
HAL Id: lirmm-00542800
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00542800

Submitted on 3 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A UML Profile for Feature Diagrams: Initiating a Model
Driven Engineering Approach for Software Product

Lines
Thibaut Possompès, Christophe Dony, Marianne Huchard, Hervé Rey, Chouki

Tibermacine, Xavier Vasques

To cite this version:
Thibaut Possompès, Christophe Dony, Marianne Huchard, Hervé Rey, Chouki Tibermacine, et al..
A UML Profile for Feature Diagrams: Initiating a Model Driven Engineering Approach for Software
Product Lines. Journée Lignes de Produits, France. pp.59-70. �lirmm-00542800�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00542800
https://hal.archives-ouvertes.fr


A UML profile for feature diagrams: Initiat-

ing a model driven engineering approach for

software product lines

Thibaut Possompès, Christophe Dony, Marianne Huchard, Hervé
Rey, Chouki Tibermacine, and Xavier Vasques

IBM France – PSSC Montpellier
Parc Industriel La Pompignane, rue de la Vieille Poste, Montpellier 34006

{thibaut.possompes, reyherve, xavier.vasques}@fr.ibm.com

LIRMM, CNRS, Université Montpellier 2
161, rue Ada, 34095 Montpellier Cedex 5

{possompes, dony, huchard, tibermacin}@lirmm.fr

ABSTRACT. This paper proposes an instrumented approach to integrate feature diagrams with
UML models, via UML profiles and a Rational Software Architect plugin. The concrete contri-
bution is the specification of a new UML profile based upon a meta-model synthesising existing
feature diagrams semantics, and a Rational Software Architect (RSA) implementation. Our RSA
implementation makes possible to link feature diagrams with UML model artefacts. Indeed, it
allows traceability between feature models and other different kinds of models (requirements,
class diagrams, sequences or activity diagrams, etc.).

RÉSUMÉ. Ce papier propose une approche instrumentée permettant l’intégration de diagrammes
de features avec les modèles UML, à l’aide de profils UML et d’un plugin pour Rational Soft-
ware Architect (RSA). La contribution concrète est la description détaillée d’un nouveau profil
UML basé sur un méta-modèle synthétisant la sémantique existante des diagrammes de fea-
tures, et une implémentation dans RSA. Notre implémentation dans RSA rend possible le lien
entre diagrammes de features et éléments UML. En effet, il permet la création de liens de traça-
bilité entre modèles de features et modèles UML (diagrammes de cas d’utilisation, de classes,
séquences, ou activités).

KEYWORDS: Feature diagrams, UML profile, software product lines, model driven engineering

MOTS-CLÉS : Diagrammes de features, profil UML, lignes de produits logiciels, ingnériérie dirigée
par les modèles



A UML profile for feature diagrams

1. Introduction

Complex IT projects require efficient tools to support IT analysts, architects and
developers when they gather client requirements, domain expert advice and implement
software. This is the case in the context of the RIDER project 1 whose purpose is im-
proving energy efficiency of buildings. We think that software product line approach
is perfectly appropriate to manage the variations that can be found in our project, and
moreover, that feature diagrams will be a great help at gathering specific domains
vocabulary and concepts [POS 10].

In this paper, we describe the creation process of a UML 2 profile from a state-
of-the-art feature meta-model and of the corresponding Rational Software Architect
plug-in. This instrumented approach enables integrating and federating feature dia-
grams with UML models and artefacts (requirements, class diagrams, sequences or
activity diagrams, deployment diagrams). It is intended to be used as a part of a gen-
eral approach for software product lines and for product generation.

This paper is organized as follows. Section 2 presents the feature meta-model.
Section 3 describes how the profile has been derived from the meta-model. Section 4
presents how the profile has been implemented in the modelling tool, validated against
industrial concerns and feature diagrams excerpts from our project. Section 5 sums up
what has been presented and presents perspectives of further research.

2. A feature meta-model

This section describes a meta model synthesising the different interesting points
that we previously identified after a state-of-the-art (submitted [POS ]). We chose to
transform this meta-model into a UML profile to facilitate the integration into UML
models. This work is based upon [ASI 06] which describes a domain ontology for fea-
ture models and on the main references on feature models [ZIA 06, GOM 04, ZIA 04,
BON 04, RIE 03, KAN 90, KAN 98]. We complete this paper in the way that we pro-
duce a meta model that we are using in a very rich industrial project. Our profile
implementation is done in Rational Software Architect and we developed a tooling
plug-in based upon our UML profile.

2.1. Feature Diagram Meta Model Presentation

As depicted in Figure 1(a), a product line contains features. A product belongs to
one product line and is composed of features; features associated to a product must
check some constraints, like mutual exclusion or require relations. Mutual exclusion

1. The RIDER project (“Research for IT as a Driver of EneRgy efficiency”) is led by a
consortium of several companies and research laboratories, including IBM and the LIRMM
laboratory, interested in improving building energy efficiency by instrumenting it.



Journée Lignes de Produits.

(a) Product lines, features and products (b) Feature properties

Figure 1 – Feature meta-model excerpt: Features and their Properties

and require relations are modelled by the conflict and require relationships. The rec-
ommends relationship advises the user to choose another feature that could be perti-
nent.

Feature properties (Figure 1(b)) describe either a feature parameter (e.g. the band-
width capacity of a network) or a property chosen by the user (e.g. the frequency of
automatic backups of a word processing software). The VariabilityKind can be: fixed,
when the feature property value is fixed throughout all products of the product line;
variable, when a feature property value can change, within a product, depending on
other features properties; family_variable, when the feature property could vary from
product to product accordingly to the selected features; user_defined, when the feature
property value can be freely chosen in a given product.

Figure 2 presents the hierarchy relationships and sub-feature groups. A feature
and its sub-features are connected by the RelationshipGroup class that contains the
cardinalities necessary to restrict the number of sub-features to choose. We use special
groups like the OrGroup, with cardinalities (0,*); AndGroup, with cardinalities (*,*);
and XorGroup, with cardinalities (0,1). A DirectedBinaryRelationship links a parent
feature and a sub-feature. It can be specialised either by Enrich, Implement, or Detail
classes.

In Figure 3, layers and feature sets are linked to the project stakeholders. A stake-
holder represents any kind of people; e.g. customers, domain experts, IT architect, etc.;
that can be led to choose features. Feature sets and layers are attached to a specific con-
cern related to the project. A Layer represents a view onto the software application.
A FeatureSet is a Feature, which groups features from an arbitrary point of view, e.g.
for business domain. It also represents the features that must be implemented to fulfil
a norm.



A UML profile for feature diagrams

Figure 2 – Feature meta-model excerpt: Groups and hierarchy relationships

Figure 3 – Feature meta-model excerpt: Layers and feature sets

Figure 4 depicts constraints on feature sets. A feature set can be either; mutex,
when only one feature can be selected in the feature set; None, when there is no con-
straint between the features composing the feature set; All, when all features or none
of them can be selected. A ConstraintRelation class is a relation between two feature
sets. Hence, one feature set can require another one, two feature sets can mutually
require each other, or be mutually exclusive.



Journée Lignes de Produits.

Figure 4 – Feature meta-model excerpt: Constraints on feature sets

2.2. Transformation method

3. Profile model

The meta model describes the syntax of the elements used in a feature model.
The profile reuses the concepts described in the meta model and integrates them in
UML thanks to the profile semantics. Creating a UML profile consists in creating
stereotypes that extend UML meta-classes. Stereotypes are meant to add or subtract
semantics from the meta-classes they extend. Hence, the first step to create a profile
from a meta-model requires to identify which meta-classes should be transformed into
stereotypes, and which UML meta-classes should be extended. This is detailed in the
next section. However, the profile could be implemented in very different ways by
choosing to extend different UML meta-classes. In our approach, we chose the UML
meta-classes that had the closest semantics to our concepts.

3.1. Meta Classes Extensions and Attributes

Contrary to [CLA 01] we choose to base our feature diagram on Components.
A component is the UML concept which is the closest to what we want to express
because it is a high level view of a software element. This first choice will influence the
other UML meta-classes selection. For example, the port concept allows us to easily
group associations to sub-features. This would be impossible if the feature stereotype
was extending the classifier UML meta-class. Some associations of the meta-model
have been implemented as stereotypes.

– Feature stereotype extends the meta-class Component.

– Stakeholder stereotype extends the Actor meta-class because they have very
close semantics.



A UML profile for feature diagrams

– Concern extends the Class meta-class because we will need class attributes to
list layers and feature-set references.

– ModelRelationship extends a dependency of a feature to any kind of UML arte-
fact. It extends the Dependency meta-class.

– Layer extends the Package meta-class to ease grouping features into a single
place.

– ProductLine extends Package to centralize all software product lines artefacts in
a single place.

– Product extends Component because it represents a set of features which are
considered as a kind of components.

– FeatureProperty stereotype extends the Port meta-class to allow us representing
them as being artefacts directly attached to a feature. They can be linked to other ports
or components. The modification of a feature property value can be modelled by tex-
tual or OCL constraints placed upon the relationship between two feature properties.

– RelationshipGroup extends the Port meta-class to represent its belonging to the
parent feature. It can be linked only to other features, with directed binary relation-
ships.

– Modification extends the Usage meta-class.

– DirectedBinaryRelationship extends the Association meta-class. It is used to link
ports to components.

– BindingPredicate extends the Port meta-class in order to represent the kind of
inter feature-set constraint.

– ConstraintRelation extends the Association meta-class because it links two
feature-sets. It can be navigable or not.

3.2. Resulting Profile

The ConstraintRelation stereotype, Figure 6(a), corresponds to the meta-model as-
sociations requiredFeature, and conflictingFeature. It is specialised into respectively
the stereotypes MutualRequire and Exclusion. It is not necessary to link their stereo-
types to the Feature stereotype because the Association and Component UML meta-
classes are already connected.

The BindingPredicate, SingleBound, MultipleBound and AllBound stereotypes,
Figures 6(b) and 6(c), extend directly the corresponding meta-class. There is no need
to link the binding predicate stereotype to the feature-set stereotype because they re-
spectively extend the Port and Component UML meta-classes that are already linked
in the UML meta-model.

The FeatureSet stereotype and its specialisations are directly derived from the cor-
responding meta-classes.



Journée Lignes de Produits.

(a) Component UML meta-class extensions (b) Class UML meta-class extensions

(c) Port UML meta-class extensions

Figure 5 – Meta-classes extensions

(a) Constraint relations between
features

(b) Binding predicate of feature sets

(c) Feature sets

Figure 6 – Features and feature sets



A UML profile for feature diagrams

Figure 7 – The Feature stereotype

The requiredFeature and recommendedFeature aggregations have been modelled
the same way that in the meta-model because it is more convenient to have attributes
in the feature stereotype, Figure 7, that list all the required and the recommended
features. We could also have modelled these concepts with stereotypes extending the
Association UML meta-class rather than aggregation attributes.

The Stakeholder, Concern, Layer, FeatureSet, Product and ProductLine stereo-
types are derived from the corresponding meta-classes. However the ModellingEle-
ment meta-class has been derived as the ModelRelationship stereotype extending the
Dependency UML meta-class. It represents a dependency between a feature and any
UML element, represented by the Element UML meta-class.

The FeatureProperty stereotype, Figure 8, is not linked to the feature relationship
because it extends the Port UML meta-class which is already linked to the Component
UML meta-class. The Modification and ChangedFeatureProperty stereotypes extend
the Usage meta-class in order to show the impact of one feature property on another.
The constraint attribute describe how the changed feature must be impacted.

The relationships between feature (Figure 9) are directly derived from the meta-
model. They are not linked to the Feature stereotype because the Port and Association
UML meta-classes are already connected to the Component UML meta-class.



Journée Lignes de Produits.

Figure 8 – Feature properties

Figure 9 – Feature relationships

4. Implementation and Validation

4.1. Common Profile Implementation Tools

4.1.1. The Eclipse Modelling Framework and the Graphical Modelling Framework

The Eclipse Modelling Framework (EMF) is a modelling framework integrated
in the Eclipse platform, which can be used for building tools and applications based
upon a structured data model. It integrates the ECore meta-model which is equivalent
to the Open Management Group’s (OMG) Essential Meta-Object Facility (EMOF).
This base framework can be used to support any meta-model. Indeed, it provides an
implementation of the OMG Unified Modelling Language (UML) 2.x which can be
extended thanks to profiles, the standard UML extension mechanism.

We needed a tool to create feature diagrams that could be integrated in a software
development life-cycle using UML. The Graphical Modelling Framework (GMF) en-
ables us to develop a graphical editor based upon EMF that fits to our needs.

4.1.2. Rational Software Architect Profile

IBM Rational Software Architect is based upon the Rational Modelling Platform
which provides a UML modeller, modelling editors, views and tools that are built
by using the various services offered by the platform. It also includes several helper
components to work with UML models and diagrams. All models managed by the



A UML profile for feature diagrams

Figure 10 – RIDER feature diagram excerpt

Rational Modelling Platform are instances of EMF models. Hence, using Rational
Software Architect allows us to simplify tasks like creating a specific plug-in for in-
tegrating feature modelling capabilities into standard EMF-based UML models and
diagrams.

We choose to create a Rational Software Architect plug-in instead-of a standard
eclipse-based plug-in. Indeed, it facilitates the tooling source code generation by de-
riving the code from models describing the plug-in structure [MIS 05].

4.2. Examples

Figure 10 describes the required features of a building management system. The
user must choose one building XML schema (to specify the standard describing its
building) and a scenario optimisation set accordingly to his building usage.

In Figure 11, the business layer contains the features that describe the energetic
optimisations that could be done in a building. All features from the business layer are
linked to one or several features from the execution model layer. It specifies which are
the modelling standards able to provide the required data to each business feature.

5. Conclusion and Perspectives

We have presented how we implemented a feature profile in UML 2. It is based
upon a synthesis of existing work that we enhanced to fit the requirements of the
project in which this research is applied. We created a Rational Software Architect
plug-in to be able in a later time to easily add functionalities required by our industrial
project.

We have modelled feature diagrams concerning building modelling standards and
IT architecture components. We now need to automate the product generation process
and to enhance the user interface of the plug-in.



Journée Lignes de Produits.

Figure 11 – RIDER feature diagram excerpt

6. References

[ASI 06] ASIKAINEN T., MANNISTO T., SOININEN T., “A unified conceptual foundation for
feature modelling”, SPLC ’06: Proceedings of the 10th International on Software Product
Line Conference, IEEE Computer Society, 2006, p. 31–40.

[BON 04] BONTEMPS Y., HEYMANS P., SCHOBBENS P. Y., TRIGAUX J. C., “Semantics
of FODA feature diagrams”, Proceedings SPLC 2004 Workshop on Software Variability
Management for Product Derivation–Towards Tool Support, 2004, p. 48–58.

[CLA 01] CLAUSS M., Untersuchung der Modellierung von Variabilität in UML, Technische
Universität Dresden, Diplomarbeit, 2001.

[GOM 04] GOMAA H., Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures, Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA, 2004.

[KAN 90] KANG K. C., COHEN S. G., HESS J. A., NOVAK W. E., PETERSON A. S.,
“Feature-Oriented Domain Analysis (FODA) Feasibility Study”, report , Nov. 1990,
Carnegie-Mellon University Software Engineering Institute.

[KAN 98] KANG K. C., KIM S., LEE J., KIM K., SHIN E., HUH M., “FORM: A feature-
oriented reuse method with domain-specific reference architectures”, Annals of Software
Engineering, vol. 5, num. 1, 1998, p. 143–168.

[MIS 05] MISIC D., “Authoring UML profiles using Rational Software Architect and Rational
Software Modeler”, http://www.ibm.com/developerworks/rational/library/05/0906_dusko/,



A UML profile for feature diagrams

Sep. 2005.

[POS ] POSSOMPÈS T., DONY C., HUCHARD M., REY H., TIBERMACINE C., VASQUES X.,
“Design of a UML profile for feature diagrams and its tooling implementation”, submitted.

[POS 10] POSSOMPÈS T., DONY C., HUCHARD M., REY H., TIBERMACINE C., VASQUES

X., “Towards Software Product Lines Application in the Context of a Smart Building Pro-
ject”, Proceedings of the 2nd International Workshop on Model-driven Product Line Engi-
neering (MDPLE 2010), , 2010.

[RIE 03] RIEBISCH M., “Towards a more precise definition of feature models”, Modelling
Variability for Object-Oriented Product Lines, , 2003, p. 64–76.

[ZIA 04] ZIADI T., HÉLOUËT L., JÉZÉQUEL J. M., “Towards a UML profile for software
product lines”, , 2004, p. 129–139, Springer Berlin / Heidelberg.

[ZIA 06] ZIADI T., JÉZÉQUEL J.-M., “Product Line Engineering with the UML: Deriving
Products”, POHL K., Ed., Software Product Lines, p. 557-586, Springer Verlag, 2006.


	Introduction
	A feature meta-model
	Feature Diagram Meta Model Presentation
	Transformation method

	Profile model
	Meta Classes Extensions and Attributes
	Resulting Profile

	Implementation and Validation
	Common Profile Implementation Tools
	The Eclipse Modelling Framework and the Graphical Modelling Framework
	Rational Software Architect Profile

	Examples

	Conclusion and Perspectives
	References

