 1 ≤ j ≤ i a k+ j = b i-j+1 for 1 ≤ j ≤ i i = m -k ≥ 0 . Case i = 0: Then T k = a r
k s and T k+1 . . . T m → 1, by Lemma 2.6.. Clearly, the empty string is the only string of simple types in {a, ār : a ∈ Σ} that reduces to 1. Thus k = m. Case i ≥ 1 : Note that T k+1 = ār k+1 , because the other possible choice for T k+1 would be a k+1 . In this case bi a k+1 would be in every irreducible form of T 1 . . . T m by Lemma 2.4., contradicting the assumption. For the same reason, bi ār k+1 → 1, i.e. bi = āk+1 . The latter implies a k+1 = b i . Let T ′ = b1 . . . bi-1 T k+2 . . . T m . Then T ′ → 1 by Lemma 2.2.. The induction hypothesis applies to T ′ . Hence T k+1+ j = ār k+1+ j , a k+1+ j = b i-1-j+1 for 1 ≤ j ≤ i -1 and i -1 = m -(k + 1) .

Similarly, under the assumption

T 1 . . . T k-1 b r 1 . . . b r i a k r → 1 show that (7) T k-l = a k-l for 1 ≤ l ≤ i + 1 a k-l = b l for 1 ≤ l ≤ i a k-i-1 = a k 1 = k -i -1 by induction on i . In the case i = 0, note that k > 1, because if k = 1 then a r k → 1 , which is impossible. It follows that T k-1 = a k-1 and a k-1 = a k . Hence T 1 . . . T k-2 → 1 and therefore k -1 = 1.
The induction step is similar to that given above.

From equations (7) and (6) follows that i = k -2 and m = k

+ i = k + k -2 = 2n
, where n = k -1. Moreover, if j varies between 1 and i in increasing order then l = ij + 1 varies between i and 1 in decreasing order. Hence

a j+1 = a 2+ j-1 = a k-i+ j-1 = b i-j+1 = a k+ j = a n+ j+1 , for 1 ≤ j ≤ i = n -1. Finally, a 1 = a n+1 follows from a k-i-1 = a k .
The proof above shows that an arbitrary type assignment with a reduction to the sentence type is equal to the canonical one and also constructs the unique reduction to the sentence type, namely

Multiple Agreement

L 2 = {a n b n c n : n ≥ 1, a, b, c ∈ Σ, a b, b c}
In a formal language, it is customary to denote a n ∈ Σ + the string consisting of n repetitions of the symbol a. This might lead to confusion because of the notation a (m) for simple types. Therefore the n-fold repetition of t is denoted [n]t below.

The set of basic types B 2 is ordered by equality, where

B 2 = {s} ∪ Σ ∪ {ā : a ∈ Σ}
The dictionary D 2 maps an element c ∈ Σ to the following infinite subset of P(B 2)

D 2 (c) = {c}∪{c r }∪ [n]a r [n]b r s cℓ [n]c : 1 ≤ n, a, b ∈ Σ, a b c . Note that D 2 is modest. Moreover, G 2 = D 2 , s generates L 2 . Lemma 3.3. A string X = a 1 . . . a m ∈ Σ * has a type assignment a i : T i ∈ D 2 , 1 ≤ i ≤ m, such that T 1 . . . T m → s if and only if X ∈ L 2 .
Proof. -Assume X = a 1 . . . a m ∈ L 2 . Then m = 3n for some integer n ≥ 1. Define

T i =              a i for 1 ≤ i ≤ 2n [n]a r n+1 [n]a r 1 s āℓ i [n]ā i for i = 2n + 1 ār i for 2n + 2 ≤ i ≤ m .
Clearly, this type assignment has a reduction to the sentence type. Call it the canonical type assignment and mn + 1 the key-index.

-Assume that

T i ∈ D 2 (a i), 1 ≤ i ≤ m, satisfies T 1 . . . T m → s.
The argument is similar to that of Lemma 3.2.. Now the unique type with an occurrence of the sentence type has the form

T k = [n]b r [n]a r s āℓ k [n]ā k , for some k ≤ m, n ≥ 1, a ∈ Σ, b ∈ Σ . Recalling that āℓ k [n]ā k = āℓ k āk [n -1]ā k → [n -1]ā k show that T i = ār i and a i = a k , for k + 1 ≤ i ≤ m, and n -1 = m -k T i = a i = a, for k -n ≤ i ≤ k -1, T i = a i = b, for 1 ≤ i ≤ k -n -1 and k = 2n + 1.
From this conclude that m = k + n -1 = 3n . Hence k = 2n + 1 and X = a n b n a n 2n+1 .

Crossing Dependencies

L 3 = {a m b n c m d n : m ≥ 1, n ≥ 1, a, b, c, d ∈ Σ, a b, b c, c d}
The set of basic types remains unchanged, i.e.

B 3 = {s} ∪ Σ ∪ {ā : a ∈ Σ} .
The dictionary D 3 maps an element d ∈ Σ to the following infinite subset of P(B 3)

D 3 (d) = {d} ∪ dr ∪ [m]c r [n]b r [m]a r s dℓ [n] d : n, m ≥ 1 a, b, c ∈ Σ ,
where a b, b c, c d . Again, D 3 is modest and

G 3 = D 3 , s generates L 3 . Lemma 3.4. X = a 1 . . . a l ∈ Σ * has a type assignment T i ∈ D 3 (a i), 1 ≤ i ≤ l, such that T 1 . . . T l → s if and only if X ∈ L 3 .
Proof. The key-index is k = 2m + n + 1 and the canonical type assignment is

T i =        a i for 1 ≤ i ≤ 2m + n ār i for 2m + n + 2 ≤ i ≤ l T k = [m]a r m+n+1 [n]a r m+1 [m]a r 1 s āℓ k [n]ā k .
The details are left to the reader. Note the common features shared by the three grammars G 1 -G 3 . Sentences w 1 . . . w l have a canonical type assignment T 1 , . . . , T l with a key-index k. Moreover, the length of the type T k is proportional to l whereas the length of the other types T i , i k, is bounded by a constant. Therefore, the length q of the canonical type t 1 . . . t q = T 1 . . . T l is O(l).

Natural Languages

Among the context sensitive natural language fragments are the Dutch and Swiss-German subordinate clauses and the compound noun phrases of Old Georgian.

Dutch Subordinate Clause

Pullum and Gazdar (1987) presents a context free grammar that weakly generates the Dutch subordinate clauses. This means that the context free grammar generates the clauses as strings of symbols but produces parse trees that violate the intuition of speakers about the phrase structure and the semantical dependencies, see [START_REF] Salvitch | The Formal Complexity of Natural Language, chap[END_REF]. On the other hand, [START_REF] Bresnan | The Formal Complexity of Natural Language, chap. Cross-Serial Dependencies in Dutch[END_REF] argues that no context free grammar strongly generates the clauses.

The polynomial pregroup grammar below strongly generates the Dutch subordinate clauses. This means that the reductions to the sentence type give rise to a semantic interpretation expressing the distant cross-dependencies. For example, in the subordinate clause 3below Marie is the agent of zag and Jan the agent of zwemmen. The dependency is represented by an arrow from the verb to the agent.

s sℓ (NP) (NP) (NP r NP r s īℓ δ) (δ r ī) (9)
and compute its logical interpretation according to Section 2.2 dat(zien(marie, zwemmen(id(jan))) .

Applying the identity axiom id(jan) = jan , we see that the interpretation of the clause is equivalent to (10) dat(zien(marie, zwemmen(jan))) .

By convention, the first argument of a relation corresponds to the agent. Hence, the subexpression relation in (10) expresses the semantical dependencies of sentence [START_REF] Lambek | The mathematics of sentence structure[END_REF].

The dependency arrows of (8) can also be obtained geometrically. It suffices to represent the dependencies by curved overlinks.

The vertical arrows indicate the functional symbols, connected to their arguments by the dotted overlinks. In [START_REF]Reflections on English Pronouns[END_REF], the path starting at x and ending at jan and the path from x 2 to marie constitute the dependency links of [START_REF] Lambek | The mathematics of sentence structure[END_REF]. The dependence of zien on x 2 and z is indicated by dotted overlinks. 4 The number of noun phrases and causal verbs is not limited, for example v v v v u u (dat) Eva Piet Jan zag leren zwemmen .

((that) Eva saw Pete teach Jan to swim) [START_REF] Michaelis | Semilinearity as a syntactic invariant[END_REF] Consider the entries Eva : NP :: eva, Piet : NP :: piet, Jan : NP :: jan and zag (saw) : NP r NP r NP r si ℓ δδ ::

zien(x 3 , z) id(x 2) id(x 1) leren (teach) : δ r δ r ii ℓ δ :: leren(x ′ 2 , z ′) id(x ′ 1) zwemmen (swim) : δ r i :: zwemmen(x)
Compute the reduction of the assigned type to s

Eva Piet Jan zag leren zwemmen

eva piet jan (x 1 x 2 x 3 zien z id id) (x ′ 1 x ′ 2 leren z ′ id)(xzwemmen) (NP) (NP) (NP) (NP r NP r NP r s i ℓ δ δ) (δ r δ r i i ℓ δ) (δ r i)
Replace the simple types by the corresponding logical symbols and 4 This vindicates Claudia Casadio's idea that overlinks intervene in grammatical dependencies. The graph above the logical symbols in [START_REF]Reflections on English Pronouns[END_REF] represents the concatenation of the meanings of the words. It 'lives' in symmetric compact 2-categories, like the category of real vector spaces. The overlinks correspond to expansions in the symmetric 2-category, but not in the non-symmetric 2-category of derivations of the Pregroup Calculus. The meaning of the sentence is obtained by composing the concatenated meanings with the reduction. represent dependencies by curved overlinks [START_REF] Nivre | Algorithms for deterministic incremental dependency parsing[END_REF] (eva)(piet)(jan)(x 1 x 2 x 3 zien z id id)

(x ′ 1 x ′ 2 leren z ′ id)(xzwem)
The oriented paths starting at x 3 respectively x ′ 2 respectively x and terminating at eva respectively piet respectivelyjan constitute the dependency arrows of [START_REF] Michaelis | Semilinearity as a syntactic invariant[END_REF]. The logical expression is zien(eva, leren(piet, zwemmen(jan))) .

The graph [START_REF] Nivre | Algorithms for deterministic incremental dependency parsing[END_REF] induces the labelled planar graph [START_REF] Pentus | Lambek calculus is NP-complete[END_REF] belonging to a family of graphs relevant for dependency parsing, see [START_REF] Kuhlmann | Midly Non-Projective Dependency Structure[END_REF]. The labels of the edges in (14) are defined by the overlinks 'hidden' inside of (the type of) the words. Every path formed by the edges with a given label corresponds to a dependency arrow of (12). (14)

1 2 3 3 2 3
Eva Piet Jan z a g leren zwemmen

The last verb in the clause may be intransitive, transitive, ditransitive etc. The arity of a verb w is the number of the argument places of the interpreting relation. Hence intransitive verbs are of arity 1, transitive verbs are of arity 2 and so on. Note that the arity of a non-causal verb coincides with the number of occurrences of non-basic types, for example zwemmen (swim) : δ r i :: zwemmen(x) (intransitive) schrijven (write) : δ r δ r i :: schrijven(x 2 , x 1) (transitive) geven (give) : δ r δ r δ r i ::

geven(x 3 , x 2 , x 1) (ditransitive)
The arity of the causal verbs below also is 2. The surplus number of non-basic types in an associated type T p , p ≥ 2, provides the argument places for the 'remembering' functions id. For example, [START_REF] Pollard | Head-driven phrase structure grammar[END_REF] zag

:[p]NP r si ℓ [p -1]δ:: zien(x p , z) id(x p-1) . . . id(x 1), p ≥ 2 leren:[p]δ r ii ℓ [p -1]δ ::leren(x p , z) id(x p-1) . . . id(x 1), p ≥ 2
where x 1 corresponds to the first occurrence of NP r , x 2 to the second occurrence of NP r and so on up to x p , whereas z corresponds to i ℓ .

A string of words w 1 . . . w l is a k-fold subordinate clause if its first word w 1 is dat, the words w 2 up to and including w 1+k are proper names, the next word w 1+k+1 is a causal verb in finite form, the so-called key-word, and after the key-word the w i 's are infinitives, of which all are causal except the last one, which is non-causal of arity m = 2k + 2l .

A k-fold subordinate clause w 1 . . . w l has a canonical type assignment T i , 1 ≤ i ≤ l, namely

T i =                          s sℓ if i = 1 NP if 2 ≤ i ≤ k + 1 [k]NP r s i ℓ [k -1]δ if i = k + 2 [2k -i + 2]δ r i i ℓ [2k -i + 1]δ if k + 2 < i < l [2k -l + 2]δ r i if i = l .
The proof that the canonical type assignment reduces to the clause type s uses induction on k and follows from the next two lemmas.

A type T is said to be p-infinitival if either T = [p]δ r i and p ≥ 1 or T = [p]δ r ii ℓ [p -1]δ and p ≥ 2. It is said to be causal if the latter holds and non-causal in the former case. Lemma 3.5. Let T j be infinitival or equal to NP for 1 ≤ j ≤ n. Then T 1 . . . T n → 1 Proof. Assume on the contrary that T 1 . . . T n → 1. As δ ℓ and NP ℓ do not occur in T 1 . . . T n the latter does not end with δ nor with NP . Hence T n = [p n]δ r i. Therefore the number of occurrences of i in T 1 . . . T n exceeds that of i ℓ , because the latter always occurs together with the former. As i can only be linked to i ℓ , this contradicts

T 1 . . . T n → 1. Lemma 3.6. Let k ≥ 1, n ≥ 1, Z = i ℓ [k]δ and T j be p j -infinitival of length q j , 1 ≤ j ≤ n such that ZT 1 . . . T n → 1 holds. Then i) T n is non-causal ii) T j is causal, j ≤ n -1. Moreover, p j = k -j + 1, j ≤ n iii) n = k -p n + 1 iv) q j = 3 + 2(k -j), 1 ≤ j < n, q n = k -n + 2 .
Proof. From ZT 1 . . . T n → 1 follows that T n = [p n]δ r i by the same argument as above. Hence i) holds. Next show ii), iii) and iv) by induction on n.

Case

n = 1. From i ℓ [k]δ [p 1]δ r i → 1 follows that k = p 1 Case n ≥ 2. Recall that ZT 1 . . . T n = i ℓ [k]δ [p 1]δ r iXY → 1 where Y = T 2 . . . T n and either X = 1 or X = i ℓ [p 1 -1]δ .
The latter alternative holds if T 1 is causal, the former if it is non-causal. Note that i r does not occur in the string XY and therefore the leftmost occurrence of i in ZT 1 . . . T n → 1 is linked to the unique i ℓ on its left. It follows that

[k]δ [p 1]δ r → 1 and XY → 1, hence k = p 1 . If X = 1 then T 2 . . . T n = Y → 1,
contradicting Lemma 3.5. and the assumption n ≥ 2. Hence X = i ℓ [p 1 -1]δ with p 1 ≥ 2. Now apply the induction hypothesis to X, T 2 , . . . , T n . Finally, iii) and iv) are immediate consequences of ii) and i).

Theorem 3.1. 1) For every subordinate clause there is a unique type assignment with a reduction to the clause type s. 2) Every string of words from the dictionary that has a type assignment with a reduction to s is a subordinate clause.

Proof. 1) The first assertion follows from the definitions by Lemmas 2.1. -2.6..

2) To see the converse, let T j ∈ D(w j) for 1 ≤ j ≤ l and T 1 . . . T l → s . By Lemma 2.5., s occurs in exactly one type T i and therefore T i = s sℓ and w i = dat. Then s also has exactly one occurrence in the string. Indeed, each of its occurrences is linked to some occurrence of sℓ and the latter occurs only together with s . Let p be the unique index such that s occurs in T p . Therefore T j is either infinitival or the basic type NP for all j other than i and p . Note that p > i, because sℓ and s are linked. Moreover,

T p = [k]NP r s i ℓ [k -1]δ for some k ≥ 2 .
First note that i = 1, because T 1 . . . T i-1 → 1 by choice of i. This is only possible if the string is empty by Lemma 3.5.. Next, T 2 . . .

T p-1 [k]NP r → 1, because sℓ is linked to s . From this follows that T 2 = • • • = T p-1 = NP and p = 1 + k + 1 by Lemma 2.4..
Finally, from the preceding follows that i ℓ [k -1]δ T p+1 . . . T l → 1 . Note that NP cannot occur in this string and conclude by Lemma 3.6.. Theorem 3.1. above implies that for every s-sentence w 1 . . . w l there are unique types T i ∈ D(w i), 1 ≤ i ≤ l, and a unique type T = T 1 . . . T l such that T → s . Call T the canonical type, T i ∈ D(w i) the canonical type assignment and the unique reduction of T to s the canonical reduction of w 1 . . . w l .

The preceding theorem implies that the infinite grammar above is polynomial, i.e. the length of any type assignment with a derivation to s is bounded by a polynomial. The property also intervenes in the complexity estimate of the parsing algorithm in Section 4. Proof. Let k be the number of noun phrases preceding the key-word w p , m the arity of the last verb w l . The number n of words after w p satisfies n = km by Lemma 3.6.. The number of words before the key-word w p is k + 1. Hence l = 2km + 2 and therefore k ≤ l/2 .

On the other hand, the length q of the type T 1 . . . T l is

q = 2 + k + q ′ + m + 1 ,
where q ′ is the length of the type T p T p+1 . . . T l-1 . Starting at T l-1 and reading backward from right to left, the length of the types increases by 2 from one to the next. The length of the rightmost type T l-1 is 2 + 2m + 1 . Therefore

q ′ = j=n j=1 (2 j + 2m + 1) = n(2m + 1) + n(n + 1) = k 2 + 2k -m 2 -2m Hence, q = k 2 + 3k -m 2 -m + 3 ≤ k 2 + 3k + 1.
The canonical reduction defines the semantic dependencies as well. This follows from the next lemma, where a path in the oriented graph G represents the successive substitutions and instances of the identity axiom intervening in the interpretation. Lemma 3.7. Let k > n ≥ 0 and G = V 0 ∪ V 1 , E 0 ∪ E 1 be the oriented graph defined as follows

V 0 = a i j : 0 ≤ i ≤ n, 1 ≤ j ≤ k -i (functional symbol) V 1 = x lp : 1 ≤ l ≤ n + 1, 1 ≤ p ≤ k -l (variable) and E 0 = a i j , x i+1, j : 0 ≤ i ≤ n, 1 ≤ j ≤ k -i (substitution) E 1 = x il , a i,l-1 : 1 ≤ i ≤ n, 2 ≤ l ≤ k -i (identity axiom) .
Then for 1 ≤ j ≤ k there is a unique maximal path starting at a 0 j . Moreover, x l, j+1-l and a i, j-i are on this path for all l such that 1 ≤ l ≤ n + 1 and jl ≥ 0 and all i satisfying ji ≥ 1 and 0 ≤ i ≤ n .

Proof Pregroup Grammar with Copying Rules [START_REF] Stabler | Varieties of crossing dependencies: Structure dependence and mild context sensitivity[END_REF] considers copying grammars when analysing crossing dependencies in human languages. Following this lead, define the following finite pregroup grammar enriched with two copying rules [START_REF] Preller | Linear Processing with Pregroup Grammars[END_REF] dictionary entries copying rules zag (saw): NP r NP r si ℓ δ leren (teach): δ r δ r ii ℓ δ NP r T δ → NP r NP r T δδ δ r T δ → δ r δ r T δδ .

The copying rules are not derivable in Pregroup Calculus. Therefore the graphical representations of derivations is lost and with them the mathematical structure of the proofs. Moreover, the semantical interpretation of the control verbs cannot be read off the type in the dictionary but must be constructed during the proof by a semantic copying rule parallel to the grammatical copying rule.

It is easy to see that every clause recognized by the polynomial pregroup grammar is also recognized by the finite grammar with copying rules. Indeed, Let T 1 , . . . , T n be a type assignment for w 1 , . . . , w l from the infinite dictionary and r a reduction to the clause type. Recall that r corresponds to a derivation using only the contraction rule. Moreover, T 1 , . . . , T l is the canonical type assignment by Theorem 3.1.. Define

T ′ j = [2]NP r si ℓ δ if T j = [p j]NP r si ℓ [p j - 1]δ, T ′ j = [2]δ r ii ℓ δ if T j = [p j]δ r ii ℓ [p j - 1
]δ and T ′ j = T j else. Derive the clause type from T ′ 1 . . . T ′ l by applying p j -2 times the copying rule to T ′ j T j . The resulting compound type is T 1 . . . T l . Then apply the contraction rules as indicated by the links of r.

The converse also holds. A string derivable in the copying grammar also has a reduction in the polynomial grammar. The argument is similar to that establishing Lemma 3.6. and Theorem 3.1..

The chosen copying rules are language specific. A general development of pregroup grammars with copying rules is beyond the scope of this paper.

Swiss German Subordinate Clause

According to the analysis of [START_REF] Shieber | The Formal Complexity of Natural Language, chap. Evidence Against the Context-Freeness of Natural Language[END_REF], the Swiss-German subordinate clause has the same semantic cross-serial dependencies as Dutch, but they are also expressed in the syntax by case marking. This can be captured by distinguishing the types for noun phrases NP nom , NP dat , NP acc as well as the dummy types δ nom , δ dat , δ acc . The proofs are similar to the preceding ones. In particular, correct semantical dependencies guarantee correct syntax.

Old Georgian Noun Phrase

The pregroup grammar below generates compound noun phrases of Old Georgian according to the analysis of [START_REF] Michaelis | Semilinearity as a syntactic invariant[END_REF]. The dictionary lists an infinite number of distinct words. Indeed, Old Georgian uses genitive suffixes for possessive compound noun phrases. The genitive suffix, denoted here G, is appended to noun(stem)s or names. When the construction is repeated, the previous genitive suffixes are also repeated.

govel-i igi sisxl-i saxl-isa-j m-is Saul-is-isa-j all-Nom Art=Nom blood-Nom house-G-Nom Art-G Saul-G-G-Nom
'all the blood of the house of Saul' .

More generally, compound nominative noun phrases have the form

(17) N 1 -Nom N 2 -G-Nom N 3 -G 2 -Nom . . . N k -G k-1 -Nom .
Square brackets highlight semantic dependencies as follows

N 1 -Nom N 2 -G-Nom . . . N k -G k-1 -Nom NP k . . . NP 2 NP 1 .
Assume the basic types NP nom , N nom and G for nominative noun phrases, nominative common nouns and genitive suffixes in that order. For each p ≥ 0, the word Name-G p -Nom respectively Noun-G p -Nom has two entries in the dictionary, namely

Name-G p -Nom :        NP nom [p]G NP nom [p]G [p + 1]G ℓ NP ℓ nom Noun-G p -Nom :        N nom [p]G N nom [p]G [p + 1]G ℓ NP ℓ nom .
Common nouns are preceded5 by a determiner to form noun phrases like

(18) Art = Nom Noun-Nom Art-G Noun-G p -Nom .
Adding the following entries to the dictionary Art = Nom : NP nom N ℓ nom Art-G : NP nom GG ℓ N ℓ nom , each of the noun phrases (18) has two possible types, each of which reduces to the type of a noun phrase. For p ≥ 1, the types for Art-Gen Noun-Gen p -Nom are

(NP nom GG ℓ N ℓ nom) (N nom [p]G) → NP nom [p]G and (NP nom GG ℓ N ℓ nom) (N nom [p]G [p + 1]G ℓ NP ℓ nom) → NP nom [p]G [p + 1]G ℓ NP ℓ
nom . The length of the type at the left of → exceeds that of the reduced type by 4.

It follows that every string of words of the form (17) has a unique type assignment with a reduction to the noun phrase type NP and vice versa. The length of the assigned type can be expressed as a square polynomial in the length of the string.

Tagging and Parsing Algorithm

Ambiguity enters parsing by pregroup grammars in two ways. There may be different type assignments with a reduction to the mains undefined until a causal verb in finite form is encountered. Hence, the constants T ag, S, R change like this

Tag S R s in undefined ∅, 0 ∅ (1; 1; 0) T 1 = NP ∅, 0 ∅ (1; T 1 ; 1) NP ∅, 0 , 1 ∅ (2; T 1 , 1; 0) T 2 = NP ∅, 0 , 1 ∅ (2; T 1 , T 2 ; 1) NP ∅, 0 , 1 , 2 ∅ .
At tagging stage (3; T 1 , T 2 , 1; 0), the value of key is updated to 3, because w 3 is the first causal verb in finite form. Moreover, the tag is updated to T ag = T 3 = NP r NP r si ℓ δ and remains unchanged till the next tagging stage. The values of S, R are updated as follows At the maximal stage s fin = (5; T 1 , . . . , T 4 , 1; 0) , the output is updated to R(s fin) = {{2, 3} , {1, 4} , {7, 8} , {6, 9}} T (s fin) = NPNPNP r NP r si ℓ δδ r i I(s fin) = s .

S R (3; T 1 , T 2 , T 3 ; 1) ∅, 0 , 1 {2, 3} (3; T 1 , T 2 , T 3 ; 2) ∅, 0 {{2, 3} , {1, 4}} (3; T 1 , T 2 , T 3 ; 3) ∅, 0 , 5 {{2, 3} , {1, 4}} (3; T 1 , T 2 , T 3 ; 4) ∅, 0 , 5 , 6 {{2
One could argue following Lambek (2008b) that simple types represent bits of information to be stored in the short-term memory (limited to 7±2 bits) when processing a string of words. The present algorithm seems to confirm this claim. Theoretically, a Dutch speaker can form subordinate clauses of arbitrary length. In practice, three to four noun phrases between dat and the causal verb in finite form are rarely exceeded. For two noun phrases, the stack contains at most four bits. With three noun phrases, it goes up to five, with four to six. Accepting that the types represent the patterns in which a word can appear, one also accepts that they are learned in childhood and 'hard-wired'. This includes the pattern of causal verbs represented by [p]NP r si ℓ [p -1]δ, where p is 2 or more. They are downloaded to the 'working' memory where the subconscious processing goes on and only the result ends up in the short-term memory.

Theorem 4.1. The string of words w 1 . . . w l is a sentence if and only if the tagging-parsing algorithm reaches a maximal stage such that output = R, T, s . If this is the case, R is a reduction of T to s . Moreover, the algorithm is linear for the formal languages and square polynomial for the natural languages.

Proof. The first assertion follows from Lemma 4.1. and Lemma 2.1. . Moreover, the number of basic steps executed at a testing stage is bounded by a constant. It is proportional to the length of the chosen type at a non-maximal tagging stage. Finally, updating the output at a maximal stage s fin is proportional to the length of T (s fin).

Conclusion

It may be worth-while to investigate whether the degree of the polynomial of a pregroup grammar can serve as a classification for (natural) languages. Indeed, proof-search in the Pregroup Calculus is bounded by a cubic polynomial in the length of types. Therefore in general, the search for a derivation is cubic polynomial in the length of the type even after type assignment. This is in opposition to categorial grammars based on Syntactic Calculus where proof-search is NP-complete, see [START_REF] Pentus | Lambek calculus is NP-complete[END_REF]. Hence, the ratio of the length of the concatenated type over the number of words is essential when designing a pregroup grammar with an efficient algorithm.

The parsing complexity for the languages considered here is lower than the general cubic polynomial limit because proof-search is linear for the sets of types occurring in the dictionaries and because the algorithm constructs a single derivation while processing from left to right. Proof-search remains linear for larger classes of types than those mentioned here. This gives rise to grammars for language fragments involving relative pronouns and coordination, subject and object control, agreement of features among others. In fact, these grammars have been designed for a complete linear deterministic parsing algorithm with occasional backtracks producing a planar dependency graph. Empirical studies based on large scale treebanks in [START_REF] Nivre | Algorithms for deterministic incremental dependency parsing[END_REF] show that such algorithms are highly accurate for other formalisms in general where no proof of completeness exists.

a 1 a 2

 2 . . . a k-1 a k a k+1 . . . a m a 1 a 2 . . . a k-1 (b r 1 . . . b r i a r k s b1 . . . bi) ār k+1 . . . ār m .

(11)marie jan x 1 x 2

 112 m m m m m m m m m m m m m m m m m m r r r r r r r r r r r r r r (zien z id x zwem men .

Corollary 3 . 2 .

 32 The length of the canonical type T 1 . . . T l of a kfold Dutch subordinate clause is bounded by k 2 + 3k + 1 . Moreover, k ≤ l/2 .

 , 3} , {1, 4}} (3; T 1 , T 2 , T 3 ; 5) ∅, 0 , 5 , 6 , 7 {{2, 3} , {1, 4}} . At tagging stage (4; T 1 , T 2 , T 3 , 1; 0), the tag is updated to T ag = T 4 = δ r i . It remains unchanged till the maximal stage S R (4; T 1 , . . . , T 4 ; 1) ∅, 0 , 5 , 6 {{2, 3} , {1, 4} , {7, 8}} (4; T 1 , . . . , T 4 ; 2) ∅, 0 , 5 {{2, 3} , {1, 4}} , {7, 8} , {6, 9}

 .Straightforward by induction on k. The graph looks like this for k = 4, n = 2, where the underlinks represent the edges in E 0 and the overlinks the edges in E 1 (a 01 a 02 a 03 a 04) (x 14 x 13 x 12 x 11 a 11 a 12 a 13) (x 23 x 22 x 21 a 21 a 22)(x 32 x 31) .

I am thankful for financial support provided by TALN/LIRMM.

Recall: a basic type b is identified with the simple type b (0)

adapted from examples in[START_REF] Bresnan | The Formal Complexity of Natural Language, chap. Cross-Serial Dependencies in Dutch[END_REF]

The determiner may also follow its noun. This is ignored here.

Acknowledgement

Compact bilinear logic, one of Joachim Lambek's more recent inventions, is a compactification of higher order logic to second order logic. It is also a simple mathematical tool for many fascinating topics in computational linguistics. Proofs are represented by planar graphs. The pregroup grammars, which are based on this logic, have polynomial parsing algorithms, even for context sensitive language fragments. They allow semantical interpretation reflecting the dependency links. The grammars are also suited for handling large amounts of data, modelling dialog and language learning. I'm grateful for the occasion this Festschrift offers me to thank Joachim Lambek for his beautiful and powerful invention.

My thanks go also to an anonymous reader of the present paper for many helpful remarks.

sentence type or a fixed type assignment of length q may have (up to 2 q) distinct reductions to the sentence type. Testing every type assignment for an eventual reduction to the sentence type is highly inefficient even if the dictionary is finite. The usual cubic-time polynomial recognition algorithms do not construct reductions and rely on the fact that the dictionary is finite or at least that there is a constant bounding the number of types per word in the dictionary. Some authors use 'parsing' in the weak sense that the algorithm constructs a reduction to the sentence type for a given type assignment, whereas the choice of a type assignment is called 'tagging'. 'Parsing' is used here in the following stronger sense. Definition 6. A recognition algorithm decides whether or not a string of words w 1 . . . w l ∈ Σ * has a type assignment T 1 , . . . , T l such that the concatenated type T 1 . . . T l has a reduction to the sentence type. A parsing algorithm is an algorithm that decides whether or not a string of words is a sentence and, if the answer is yes, computes a type assignment and a reduction to the sentence type.

Recognition is sufficient for formal languages, but parsing is indispensable for natural languages, because the semantic interpretation of a sentence is defined via the derivation to the sentence type.

The algorithm below is a variant of the algorithm in (Preller, 2007a). It processes the string of words from left to right and chooses a type for each word. The choice relies on a tagging strategy motivated by properties specific to the languages L i of the preceding section. The strategy avoids 'losing' type-assignments as soon as possible. That is to say it avoids a type assignment T 1 , . . . , T i that cannot be extended to a type assignment T 1 , . . . , T i , T i+1 , . . . , T l with a reduction to the sentence type.

The Algorithm

A stack of non-negative integers is defined inductively. The empty symbol ∅ is a stack, called the empty stack. If S ′ is a stack and i a non-negative integer then S ′ , i is a stack. The functions top and pop send a stack S ′ , i to its top i and to its tail S ′ respectively. They are undefined for the empty stack.

When processing the string w 1 . . . w l ∈ Σ * , the algorithm moves through a subset of the set of stages S w 1 ...w l , which is union of the following three sets

where q i is the length of the type T i and s in is a new symbol denoting the initial stage. Define a partial order on the set of stages such that s in ≤ s for all s and (i; T 1 , . . . ,

and only if one of the following conditions holds

This partial order induces a total order on the set of all stages less or equal to a given stage. Moreover, all stages of the form (l + 1; T 1 , . . . , T l , 1; 0) are maximal. Every non-initial stage s has a unique predecessor s -1, given by

A non-initial stage is tagging if its last integer p = 0 and testing otherwise. Every testing stage s has a unique successor s+1, namely

The algorithm executes two subroutines, tagging and testing, for each word w i . When at tagging stage (i; T 1 , . . . , T i-1 , 1; 0), i ≤ l, the algorithm has finished processing the type T 1 . . . T i-1 . The tagging routine tag D either chooses a type Tag ∈ D(w i) or decides to stop and updates the constant output. The computation of Tag involves a constant key that depends on the language whose sentences are to be parsed. The routine tag D is defined in the next subsection. At a maximal stage (l + 1; T 1 , . . . , T l ; 0), the output is updated to the result computed so far.

Recall that the types T j at stage s = (i; T 1 , . . . , T i ; p) are strings of simple types T j = t j1 . . . t jq j . Each testing stage s = (i; T 1 , . . . , T i ; p) defines a working position p(s) = q 1 + • • • + q i + p, the simple type read t p(s) = t ip and the type processed T (s) = t 1 . . . t p(s) = t 11 . . . t 1q 1 . . . t i1 . . . t ip . To keep notation uniform, define p(s in) = 0 and t 0 = 1. Note that for every testing stage s and positive integer i ′ ≤ p(s), there is a unique testing stage s ′ ≤ s such that i ′ = p(s ′).

When in testing stage s, the algorithm checks if t p(s) contracts with the last not yet contracted simple type and updates the stack of positions S (s) and the reduction R(s). The latter contains the links computed so far. The former contains the unlinked positions in increasing order such that the top of the stack is the position of the last unlinked simple type.

Finally, the irreducible substring I(s) of T (s) consisting of the unlinked simple types in the order given by the stack S (s) is defined by I(s in) = 1, I(S ′ , j) = I(S ′)t j . Then the process goes to the first tagging stage s = (1; 1; 0) At tagging stage s = (i; T 1 , . . . , T i-1 , 1; 0), the stack and reduction remain unchanged

and the process goes to the next stage unless tag D (i) updates output to fail if output fail then s = (i; T 1 . . . , T i-1 , T i ; 1) At testing stage s = (i; T 1 , . . . , T i ; p), p ≥ 1,

Then the process goes to the next stage

The proof of the next lemma is given in (Preller, 2007a).

Lemma 4.1. For every stage s = (i; T 1 , . . . , T i ; p) , the string of simple types I(s) associated to the stack S (s) is an irreducible substring of T (s) and R(s) is a reduction from T (s) to I(s).

Tagging Strategy

The strategy is based on the fact that a sentence has a unique derivation to the sentence type. The strategy chooses the type a word must have if the whole string is a sentence. Testing validates or invalidates that choice.

In the case of the formal language L 1 , the key index for w 1 . . . w l is l/2 + 1. If the latter is not an integer, the string is not a sentence. At the first tagging stage (1; 1; 0), processing is stopped if the length l of the string is odd.

. . w r 2 w r i s wi-1 . . . w2 if i > key let Tag = wr i . In the case of L 3 , the routine tag D 3 tests whether the length is even. If this not the case the string w 1 . . . w l is not a sentence. Otherwise, it computes the number m of repetitions of the first word w 1 . If w 1 . . . w l is a sentence the number n of repetitions of w m+1 satisfies n = l/2m and the key satisfies key

The case of L 2 is similar with the appropriate adaptations . Finally, in the case of the Dutch dictionary D 4 , the types are chosen according to the following properties of a subordinate clause -the key-index key must be the first p for which w p is a causal verb in finite form -the non-causal words have a unique type in the dictionary -every word after the key-word except the last is a causal infinitive. The last is a non-causal infinitive. tag D 4 (i)

if key = undefined if w i is an infinitive let output=fail else if w i is not a causal verb in finite from let Tag ∈ D(w i) if w i is a causal verb in finite form and i > 1 let key = i, k = i -1 and Tag = [k]NP r s i ℓ [k -1]δ else let output=fail if i > key if w i is an infinitive of a causal verb let p = k -(ikey) and Tag = [p]δ r i i ℓ [p -1]δ of a non-causal verb let Tag ∈ D(w i) else output=fail . When fed the string of words Marie Jan zag zwemmen the parser goes through the following stages and values. The constant key re-