
HAL Id: lirmm-00538562
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00538562

Submitted on 22 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial Pregroup Grammars parse Context Sensitive
Languages
Anne Preller

To cite this version:
Anne Preller. Polynomial Pregroup Grammars parse Context Sensitive Languages. Linguistic Anal-
ysis, 2010, 36 (Lambek Festschrift), pp.483-516. �lirmm-00538562�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00538562
https://hal.archives-ouvertes.fr

Polynomial Pregroup Grammars

parse Context Sensitive Languages

A P

LIRMM/CNRS, Montpellier, France1

Abstract

Pregroup grammars with a possibly infinite number of lexi-

cal entries are polynomial if the length of type assignments for

sentences is a polynomial in the number of words. Polynomial

pregroup grammars are shown to generate the standard mildly

context sensitive formal languages as well as some context sensi-

tive natural language fragments of Dutch, Swiss-German or Old

Georgian. A polynomial recognition and parsing algorithm han-

dles the various grammars uniformly. It also computes a planar

graph for the semantic cross-serial dependencies in the case of

natural languages.

keywords: type logical grammar, pregroup grammar, proof graph,

complement control, cross-serial dependency, mildly context sen-

sitive language, Dutch subordinate clause, Swiss-German subor-

dinate clause, Old Georgian noun phrase, incremental dependency

parsing algorithm.

1. Introduction

The Pregroup Calculus was introduced by Lambek (1999) as a

simplification of the earlier Syntactic Calculus in (Lambek, 1958).

According to Buszkowski (2001), a pregroup grammar consists of

a finite set of basic types and a dictionary (or lexicon) containing

a finite number of words, each listed with a finite number of types

from the Pregroup Calculus. These finite grammars are proved in

[ibidem] to be weakly equivalent to context free grammars.

Both Francez and Kaminski (2008) and Stabler (2008) extend

pregroup grammars to mildly context-sensitive formal languages by

adding new rules and/or constraints to the Pregroup Calculus. Lam-

bek (2008a) discusses the Dutch subordinate clause and remarks

that a law of commutativity would solve the problem, but dismisses

it as ‘not allowed’.

1I am thankful for financial support provided by TALN/LIRMM.

The approach taken here is based on the belief that the compu-

tational efficiency and the semantic expressivity of pregroup gram-

mars is based on the planar graphs representing derivations of the

Pregroup Calculus. To keep them intact, the definition of a lexi-

con is relaxed allowing an infinite number of types per word. The

only restriction is that some polynomial in l bounds the length of

the concatenated type T1 . . . Tl associated to w1 . . .wl for every type

assignment wi : Ti, 1 ≤ i ≤ l with a reduction to the sentence

type. In the case of context free languages or the standard formal

mildly context sensitive languages it is of degree 1, for Dutch or

Swiss-German subordinate clauses it is of degree 2. The pregroup

grammar generating Michaelis and Kracht (1997)’s version of Old

Georgian noun phrases is polynomial of degree 2. The description

of the same noun phrases in (Bhatt and Aravind, 2004) can be han-

dled by a polynomial pregroup grammar of degree 1.

The natural language dictionaries presented here have entries

that are triples formed by a word, a type and a meaning expression.

The meaning of a sentence is computed from the chosen meanings

of the words by substitution. The dictionaries are compositional in

the sense of Kracht (2007). Moreover, a linear parsing and tagging

algorithm generates the (cross-serial) semantic dependencies.

Section 2 recalls the Pregroup Calculus and the geometrical

structure of reductions, followed by an example how to compute

the meaning of a sentence involving complement control in English.

Section 3 introduces polynomial pregroup grammars for formal and

natural context sensitive languages. Finally, Section 4 presents the

parsing algorithm based on the geometrical structure of reductions,

illustrated by an example of Dutch subordinate clauses.

2. Pregroup Calculus, Proof Graphs and Meaning

2.1. Pregroup Calculus and Reductions

The set of pregroup types P(B) generated by a partially ordered

set B = 〈B,≤〉 is the free monoid generated by the set of simple

types

S(B) =
{

a(z) : a ∈ B, z ∈ Z
}

.

The notation a(z) designates the ordered pair formed by the element

a of B and the integer z . Elements T ∈ P(B) are called types. In

an equality T = t1 . . . tn, it is always understood that the lower case

ti’s are simple types. In the case where n = 0, the string t1 . . . tn is

empty, denoted 1 . It is the unit for the binary operation of concate-

nation in the free monoid. A basic type is a simple type of the form

a(0). With a convenient lack of precision, a and a(0) are identified

and the elements of B are referred to as basic types. The left adjoint

and the right adjoint of a simple type t = a(z) are defined as

left adjoint tℓ = (a(z))ℓ = (a(z−1))

right adjoint tr = (a(z))r = (a(z+1)) .

The binary derivability relation on types, denoted→, is the smallest

transitive relation containing 1→ 1 satisfying

(1)

(Induced step) S a(z)T → S b(z)T

(Generalized contraction) S a(z)b(z+1)T → S T

(Generalized expansion) S T → S a(z+1)b(z)T

where either z is even and a ≤ b or z is odd and b ≤ a .

Note that the derivability relation → coincides with the partial

order ≤ on the set of basic types. It is a partial preorder on types, but

not an order, because it is not antisymmetric. Indeed, a→ a(ara) by

generalized expansion and (aar)a → a by generalized contraction,

see Buszkowski (2002).

Definition 1. (Dictionaries) Let Σ be a non-empty set. A pregroup

dictionary for Σ based on B is a map D defined on Σ with values

in the set of subsets of P(B). A type assignment of w1 . . .wn is a

sequence of types T1, . . . ,Tn for which Ti ∈ D(wi), 1 ≤ i ≤ n . A

lexical entry w : T ofD is an ordered pair w ∈ Σ and T ∈ D(w) . A

dictionary is discrete if it is based on a discrete set, i.e. a set ordered

by equality.

A pregroup grammar G = 〈D, s〉 for Σ based on B consists of a

pregroup dictionary D based on B and a distinguished basic type

s ∈ B. The language of G is the following subset of Σ∗

LG = {w1 . . .wn : T1 . . . Tn → s for some Ti ∈ D(wi), 1 ≤ i ≤ n} .

By definition, T → T ′ if and only if there is a sequence of types

T1, . . . ,Tn such that T1 = T , Tn = T ′ and Ti → Ti+1 is 1→ 1 or an

instance of the pairs in (1) for 1 ≤ i < n. The derivations of the Pre-

group Calculus can be characterized geometrically by proof graphs

that have underlinks, overlinks and vertical links, see (Preller and

Lambek, 2007). Underlinks are edges between simple types in the

upper line (the antecedent) and stand for generalized contractions.

Overlinks are edges between simple types in the lower line (the

conclusion) and represent generalized expansions. Vertical links are

edges between a simple type in the upper line and a simple type in

the lower line. They code induced steps. The proof graph below

represents a derivation from the type aℓa aℓa aℓa aras to the type

craℓa br bs c cℓ

�
�
�
�
�
�
�
�
�

�����������

�
�
�
�
�
�
�
�
�
�

aℓa aℓaaℓaara s

cr c aℓa br b s c cℓ .

To check grammaticality of a string of words, only derivations

without instances of Generalized Expansion are to be considered,

see Lambek (1999). The corresponding proof graphs are called re-

ductions. If the set of basic types is discretely ordered the lower line

and the vertical links can be omitted, as both are determined by the

unlinked simple types in the upper line. Moreover, for a fixed type

T , a reduction is determined by the position numbers of the links.

This representation of a reduction as a set of unordered pairs of po-

sition numbers assures an easy formulation of the parsing algorithm

in Section 4.

(2)
s

aℓ aaℓaar a s
1 2 3 4 5 6 7

{1, 6} {2, 5} {3, 4}

s

aℓaaℓaar a s
1 2 3 4 5 6 7

{1, 2} {3, 6} {4, 5}

Note that there may be more than one reduction between two given

types. The next subsection gives an example how a reduction to the

sentence type assembles the meaning of the words into a meaning

of the sentence.

Definition 2. (Reduction) Let 1 ≤ i1 < · · · < ik ≤ n, T = t1 . . . tn
and T ′ = ti1 . . . tik be given. A reduction R from T to T ′, in symbols

R : T ⇒ T ′, is a non-directed graph R = 〈{1, . . . , n} ,R〉 such that

1) for i ∈ {1, . . . , n} − {i1, . . . , ik} there is exactly one j ≤ n

such that {i, j} ∈ R

2) if {i, j} ∈ Rthen i , j, i < {i1, . . . , ik} , j < {i1, . . . , ik}

3) for {i, j} ∈ R and i < l < j then there is m such that i < m < j

and {l,m} ∈ R

4) tit j → 1 for i < j and {i, j} ∈ R .

The vertices in {1, . . . , n} are called positions and the edges in R

underlinks.

Follow a few properties that intervene repeatedly in the proofs of

Section 3.

Definition 3. (Simple type occurrence) An arbitrary type T is said

to be in D if w : T is a lexical entry for some word w . A simple

type t occurs in T = t1 . . . tn if t = ti for some i ≤ n. It occurs in D,

if it occurs in the type of some lexical entry ofD.

For example, aℓ and s occur in saℓ, but not the basic type a .

Definition 4. (Modest type) A type is modest, if all simple types

occurring in it are basic, or right or left adjoints of basic types, but

no basic type occurs with both its right and left adjoint. A dictionary

is modest if it is based on a discrete set and every type obtained by

concatenating types in the dictionary is modest.

A type T = t1 . . . tn is irreducible if titi+1 6→ 1 for 1 ≤ i < n . A

type T ′ is an irreducible form of T if T ′ is irreducible and T → T ′ .

For example, if a and b are basic then aaℓbrb is modest and irre-

ducible. Every simple type is irreducible. The type constituting the

top line of (2) is not modest.

The proofs of lemmas 2.2. - 2.6. below are straight forward.

Lemma 2.1. is a special case of Lemma 4.5 in Preller (2007a).

Lemma 2.1. (Uniqueness) Every modest type has a unique irre-

ducible form and a unique reduction to its irreducible form.

The property does not hold in general. Indeed, baℓaara has the two

irreducible forms b and bara, whereas (2) gives a type with two

distinct reductions to the same irreducible form.

Lemma 2.2. Let T ′ be the irreducible form of a modest type T =

t1 . . . tm and suppose that ti . . . t j → 1 for some 1 ≤ i < j ≤ m. Then

t1 . . . ti−1t j+1 . . . tm → T ′.

Again, the property above does not hold in general. For example,

baℓaara → b, aℓa → 1, but bara 6→ b. However, the next lemma,

a sort of converse of Lemma 2.2., holds for arbitrary types.

Lemma 2.3. If t1 . . . tm → T ′ and S = s1 . . . sn → 1 then

t1 . . . tiS ti+1 . . . tm → T ′ .

The next two lemmas state sufficient conditions for a simple type

to remain present in every irreducible form of the original type. We

say that tit j is a block of T = t1 . . . tm if i < j and ti is immediately

followed by t j in every irreducible form of T .

Lemma 2.4. Let t1 . . . tm = T be modest and i < j positions satis-

fying

1) tit j 6→ 1 and ti+1 . . . t j−1 → 1

2) for all k < i, tk is not a left adjoint of ti
3) for all l > j, tl is not a right adjoint of t j .

Then tit j is a block of T . In particular, T does not reduce to a single

simple type nor the empty type.

Lemma 2.5. Suppose T → T ′ and t occurs at k distinct positions

in T but neither the right nor the left adjoint of t occurs in T . Then

t has k occurrences in T ′.

Lemma 2.6. Assume that T = t1 . . . tn is modest and that T → t.

Then there is a unique position i such that t = ti.

Moreover, ti+1 . . . tn → 1. In addition, ti+1 . . . ti+k → 1 implies

ti+k+1 . . . tn → 1, for all 1 < k ≤ n − i. Similarly, t1 . . . ti−1 → 1 . In

addition, ti−k . . . ti−1 → 1 implies t1 . . . ti−k−1 → 1, for all 1 < k ≤

i − 1.

2.2. Semantic Pregroup Grammars

In a semantic pregroup grammar, see Preller (2007b), each lex-

ical entry w : T is enriched by a (string of) logical expression(s)

E, yielding a triple w : T :: E, in analogy with the triples word :

Type :: Term of CCG’s by Steedman (1996). The interpretation of

a sentence is a variable-free expression, computed from the chosen

interpretation of the words. The result of the computation depends

on the chosen reduction to the sentence type. Semantic pregroup

grammars are compositional in the sense of Kracht (2007). This

is best explained by replacing the (string of) logical expression(s)

associated to an entry by the corresponding 2-cell of compact 2-

categories, a proof that is beyond the scope of this paper. Consider

instead the following example sentences

Eva promised Jan to come (Subject Control)

Eva asked Jan to come (Object Control) .

The implicit agent of the infinitive is either the subject of promised

or the object of asked. In the first sentence it is Eva who is supposed

to come, in the second it is Jan. Consider the following semantical

dictionary

Eva : NP :: eva

promised : NPr
sδīℓNPℓ :: promise(x1, x2, x3) id(x1)

asked : NPr
sδīℓNPℓ :: ask(x1, x2, x3) id(x3)

Jan : NP :: jan

to : īiℓ :: to(y)

come : iδr :: come(z)

The basic types NP, i and ī stand for noun phrase, infinitive and

infinitival phrase. Finally, δ is a basic type that plays the role of a

marker similar to an index in HPS Grammars of Pollard and Sag

(1994).

Models interpret all logical expressions as functions, including

0-ary functions like eva and jan . Some functions take their values

in a ‘set of truth valuesΩ’ like promise, ask, come. Classical mod-

els interpret Ω as the two-element Boolean algebra and distributed

models as a subset of real numbers.

Functional symbols correspond to basic types in the order in

which they occur. Variables correspond to occurrences of non-basic

types, indexed in the order of the occurrences of the types. For ex-

ample,

NPr
s δ īℓ NPℓ

x1 ask id x2 x3
.

The variables on which a logical expression depends render the

intuitive meaning of semantical dependency. The translations of

promised : NPr
sδīℓNPℓ and asked : NPr

sδīℓNPℓ differ by the vari-

able on which the translation id of the basic type δ depends, namely

on x1 in the case of promise and on x3 in the case of ask .

The links of a reduction to the sentence type indicate how the

variables are to be replaced. For computing the logical expression

corresponding to

Eva promised Jan to come

(NP) (NPr
s δ īℓNPℓ) (NP)(īiℓ)(iδr)

do the following

- write the corresponding logical symbols above the simple types2

eva x1 promise id x2 x3 jan to y come z

NP (NPr
s δ ī

ℓNPℓ) NP (ī i
ℓ) (i δr)

- omit the types and put the links under the corresponding logi-

cal symbols

eva x1 promise id x2 x3 jan to y come z

- define the substitutions according to the links

(3)

x1 7→ eva x2 7→ to(y) x3 7→ jan y 7→ come(z) z 7→ id(x1)

Substituting in promise(x1, x2, x3), one obtains the logical expres-

sion that translates the sentence

promise(eva, to(come(id(eva))), jan)

The meaning of id is determined by the logic, i.e. it is interpreted

in every model as the identity function. This is guaranteed by the

axiom

id(x) = x

Finally, the translation is equivalent to the variable-free expression

(4) promise(eva, to(come(eva)), jan)

2Recall: a basic type b is identified with the simple type b(0)

Note that eva is the agent of come.

The procedure applied to the second sentence

Eva asked Jan to come

(NP) (NPr
s δ īℓNPℓ) (NP)(īiℓ)(iδr) ,

yields the same substitutions as in (3) except for the last which is

replaced by

z 7→ id(x3) .

The resulting interpretation of the sentence is now equivalent to

(5) ask(eva, to(come(jan)), jan)

Now, jan is the agent of come in opposition to (4).

The semantical dependency, expressed above as embedding of

subexpressions corresponds to the embedding of boxes in the DR-

structures in citek-r.

3. Polynomial Pregroup Grammars

Polynomial pregroup grammars generalize the notion of finite

pregroup grammars in (Buszkowski, 2001)

Definition 5. A pregroup grammar is polynomial of degree n if the

length of T1 . . . Tl is O(ln) for every every type assignment w1 :

T1, . . . ,wl : Tl for which T1 . . . Tl → s .

If the length of types occurring in the dictionary does not exceed a

constant α, then the corresponding grammar is linear polynomial,

i.e. of degree 1. Indeed, for every string of words w1 . . .wl the length

of the assigned type T1 . . . Tl is bounded by the αl. A fortiori, finite

pregroup grammars are polynomial of degree 1. Hence all context

free languages are generated by polynomial pregroup grammars of

degree 1 . The grammars for the semilinear mildly context sensi-

tive formal languages below are also linear polynomial. The con-

text sensitive natural language fragments considered in subsection

3.2 are generated by a square polynomial. In fact, the latter is the

polynomial used in (Michaelis and Kracht, 1997) for proving non

semilinearity of languages.

3.1. Mildly Context Sensitive Formal Languages

Consider the three standard mildly context sensitive formal lan-

guages, namely

L1 = {vv : v ∈ Σ+}

L2 = {a
nbncn : n ≥ 1, a, b, c ∈ Σ, a , b, b , c}

L3 = {a
mbncmdn : m ≥ 1, n ≥ 1, a, b, c, d ∈ Σ, a , b, b , c, c , d} .

3.1.1. Duplication

L1 =
{

vv : v ∈ Σ+
}

The set of basic types is constructed from Σ by adding a new symbol

s called sentence type and a ‘copy’ ā for every a ∈ Σ . The elements

of {s} ∪ {ā : a ∈ Σ} are pairwise distinct symbols not in Σ. The set

of basic types B1 = 〈B1,=〉 is ordered by equality, where

B1 = {s} ∪ Σ ∪ {ā : a ∈ Σ} .

The dictionary D1 maps an element a ∈ Σ to the following infinite

subset of P(B1)

D1(a) = {a} ∪ {ār} ∪
{

br
1 . . . b

r
i a

r
s b̄1 . . . b̄i : b1 . . . bi ∈ Σ

∗
}

.

This dictionary is modest (recall Definition 4.).

Lemma 3.1. The language LG1
of the pregroup grammar G1 =

〈D1, s〉 contains L1 .

Proof. Assume that X = a1 . . . am ∈ L1 . Hence m = 2n and an+i =

ai, 1 ≤ i ≤ n, for some n ≥ 1.

Case n = 1:

Choose T1 = a1 and T2 = ar
1
s. From the assumption follows that

T1,T2 is a type assignment for a1a2. Clearly, T1T2 → s.

Case n ≥ 2:

Define

T j =



























a j for 1 ≤ j ≤ n

ar
n . . . a

r
2
ar

j
s ān . . . ā2 for j = n + 1

ār
j

for n + 1 < j ≤ 2n.

The assumption implies ā j = ān+ j and thus ā jā
r
n+ j
→ 1, for 1 ≤ j ≤

n. Hence T1 . . . Tm → s. Thus the language L1 is included in the

language defined by G1 . �

The type assignment T1, . . . ,Tm defined above is called the canoni-

cal type assignment and the concatenated type T1 . . . Tm the canon-

ical type. The unique index k such that the sentence type occurs in

Tk is called the key-index.

Lemma 3.2. Suppose T j ∈ D1(a j), 1 ≤ j ≤ m, is a type assignment

for X = a1 . . . am ∈ Σ
∗ such that T1 . . . Tm → s. Then X ∈ L1 and

T1 . . . Tm is the canonical type assignment for X.

Proof. Two things are to be proved: t m = 2n for some n ≥ 1 and

that an+i = ai for 1 ≤ i ≤ n. The assumption T = T1 . . . Tm → s

implies that s has a unique occurrence in T , by Lemma 2.6.. There-

fore there is a unique k such that 1 ≤ k ≤ m and s occurs in Tk.

Hence

Tk = br
1 . . . b

r
i ak

r
s b̄1 . . . b̄i

for some i ∈ N and some string b1 . . . bi ∈ Σ
∗. Moreover, if j , k

then T j = a j or T j = ār
j
. From Lemma 2.6. follows that

b̄1 . . . b̄iTk+1 . . . Tm → 1

T1 . . . Tk−1br
1
. . . br

i
ak

r → 1 .

Under the assumption that b̄1 . . . b̄iTk+1 . . . Tm → 1, use induc-

tion on i to show that

(6)

Tk+ j = ār
k+ j

for 1 ≤ j ≤ i

ak+ j = bi− j+1 for 1 ≤ j ≤ i

i = m − k ≥ 0 .

Case i = 0:

Then Tk = ar
k
s and Tk+1 . . . Tm → 1, by Lemma 2.6.. Clearly, the

empty string is the only string of simple types in {a, ār : a ∈ Σ} that

reduces to 1. Thus k = m.

Case i ≥ 1 :

Note that Tk+1 = ār
k+1

, because the other possible choice for Tk+1

would be ak+1. In this case b̄iak+1 would be in every irreducible form

of T1 . . . Tm by Lemma 2.4., contradicting the assumption. For the

same reason, b̄iā
r
k+1
→ 1, i.e. b̄i = āk+1. The latter implies ak+1 = bi.

Let T ′ = b̄1 . . . b̄i−1Tk+2 . . . Tm. Then T ′ → 1 by Lemma 2.2.. The

induction hypothesis applies to T ′. Hence Tk+1+ j = ār
k+1+ j
, ak+1+ j =

bi−1− j+1 for 1 ≤ j ≤ i − 1 and i − 1 = m − (k + 1) .

Similarly, under the assumption T1 . . . Tk−1br
1
. . . br

i
ak

r → 1 show

that

(7)

Tk−l = ak−l for 1 ≤ l ≤ i + 1

ak−l = bl for 1 ≤ l ≤ i

ak−i−1 = ak

1 = k − i − 1

by induction on i . In the case i = 0, note that k > 1, because if

k = 1 then ar
k
→ 1 , which is impossible. It follows that Tk−1 = ak−1

and ak−1 = ak. Hence T1 . . . Tk−2 → 1 and therefore k − 1 = 1. The

induction step is similar to that given above.

From equations (7) and (6) follows that i = k−2 and m = k+ i =

k + k − 2 = 2n, where n = k − 1. Moreover, if j varies between 1

and i in increasing order then l = i − j + 1 varies between i and

1 in decreasing order. Hence a j+1 = a2+ j−1 = ak−i+ j−1 = bi− j+1 =

ak+ j = an+ j+1, for 1 ≤ j ≤ i = n− 1. Finally, a1 = an+1 follows from

ak−i−1 = ak. �

The proof above shows that an arbitrary type assignment with a

reduction to the sentence type is equal to the canonical one and also

constructs the unique reduction to the sentence type, namely

a1 a2 . . . ak−1 ak ak+1 . . . am

a1 a2 . . . ak−1 (br
1 . . . b

r
i ar

k s b̄1 . . .b̄i) ār
k+1 . . . ār

m .

3.1.2. Multiple Agreement

L2 = {a
nbncn : n ≥ 1, a, b, c ∈ Σ, a , b, b , c}

In a formal language, it is customary to denote an ∈ Σ+ the

string consisting of n repetitions of the symbol a. This might lead to

confusion because of the notation a(m) for simple types. Therefore

the n-fold repetition of t is denoted [n]t below.

The set of basic types B2 is ordered by equality, where

B2 = {s} ∪ Σ ∪ {ā : a ∈ Σ}

The dictionaryD2 maps an element c ∈ Σ to the following infi-

nite subset of P(B2)

D2(c) = {c}∪{c̄r}∪
{

[n]ar [n]br
s c̄ℓ[n]c̄ : 1 ≤ n, a, b ∈ Σ, a , b , c

}

.

Note thatD2 is modest. Moreover, G2 = 〈D2, s〉 generates L2.

Lemma 3.3. A string X = a1 . . . am ∈ Σ
∗ has a type assignment

ai : Ti ∈ D2, 1 ≤ i ≤ m, such that T1 . . . Tm → s if and only if

X ∈ L2.

Proof. - Assume X = a1 . . . am ∈ L2. Then m = 3n for some integer

n ≥ 1. Define

Ti =



























ai for 1 ≤ i ≤ 2n

[n]ar
n+1

[n]ar
1
s āℓ

i
[n]āi for i = 2n + 1

ār
i

for 2n + 2 ≤ i ≤ m .

Clearly, this type assignment has a reduction to the sentence type.

Call it the canonical type assignment and m − n + 1 the key-index.

- Assume that Ti ∈ D2(ai), 1 ≤ i ≤ m, satisfies T1 . . . Tm → s.

The argument is similar to that of Lemma 3.2.. Now the unique type

with an occurrence of the sentence type has the form

Tk = [n]br [n]ar
s āℓk[n]āk,

for some k ≤ m, n ≥ 1, a ∈ Σ, b ∈ Σ . Recalling that āℓ
k
[n]āk =

āℓ
k
āk[n − 1]āk → [n − 1]āk show that

Ti = ār
i

and ai = ak, for k + 1 ≤ i ≤ m, and n − 1 = m − k

Ti = ai = a, for k − n ≤ i ≤ k − 1,

Ti = ai = b, for 1 ≤ i ≤ k − n − 1 and k = 2n + 1.

From this conclude that m = k + n − 1 = 3n . Hence k = 2n + 1 and

X = anbnan
2n+1

. �

3.1.3. Crossing Dependencies

L3 = {a
mbncmdn : m ≥ 1, n ≥ 1, a, b, c, d ∈ Σ, a , b, b , c, c , d}

The set of basic types remains unchanged, i.e.

B3 = {s} ∪ Σ ∪ {ā : a ∈ Σ} .

The dictionary D3 maps an element d ∈ Σ to the following infinite

subset of P(B3)

D3(d) = {d} ∪
{

d̄r
}

∪
{

[m]cr [n]br [m]ars d̄ℓ[n]d̄ : n,m ≥ 1 a, b, c ∈ Σ
}

,

where a , b, b , c, c , d . Again, D3 is modest and G3 = 〈D3, s〉

generates L3.

Lemma 3.4. X = a1 . . . al ∈ Σ
∗ has a type assignment Ti ∈ D3(ai),

1 ≤ i ≤ l, such that T1 . . . Tl → s if and only if X ∈ L3.

Proof. The key-index is k = 2m + n + 1 and the canonical type

assignment is

Ti =















ai for 1 ≤ i ≤ 2m + n

ār
i

for 2m + n + 2 ≤ i ≤ l

Tk = [m]ar
m+n+1

[n]ar
m+1

[m]ar
1

s āℓ
k
[n]āk .

The details are left to the reader. �

Note the common features shared by the three grammars G1- G3.

Sentences w1 . . .wl have a canonical type assignment T1, . . . ,Tl with

a key-index k. Moreover, the length of the type Tk is proportional

to l whereas the length of the other types Ti, i , k, is bounded by

a constant. Therefore, the length q of the canonical type t1 . . . tq =

T1 . . . Tl is O(l).

3.2. Natural Languages

Among the context sensitive natural language fragments are the

Dutch and Swiss-German subordinate clauses and the compound

noun phrases of Old Georgian.

Dutch Subordinate Clause

Pullum and Gazdar (1987) presents a context free grammar that

weakly generates the Dutch subordinate clauses. This means that

the context free grammar generates the clauses as strings of symbols

but produces parse trees that violate the intuition of speakers about

the phrase structure and the semantical dependencies, see (Salvitch

et al., 1987). On the other hand, Bresnan et al. (1987) argues that

no context free grammar strongly generates the clauses.

The polynomial pregroup grammar below strongly generates the

Dutch subordinate clauses. This means that the reductions to the

sentence type give rise to a semantic interpretation expressing the

distant cross-dependencies. For example, in the subordinate clause3

below Marie is the agent of zag and Jan the agent of zwemmen. The

dependency is represented by an arrow from the verb to the agent.

yy yy

dat Marie Jan zag zwemmen

(that Mary saw Jan swim)

(8)

Using the entries

dat (that) : ss̄ℓ :: dat(y)

Marie (mary) : NP :: marie

zag (saw) : NPrNPr
s̄iℓδ :: zien(x2, z) id(x1)

Jan (jan) : NP :: jan

zwemmen (swim) : δri :: zwemmen(x) ,

parse this clause

dat Marie Jan zag zwemmen

dat marie jan , (x1 x2 zien z id) (x zwemmen)

s s̄
ℓ (NP) (NP) (NPr NPr

s̄ ī
ℓ δ) (δr ī)

(9)

and compute its logical interpretation according to Section 2.2

dat(zien(marie, zwemmen(id(jan))) .

Applying the identity axiom id(jan) = jan , we see that the inter-

pretation of the clause is equivalent to

(10) dat(zien(marie, zwemmen(jan))) .

By convention, the first argument of a relation corresponds to the

agent. Hence, the subexpression relation in (10) expresses the se-

mantical dependencies of sentence (8).

The dependency arrows of (8) can also be obtained geometri-

cally. It suffices to represent the dependencies by curved overlinks.

3adapted from examples in (Bresnan et al., 1987)

The vertical arrows indicate the functional symbols, connected to

their arguments by the dotted overlinks.

(11)
mmmmmmmmmmmmmmmmmm

rrrrrrrrrrrrrr

�
�
�
�
�
�
�

IIIIIIIIIIIII

marie jan x1 x2zien z id x zwem men .

In (11), the path starting at x and ending at jan and the path from

x2 to marie constitute the dependency links of (8). The dependence

of zien on x2 and z is indicated by dotted overlinks.4

The number of noun phrases and causal verbs is not limited, for

example

vv vv uu

(dat) Eva Piet Jan zag leren zwemmen .

((that) Eva saw Pete teach Jan to swim)

(12)

Consider the entries Eva : NP :: eva, Piet : NP :: piet, Jan : NP ::

jan and

zag (saw) : NPrNPrNPr
s̄iℓδδ :: zien(x3, z) id(x2) id(x1)

leren (teach) : δrδriiℓδ :: leren(x′
2
, z′) id(x′

1
)

zwemmen (swim) : δri :: zwemmen(x)

Compute the reduction of the assigned type to s̄

Eva Piet Jan zag leren zwemmen

eva piet jan (x1 x2 x3zien z id id) (x′1 x′2leren z′ id)(xzwemmen)

(NP) (NP) (NP) (NPrNPrNPr
s̄ i
ℓ δ δ) (δr δr i i

ℓ δ) (δri)

Replace the simple types by the corresponding logical symbols and

4This vindicates Claudia Casadio’s idea that overlinks intervene in grammatical
dependencies. The graph above the logical symbols in (11) represents the concate-
nation of the meanings of the words. It ‘lives’ in symmetric compact 2-categories,
like the category of real vector spaces. The overlinks correspond to expansions in
the symmetric 2-category, but not in the non-symmetric 2-category of derivations
of the Pregroup Calculus. The meaning of the sentence is obtained by composing
the concatenated meanings with the reduction.

represent dependencies by curved overlinks

(13)

(eva)(piet)(jan)(x1 x2 x3 zien z id id) (x′1 x′2leren z′id)(xzwem)

The oriented paths starting at x3 respectively x′
2

respectively x and

terminating at eva respectively piet respectivelyjan constitute the

dependency arrows of (12). The logical expression is

zien(eva, leren(piet, zwemmen(jan))) .

The graph (13) induces the labelled planar graph (14) belonging to

a family of graphs relevant for dependency parsing, see (Kuhlmann

and Nivre, 2006). The labels of the edges in (14) are defined by

the overlinks ‘hidden’ inside of (the type of) the words. Every path

formed by the edges with a given label corresponds to a dependency

arrow of (12).

(14)

1
2

3 3
2

3

Eva Piet Jan z a g leren zwemmen

The last verb in the clause may be intransitive, transitive, di-

transitive etc. The arity of a verb w is the number of the argument

places of the interpreting relation. Hence intransitive verbs are of

arity 1, transitive verbs are of arity 2 and so on. Note that the arity

of a non-causal verb coincides with the number of occurrences of

non-basic types, for example

zwemmen (swim) : δri :: zwemmen(x) (intransitive)

schrijven (write) : δrδri :: schrijven(x2, x1) (transitive)

geven (give) : δrδrδri :: geven(x3, x2, x1) (ditransitive)

The arity of the causal verbs below also is 2. The surplus number

of non-basic types in an associated type Tp, p ≥ 2, provides the

argument places for the ‘remembering’ functions id. For example,

(15)
zag :[p]NPr

s̄iℓ[p − 1]δ:: zien(xp, z) id(xp−1) . . . id(x1), p ≥ 2

leren:[p]δriiℓ[p − 1]δ ::leren(xp, z) id(xp−1) . . . id(x1), p ≥ 2

where x1 corresponds to the first occurrence of NPr, x2 to the second

occurrence of NPr and so on up to xp, whereas z corresponds to iℓ.

A string of words w1 . . .wl is a k-fold subordinate clause if its

first word w1 is dat, the words w2 up to and including w1+k are

proper names, the next word w1+k+1 is a causal verb in finite form,

the so-called key-word, and after the key-word the wi’s are infini-

tives, of which all are causal except the last one, which is non-causal

of arity m = 2k + 2 − l .

A k-fold subordinate clause w1 . . .wl has a canonical type as-

signment Ti, 1 ≤ i ≤ l, namely

Ti =



















































s s̄ℓ if i = 1

NP if 2 ≤ i ≤ k + 1

[k]NPr
s̄ iℓ[k − 1]δ if i = k + 2

[2k − i + 2]δri iℓ[2k − i + 1]δ if k + 2 < i < l

[2k − l + 2]δri if i = l .

The proof that the canonical type assignment reduces to the

clause type s uses induction on k and follows from the next two

lemmas.

A type T is said to be p-infinitival if either T = [p]δr i and p ≥ 1

or T = [p]δr iiℓ [p − 1]δ and p ≥ 2. It is said to be causal if the

latter holds and non-causal in the former case.

Lemma 3.5. Let T j be infinitival or equal to NP for 1 ≤ j ≤ n.

Then T1 . . . Tn 6→ 1

Proof. Assume on the contrary that T1 . . . Tn → 1. As δℓ and NPℓ

do not occur in T1 . . . Tn the latter does not end with δ nor with

NP . Hence Tn = [pn]δri. Therefore the number of occurrences of i

in T1 . . . Tn exceeds that of iℓ, because the latter always occurs to-

gether with the former. As i can only be linked to iℓ, this contradicts

T1 . . . Tn → 1. �

Lemma 3.6. Let k ≥ 1, n ≥ 1, Z = iℓ[k]δ and T j be p j-infinitival

of length q j, 1 ≤ j ≤ n such that ZT1 . . . Tn → 1 holds. Then

i) Tn is non-causal

ii) T j is causal, j ≤ n − 1. Moreover, p j = k − j + 1, j ≤ n

iii) n = k − pn + 1

iv) q j = 3 + 2(k − j), 1 ≤ j < n, qn = k − n + 2 .

Proof. From ZT1 . . . Tn → 1 follows that Tn = [pn]δr i by the same

argument as above. Hence i) holds.

Next show ii), iii) and iv) by induction on n.

Case n = 1. From iℓ[k]δ [p1]δri→ 1 follows that k = p1

Case n ≥ 2. Recall that ZT1 . . . Tn = iℓ [k]δ [p1]δriXY → 1

where Y = T2 . . . Tn and either X = 1 or X = iℓ [p1−1]δ . The latter

alternative holds if T1 is causal, the former if it is non-causal. Note

that ir does not occur in the string XY and therefore the leftmost

occurrence of i in ZT1 . . . Tn → 1 is linked to the unique iℓ on its

left. It follows that [k]δ [p1]δr → 1 and XY → 1, hence k = p1. If

X = 1 then T2 . . . Tn = Y → 1, contradicting Lemma 3.5. and the

assumption n ≥ 2. Hence X = iℓ [p1 − 1]δ with p1 ≥ 2. Now apply

the induction hypothesis to X,T2, . . . ,Tn.

Finally, iii) and iv) are immediate consequences of ii) and i). �

Theorem 3.1. 1) For every subordinate clause there is a unique

type assignment with a reduction to the clause type s. 2) Every

string of words from the dictionary that has a type assignment with

a reduction to s is a subordinate clause.

Proof. 1) The first assertion follows from the definitions by Lemmas

2.1. - 2.6..

2) To see the converse, let T j ∈ D(w j) for 1 ≤ j ≤ l and

T1 . . . Tl → s . By Lemma 2.5., s occurs in exactly one type Ti

and therefore Ti = ss̄ℓ and wi = dat. Then s̄ also has exactly one

occurrence in the string. Indeed, each of its occurrences is linked

to some occurrence of s̄ℓ and the latter occurs only together with

s . Let p be the unique index such that s̄ occurs in Tp. Therefore

T j is either infinitival or the basic type NP for all j other than i

and p . Note that p > i, because s̄ℓ and s̄ are linked. Moreover,

Tp = [k]NPr
s̄ iℓ[k − 1]δ for some k ≥ 2 .

First note that i = 1, because T1 . . . Ti−1 → 1 by choice of i.

This is only possible if the string is empty by Lemma 3.5..

Next, T2 . . . Tp−1[k]NPr → 1, because s̄ℓ is linked to s̄ . From

this follows that T2 = · · · = Tp−1 = NP and p = 1+ k+ 1 by Lemma

2.4..

Finally, from the preceding follows that iℓ[k− 1]δTp+1 . . . Tl →

1 . Note that NP cannot occur in this string and conclude by Lemma

3.6.. � Theorem 3.1. above implies that

for every s-sentence w1 . . .wl there are unique types Ti ∈ D(wi),

1 ≤ i ≤ l, and a unique type T = T1 . . . Tl such that T → s . Call T

the canonical type, Ti ∈ D(wi) the canonical type assignment and

the unique reduction of T to s the canonical reduction of w1 . . .wl.

The preceding theorem implies that the infinite grammar above

is polynomial, i.e. the length of any type assignment with a deriva-

tion to s is bounded by a polynomial. The property also intervenes

in the complexity estimate of the parsing algorithm in Section 4.

Corollary 3.2. The length of the canonical type T1 . . . Tl of a k-

fold Dutch subordinate clause is bounded by k2+3k+1 . Moreover,

k ≤ l/2 .

Proof. Let k be the number of noun phrases preceding the key-word

wp, m the arity of the last verb wl. The number n of words after wp

satisfies n = k−m by Lemma 3.6.. The number of words before the

key-word wp is k + 1. Hence l = 2k − m + 2 and therefore k ≤ l/2 .

On the other hand, the length q of the type T1 . . . Tl is

q = 2 + k + q′ + m + 1 ,

where q′ is the length of the type TpTp+1 . . . Tl−1. Starting at Tl−1

and reading backward from right to left, the length of the types

increases by 2 from one to the next. The length of the rightmost

type Tl−1 is 2 + 2m + 1 . Therefore

q′ =
∑ j=n

j=1
(2 j + 2m + 1)

= n(2m + 1) + n(n + 1)

= k2 + 2k − m2 − 2m

Hence, q = k2 + 3k − m2 − m + 3 ≤ k2 + 3k + 1. �

The canonical reduction defines the semantic dependencies as

well. This follows from the next lemma, where a path in the oriented

graph G represents the successive substitutions and instances of the

identity axiom intervening in the interpretation.

Lemma 3.7. Let k > n ≥ 0 and G = 〈V0 ∪ V1,E0 ∪ E1〉 be the

oriented graph defined as follows

V0 =
{

ai j : 0 ≤ i ≤ n, 1 ≤ j ≤ k − i
}

(functional symbol)

V1 =
{

xlp : 1 ≤ l ≤ n + 1, 1 ≤ p ≤ k − l
}

(variable)

and

E0 =
{

〈ai j, xi+1, j〉 : 0 ≤ i ≤ n, 1 ≤ j ≤ k − i
}

(substitution)

E1 =
{

〈xil, ai,l−1〉 : 1 ≤ i ≤ n, 2 ≤ l ≤ k − i
}

(identity axiom) .

Then for 1 ≤ j ≤ k there is a unique maximal path starting at

a0 j . Moreover, xl, j+1−l and ai, j−i are on this path for all l such that

1 ≤ l ≤ n + 1 and j − l ≥ 0 and all i satisfying j − i ≥ 1 and

0 ≤ i ≤ n .

Proof.Straightforward by induction on k. The graph looks like this

for k = 4, n = 2, where the underlinks represent the edges in E0 and

the overlinks the edges in E1

(a01a02a03a04) (x14x13x12x11 a11a12a13) (x23x22x21 a21a22)(x32x31) .

�

Pregroup Grammar with Copying Rules

Stabler (2004) considers copying grammars when analysing cross-

ing dependencies in human languages. Following this lead, define

the following finite pregroup grammar enriched with two copying

rules

(16)

dictionary entries copying rules

zag (saw): NPrNPr
s̄iℓδ

leren (teach): δrδriiℓδ

NPrTδ→ NPrNPrTδδ

δrTδ→ δrδrTδδ
.

The copying rules are not derivable in Pregroup Calculus. Therefore

the graphical representations of derivations is lost and with them

the mathematical structure of the proofs. Moreover, the semantical

interpretation of the control verbs cannot be read off the type in the

dictionary but must be constructed during the proof by a semantic

copying rule parallel to the grammatical copying rule.

It is easy to see that every clause recognized by the polyno-

mial pregroup grammar is also recognized by the finite grammar

with copying rules. Indeed, Let T1, . . . ,Tn be a type assignment

for w1, . . . ,wl from the infinite dictionary and r a reduction to the

clause type. Recall that r corresponds to a derivation using only the

contraction rule. Moreover, T1, . . . ,Tl is the canonical type assign-

ment by Theorem 3.1.. Define T ′
j
= [2]NPr

s̄iℓδ if T j = [p j]NPr
s̄iℓ[p j−

1]δ, T ′
j
= [2]δriiℓδ if T j = [p j]δ

riiℓ[p j − 1]δ and T ′
j
= T j else. De-

rive the clause type from T ′
1
. . . T ′

l
by applying p j − 2 times the

copying rule to T ′
j
, T j . The resulting compound type is T1 . . . Tl .

Then apply the contraction rules as indicated by the links of r.

The converse also holds. A string derivable in the copying gram-

mar also has a reduction in the polynomial grammar. The argument

is similar to that establishing Lemma 3.6. and Theorem 3.1..

The chosen copying rules are language specific. A general de-

velopment of pregroup grammars with copying rules is beyond the

scope of this paper.

Swiss German Subordinate Clause

According to the analysis of Shieber (1987), the Swiss-German

subordinate clause has the same semantic cross-serial dependencies

as Dutch, but they are also expressed in the syntax by case marking.

This can be captured by distinguishing the types for noun phrases

NPnom,NPdat,NPacc as well as the dummy types δnom, δdat, δacc . The

proofs are similar to the preceding ones. In particular, correct se-

mantical dependencies guarantee correct syntax.

Old Georgian Noun Phrase

The pregroup grammar below generates compound noun phrases

of Old Georgian according to the analysis of Michaelis and Kracht

(1997). The dictionary lists an infinite number of distinct words. In-

deed, Old Georgian uses genitive suffixes for possessive compound

noun phrases. The genitive suffix, denoted here G, is appended to

noun(stem)s or names. When the construction is repeated, the pre-

vious genitive suffixes are also repeated.

govel-i igi sisxl-i saxl-isa-j m-is Saul-is-isa-j

all-Nom Art=Nom blood-Nom house-G-Nom Art-G Saul-G-G-Nom

‘all the blood of the house of Saul’ .

More generally, compound nominative noun phrases have the

form

(17) N1-Nom N2-G-Nom N3-G
2-Nom . . . Nk-G

k−1-Nom .

Square brackets highlight semantic dependencies as follows

~N1-Nom ~N2-G-Nom . . . ~Nk-G
k−1-Nom�NPk

. . . �NP2
�NP1
.

Assume the basic types NPnom, Nnom and G for nominative noun

phrases, nominative common nouns and genitive suffixes in that or-

der. For each p ≥ 0, the word Name-Gp-Nom respectively Noun-Gp-Nom

has two entries in the dictionary, namely

Name-Gp-Nom :















NPnom [p]G

NPnom [p]G [p + 1]Gℓ NPℓnom

Noun-Gp-Nom :















Nnom [p]G

Nnom [p]G [p + 1]GℓNPℓnom .

Common nouns are preceded5 by a determiner to form noun phrases

like

(18)
Art = Nom Noun-Nom

Art-G Noun-Gp-Nom .

Adding the following entries to the dictionary

Art = Nom : NPnom Nℓnom
Art-G : NPnomGGℓNℓnom ,

each of the noun phrases (18) has two possible types, each of which

reduces to the type of a noun phrase. For p ≥ 1, the types for

Art-Gen Noun-Genp-Nom are

(NPnomGGℓNℓnom) (Nnom [p]G)→ NPnom[p]G

and

(NPnomGGℓNℓnom) (Nnom [p]G [p + 1]Gℓ NPℓnom)→

NPnom [p]G [p + 1]Gℓ NPℓnom .

The length of the type at the left of→ exceeds that of the reduced

type by 4.

It follows that every string of words of the form (17) has a

unique type assignment with a reduction to the noun phrase type

NP and vice versa. The length of the assigned type can be expressed

as a square polynomial in the length of the string.

4. Tagging and Parsing Algorithm

Ambiguity enters parsing by pregroup grammars in two ways.

There may be different type assignments with a reduction to the

5The determiner may also follow its noun. This is ignored here.

sentence type or a fixed type assignment of length q may have (up

to 2q) distinct reductions to the sentence type. Testing every type

assignment for an eventual reduction to the sentence type is highly

inefficient even if the dictionary is finite. The usual cubic-time poly-

nomial recognition algorithms do not construct reductions and rely

on the fact that the dictionary is finite or at least that there is a

constant bounding the number of types per word in the dictionary.

Some authors use ‘parsing’ in the weak sense that the algorithm

constructs a reduction to the sentence type for a given type assign-

ment, whereas the choice of a type assignment is called ‘tagging’.

‘Parsing’ is used here in the following stronger sense.

Definition 6. A recognition algorithm decides whether or not a string

of words w1 . . .wl ∈ Σ
∗ has a type assignment T1, . . . ,Tl such that

the concatenated type T1 . . . Tl has a reduction to the sentence type.

A parsing algorithm is an algorithm that decides whether or not a

string of words is a sentence and, if the answer is yes, computes a

type assignment and a reduction to the sentence type.

Recognition is sufficient for formal languages, but parsing is indis-

pensable for natural languages, because the semantic interpretation

of a sentence is defined via the derivation to the sentence type.

The algorithm below is a variant of the algorithm in (Preller,

2007a). It processes the string of words from left to right and chooses

a type for each word. The choice relies on a tagging strategy mo-

tivated by properties specific to the languages Li of the preced-

ing section. The strategy avoids ‘losing’ type-assignments as soon

as possible. That is to say it avoids a type assignment T1, . . . ,Ti

that cannot be extended to a type assignment T1, . . . ,Ti,Ti+1, . . . ,Tl

with a reduction to the sentence type.

4.1. The Algorithm

A stack of non-negative integers is defined inductively. The empty

symbol ∅ is a stack, called the empty stack. If S ′ is a stack and i

a non-negative integer then 〈S ′, i〉 is a stack. The functions top and

pop send a stack 〈S ′, i〉 to its top i and to its tail S ′ respectively.

They are undefined for the empty stack.

When processing the string w1 . . .wl ∈ Σ
∗, the algorithm moves

through a subset of the set of stages Sw1...wl
, which is union of the

following three sets

{sin} ,
{

(i; T1, . . . ,Ti−1, 1; 0) : 1 ≤ i ≤ l + 1, T j ∈ D(w j), 1 ≤ j ≤ i − 1
}

and
{

(i; T1, . . . ,Ti; p) : 1 ≤ i ≤ l, 1 ≤ p ≤ qi, T j ∈ D(w j), 1 ≤ j ≤ i
}

where qi is the length of the type Ti and sin is a new symbol denoting

the initial stage.

Define a partial order on the set of stages such that sin ≤ s for

all s and

(i; T1, . . . ,Ti; p) ≤ (i′; T ′1, . . . ,T
′
i′ ; p′)

if and only if one of the following conditions holds

i < i′,T j = T ′
j

for 1 ≤ j ≤ i

or

i = i′, p = 0, T j = T ′
j

for 1 ≤ j < i

or

i = i′, 1 ≤ p ≤ p′, T j = T ′
j
, 1 ≤ j ≤ i .

This partial order induces a total order on the set of all stages less

or equal to a given stage. Moreover, all stages of the form (l +

1; T1, . . . ,Tl, 1; 0) are maximal.

Every non-initial stage s has a unique predecessor s − 1, given

by

(i; T1, . . . ,Ti; p)− 1 =







































(i; T1, . . . ,Ti; p − 1), if p ≥ 2

(i; T1, . . .Ti−1, 1; 0) if p = 1

(i − 1; T1, . . . ,Ti−1; qi−1) if p = 0, i > 1

sin if p = 0, i = 1 .

A non-initial stage is tagging if its last integer p = 0 and testing

otherwise. Every testing stage s has a unique successor s+1, namely

(i; T1, . . . ,Ti; p) + 1 =















(i; T1, . . . ,Ti; p + 1) if p < qi

(i + 1; T1, . . . ,Ti, 1; 0) if p = qi, i ≤ l .

The algorithm executes two subroutines, tagging and testing, for

each word wi . When at tagging stage (i; T1, . . . ,Ti−1, 1; 0), i ≤ l, the

algorithm has finished processing the type T1 . . . Ti−1. The tagging

routine tagD either chooses a type Tag ∈ D(wi) or decides to stop

and updates the constant output. The computation of Tag involves

a constant key that depends on the language whose sentences are

to be parsed. The routine tagD is defined in the next subsection. At

a maximal stage (l + 1; T1, . . . ,Tl; 0), the output is updated to the

result computed so far.

Recall that the types T j at stage s = (i; T1, . . . ,Ti; p) are strings

of simple types T j = t j1 . . . t jq j
. Each testing stage

s = (i; T1, . . . ,Ti; p)

defines a working position p(s) = q1 + · · · + qi + p, the simple

type read tp(s) = tip and the type processed T (s) = t1 . . . tp(s) =

t11 . . . t1q1
. . . ti1 . . . tip . To keep notation uniform, define p(sin) = 0

and t0 = 1. Note that for every testing stage s and positive integer

i′ ≤ p(s), there is a unique testing stage s′ ≤ s such that i′ = p(s′).

When in testing stage s, the algorithm checks if tp(s) contracts

with the last not yet contracted simple type and updates the stack

of positions S (s) and the reduction R(s). The latter contains the

links computed so far. The former contains the unlinked positions

in increasing order such that the top of the stack is the position of

the last unlinked simple type.

Finally, the irreducible substring I(s) of T (s) consisting of the

unlinked simple types in the order given by the stack S (s) is defined

by

I(sin) = 1, I(〈S ′, j〉) = I(S ′)t j .

Definition 7. Tagger-Parser

H At the initial stage s = sin, key, output, S and R are initialized to

key = undefined, output = undefined, S (sin) = 〈∅, 0〉 , R(sin) = ∅ .

Then the process goes to the first tagging stage

s = (1; 1; 0)

H At tagging stage s = (i; T1, . . . ,Ti−1, 1; 0), the stack and reduction

remain unchanged

S (s) = S (s − 1), R(s) = R(s − 1) .

If i = l + 1 the process is in a maximal stage and updates output

output = 〈R(s − 1),T (s − 1), I(s − 1)〉

If i ≤ l, the next type Ti is chosen

tagD(i)

Ti = Tag

and the process goes to the next stage unless tagD(i) updates output

to fail

if output , fail then s = (i; T1 . . . ,Ti−1,Ti; 1)

H At testing stage s = (i; T1, . . . ,Ti; p), p ≥ 1,

S (s) =















pop(S (s − 1)) if ttop(S (s−1))tp(s) → 1

〈S (s − 1), p(s)〉 else

R(s) =















R(s − 1) ∪ {{top(S (s − 1)), p(s)}} if ttop(S (s−1))tp(s) → 1

R(s − 1) else.

Then the process goes to the next stage

s = s + 1 .

The proof of the next lemma is given in (Preller, 2007a).

Lemma 4.1. For every stage s = (i; T1, . . . ,Ti; p) , the string of

simple types I(s) associated to the stack S (s) is an irreducible sub-

string of T (s) and R(s) is a reduction from T (s) to I(s).

4.2. Tagging Strategy

The strategy is based on the fact that a sentence has a unique

derivation to the sentence type. The strategy chooses the type a

word must have if the whole string is a sentence. Testing validates

or invalidates that choice.

In the case of the formal languageL1, the key index for w1 . . .wl

is l/2 + 1. If the latter is not an integer, the string is not a sentence.

At the first tagging stage (1; 1; 0), processing is stopped if the length

l of the string is odd.

tagD1
(i)

if i = 1

if l/2 , ⌈l/2⌉ let output=fail

else key = l/2 + 1

if i < key let Tag = wi

if i = key let Tag = wr
i−1
. . .wr

2
wr

i
s w̄i−1 . . . w̄2

if i > key let Tag = w̄r
i
.

In the case of L3, the routine tagD3
tests whether the length

is even. If this not the case the string w1 . . .wl is not a sentence.

Otherwise, it computes the number m of repetitions of the first word

w1 . If w1 . . .wl is a sentence the number n of repetitions of wm+1

satisfies n = l/2 − m and the key satisfies key = 2m + n + 1 .

tagD3
(i)

if i = 1

if l/2 , ⌈l/2⌉ let output=fail

else let Tag = wi

if i > 1 and key = undefined

let Tag = wi

if wi , wi−1 let key = l/2 + i , m = i − 1, n = l/2 − (i − 1)

if i < key let Tag = wi

if i = key let Tag = [m]wr
m+n+1

[n]wr
m+1

[m]wr
1
s w̄ℓ

i
[n]w̄i

if i > key let Tag = w̄r
i

The case of L2 is similar with the appropriate adaptations .

Finally, in the case of the Dutch dictionary D4, the types are

chosen according to the following properties of a subordinate clause

- the key-index key must be the first p for which wp is a causal

verb in finite form

- the non-causal words have a unique type in the dictionary

- every word after the key-word except the last is a causal infini-

tive. The last is a non-causal infinitive.

tagD4
(i)

if key = undefined

if wi is an infinitive let output=fail

else

if wi is not a causal verb in finite from let Tag ∈ D(wi)

if wi is a causal verb in finite form and i > 1 let key = i, k = i−1

and Tag = [k]NPr
s̄ iℓ[k − 1]δ else let output=fail

if i > key

if wi is an infinitive

of a causal verb let p = k− (i− key) and Tag = [p]δr i iℓ[p−1]δ

of a non-causal verb let Tag ∈ D(wi)

else output=fail .

When fed the string of words Marie Jan zag zwemmen the parser

goes through the following stages and values. The constant key re-

mains undefined until a causal verb in finite form is encountered.

Hence, the constants Tag,S,R change like this

Tag S R

sin undefined 〈∅, 0〉 ∅

(1; 1; 0) T1 = NP 〈∅, 0〉 ∅

(1; T1; 1) NP 〈〈∅, 0〉, 1〉 ∅

(2; T1, 1; 0) T2 = NP 〈〈∅, 0〉, 1〉 ∅

(2; T1,T2; 1) NP 〈〈〈∅, 0〉, 1〉, 2〉 ∅ .

At tagging stage (3; T1,T2, 1; 0), the value of key is updated to 3,

because w3 is the first causal verb in finite form. Moreover, the tag

is updated to Tag = T3 = NPrNPr
s̄iℓδ and remains unchanged till

the next tagging stage. The values of S,R are updated as follows

S R

(3; T1,T2,T3; 1) 〈〈∅, 0〉, 1〉 {2, 3}

(3; T1,T2,T3; 2) 〈∅, 0〉 {{2, 3} , {1, 4}}

(3; T1,T2,T3; 3) 〈〈∅, 0〉, 5〉 {{2, 3} , {1, 4}}

(3; T1,T2,T3; 4) 〈〈〈∅, 0〉, 5〉, 6〉 {{2, 3} , {1, 4}}

(3; T1,T2,T3; 5) 〈〈〈〈∅, 0〉, 5〉, 6〉, 7〉 {{2, 3} , {1, 4}} .

At tagging stage (4; T1,T2,T3, 1; 0), the tag is updated to Tag =

T4 = δ
ri . It remains unchanged till the maximal stage

S R

(4; T1, . . . ,T4; 1) 〈〈〈∅, 0〉, 5〉, 6〉 {{2, 3} , {1, 4} , {7, 8}}

(4; T1, . . . ,T4; 2) 〈〈∅, 0〉, 5〉 {{2, 3} , {1, 4}} , {7, 8} , {6, 9}

At the maximal stage sfin = (5; T1, . . . ,T4, 1; 0) , the output is

updated to

R(sfin) = {{2, 3} , {1, 4} , {7, 8} , {6, 9}}

T (sfin) = NPNPNPrNPr
s̄iℓδδri

I(sfin) = s̄ .

One could argue following Lambek (2008b) that simple types

represent bits of information to be stored in the short-term memory

(limited to 7±2 bits) when processing a string of words. The present

algorithm seems to confirm this claim. Theoretically, a Dutch spea-

ker can form subordinate clauses of arbitrary length. In practice,

three to four noun phrases between dat and the causal verb in fi-

nite form are rarely exceeded. For two noun phrases, the stack con-

tains at most four bits. With three noun phrases, it goes up to five,

with four to six. Accepting that the types represent the patterns in

which a word can appear, one also accepts that they are learned

in childhood and ‘hard-wired’. This includes the pattern of causal

verbs represented by [p]NPr
siℓ[p−1]δ, where p is 2 or more. They

are downloaded to the ‘working’ memory where the subconscious

processing goes on and only the result ends up in the short-term

memory.

Theorem 4.1. The string of words w1 . . .wl is a sentence if and

only if the tagging-parsing algorithm reaches a maximal stage such

that output = 〈R,T, s〉 . If this is the case, R is a reduction of T to

s . Moreover, the algorithm is linear for the formal languages and

square polynomial for the natural languages.

Proof. The first assertion follows from Lemma 4.1. and Lemma

2.1. . Moreover, the number of basic steps executed at a testing

stage is bounded by a constant. It is proportional to the length of

the chosen type at a non-maximal tagging stage. Finally, updating

the output at a maximal stage sfin is proportional to the length of

T (sfin). �

5. Conclusion

It may be worth-while to investigate whether the degree of the

polynomial of a pregroup grammar can serve as a classification for

(natural) languages. Indeed, proof-search in the Pregroup Calculus

is bounded by a cubic polynomial in the length of types. There-

fore in general, the search for a derivation is cubic polynomial in

the length of the type even after type assignment. This is in oppo-

sition to categorial grammars based on Syntactic Calculus where

proof-search is NP-complete, see (Pentus, 2003). Hence, the ratio

of the length of the concatenated type over the number of words

is essential when designing a pregroup grammar with an efficient

algorithm.

The parsing complexity for the languages considered here is

lower than the general cubic polynomial limit because proof-search

is linear for the sets of types occurring in the dictionaries and be-

cause the algorithm constructs a single derivation while processing

from left to right. Proof-search remains linear for larger classes of

types than those mentioned here. This gives rise to grammars for

language fragments involving relative pronouns and coordination,

subject and object control, agreement of features among others. In

fact, these grammars have been designed for a complete linear de-

terministic parsing algorithm with occasional backtracks producing

a planar dependency graph. Empirical studies based on large scale

treebanks in (Nivre, 2008) show that such algorithms are highly

accurate for other formalisms in general where no proof of com-

pleteness exists.

Acknowledgement

Compact bilinear logic, one of Joachim Lambek’s more recent

inventions, is a compactification of higher order logic to second or-

der logic. It is also a simple mathematical tool for many fascinating

topics in computational linguistics. Proofs are represented by pla-

nar graphs. The pregroup grammars, which are based on this logic,

have polynomial parsing algorithms, even for context sensitive lan-

guage fragments. They allow semantical interpretation reflecting

the dependency links. The grammars are also suited for handling

large amounts of data, modelling dialog and language learning. I’m

grateful for the occasion this Festschrift offers me to thank Joachim

Lambek for his beautiful and powerful invention.

My thanks go also to an anonymous reader of the present paper

for many helpful remarks.

Works Cited

1. Bhatt, Rajesh and Joshi Aravind. 2004. Semilinearity is a syn-

tactic invariant: A reply to Michaelis and Kracht 1997. Lin-

guistic Inquiry .

2. Bresnan, Joan, Ronald M. Kaplan, Stanley Peters, and Annie

Zaenen. 1987. The Formal Complexity of Natural Language,

chap. Cross-Serial Dependencies in Dutch, 286–319. Studies

in Linguistics and Philisophy. Dordrecht: Reidel Publishing

Company.

3. Buszkowski, Wojciech. 2001. Lambek Grammars based on

pregroups. In Logical Aspects of Computational Linguistics,

edited by P. de Groote, no. 2099 in LNAI. Springer.

4. —. 2002. Cut elimination for the Lambek calculus of adjoints.

In Papers in formal linguistics and logic, edited by Michele

Abrusci. Bologna, Italy: Bulzoni.

5. Francez, Nissim and Michael Kaminski. 2008. Commutation

Augmented Pregroup Grammars and Mildly Context Sensitive

Languages. Studia Logica 87(2:3): 295–321.

6. Kracht, Marcus. 2007. Compositionality: The Very Idea. Re-

search in Language and Computation 5: 287–308.

7. Kuhlmann, Marco and Joakim Nivre. 2006. Midly Non-

Projective Dependency Structure. In Proceedings of the COL-

ING/ACL on Main Conference Poster Sessions, 507– 514.

8. Lambek, Joachim. 1958. The mathematics of sentence struc-

ture. American Mathematical Monthly 65: 154–170.

9. —. 1999. Type Grammar revisited. In Logical Aspects of Com-

putational Linguistics, edited by Alain Lecomte, LNAI, vol.

1582, 1–27. Heidelberg: Springer.

10. —. 2008a. From word to sentence. Milano, Italia: Polimetrica.

11. —. 2008b. Reflections on English Pronouns. In Computa-

tional and Algebraic Approaches to Natural Language, edited

by Claudia Casadio and Joachim Lambek, 233–253. Milano,

Italia.

12. Michaelis, Jens and Marcus Kracht. 1997. Semilinearity as a

syntactic invariant. In Logical Aspects of Computational Lin-

guistics, edited by Christian Retoré, Lecture Notes in Com-

puter Science, vol. 1328, 329–345. Heidelberg: Springer.

13. Nivre, Joakim. 2008. Algorithms for deterministic incremental

dependency parsing. Computational Linguistics 34(4): 513–

553.

14. Pentus, Mati. 2003. Lambek calculus is NP-complete. Tech.

rep., CUNY Graduate Center, New York.

15. Pollard, Carl and Ivan A. Sag. 1994. Head-driven phrase struc-

ture grammar. Studies in Contemporary Linguistics. Chicago:

The University of Chicago Press.

16. Preller, Anne. 2007a. Linear Processing with Pregroup Gram-

mars. Studia Logica 87(2:3): 171–197.

17. —. 2007b. Toward Discourse Representation Via Pregroup

Grammars. JoLLI 16: 173–194.

18. Preller, Anne and Joachim Lambek. 2007. Free compact 2-

categories. Mathematical Structures for Computer Sciences

17(1): 1–32.

19. Pullum, Geoffrey and Gerald Gazdar. 1987. The Formal Com-

plexity of Natural Language, chap. Natural Languages and

Context Free Languages, 138–182. Studies in Linguistics and

Philisophy. Dordrecht: Reidel Publishing Company.

20. Salvitch, Walter, Emmon Bach, William Marsh, and Gila

Safran-Naveh. 1987. The Formal Complexity of Natural Lan-

guage, chap. Introduction to Part III, 283–285. Studies in Lin-

guistics and Philisophy. Dordrecht: Reidel Publishing Com-

pany.

21. Shieber, Stuart M. 1987. The Formal Complexity of Natural

Language, chap. Evidence Against the Context-Freeness of

Natural Language, 320–334. Studies in Linguistics and Philis-

ophy. Dordrecht: Reidel Publishing Company.

22. Stabler, Edward. 2004. Varieties of crossing dependencies:

Structure dependence and mild context sensitivity. Cognitive

Science 28(5): 669–720.

23. —. 2008. Tupled Pregroup Grammars. In Computational and

Algebraic Approaches to Natural Language, edited by Claudia

Casadio and Joachim Lambek. Milano, Italia: Polimetrica.

24. Steedman, Mark. 1996. Surface Structure and Interpreta-

tion, Linguistic Inquiry Monograph, vol. 30. Cambridge, Mas-

sachusetts: MIT Press.

