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Nonlinear Model Predictive Running Control of Kangaroo Robot: a
One-Leg Planar Underactuated Hopping Robot

Nicolas Carlési and Ahmed Chemori

Abstract— The control of dynamically stable hopping robots
has made great progress in the last decades. This paper deals
with modeling and control of Kangaroo hopping robot. It is
a one-leg planar hopping robot which imitates the mode of
displacement of kangaroos. Lagrangian dynamic model of the
hopping robot is computed on the different phases of the
jumping cycle. A new control scheme is proposed to control the
leg thrust during stance phase for planar hopping. A nonlinear
model predictive control has been combined with Raibert’s
approach which has improved significantly its performances.
A simulator has been developed to simulate the behavior of the
controlled robot. The proposed control approach is validated
in simulation and is compared with Raibert’s approach.

I. RELATED WORKS

Hopping robots have been widely studied during last
decades. Usually made of a body and a compliant leg, these
systems are capable of moving in one, two or three dimen-
sions [1] alternating phases of ground contact and flight.
Consequently, they can be regarded as variable structure
systems [2], so that mechanical constraints can vary as the
contact condition changes.

Some studies were conducted on passive movement of pla-
nar hopping robots. These are robots that have a compliance
at the leg and hip. The choice of adequate initial conditions
and mechanical parameters enable these passive systems to
move on a slope under the effect of gravity [3]. However,
their mobility is reduced because of friction that provoke
energy loss in the system [4]. By adding actuators, some
controls were specifically designed to compensate the effects
of friction [5],[6].

One of the pioneers of hopping robots control is M.
Raibert. He was at the origin of most current controls in the
field of the hopping robots. In [1], the control of a planar
one-legged hopping robot is treated as three separate control
problems: the thrust for jumping, the forward speed and the
body attitude.

Indeed, during the last two decades, different control ap-
proaches have been proposed to deal with these three issues.
The control of the thrust of the leg [7] has been the subject of
study of vertical hopping robots. At first, open-loop control
have been developed to achieve a constant hopping height
[8]. Then, research has focused on closed loop control. In [2],
authors show that the height of jump converges to a stable
limit cycle by regulating the total energy (Hamiltonian) of
the system. In [9] the authors have determined the vertical
velocity of the robot body needed at take-off instant to
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reach a specified apex height. The forward speed control of
hopping robot has been particularly studied. To deal with this
problem, a SLIP (Spring Loaded Inverted Pendulum) model
with a point body mass and a leg is generally used. The
proposed approaches consist in computing of the position
of the foot at touchdown which enables to accelerate or to
slow down the robot during the following stance phase [1].
In [10], an analytical study of the stability of the forward
velocity equilibrium behavior has been conducted. It allows
to formulate a new law to control the foot position at
touchdown. In [11], a polynomial expression of the angular
leg trajectory is used as reference for an inverse dynamic
controller during flight phase. Inverse dynamic control has
also been adopted in [6] for forward speed control as well as
for body attitude control during stance phase [6] [11]. A. Sato
and his coworkers have proposed a new control approach
using a SLIP model composed a single actuator at the hip’s
level. The proposed control approach allows generation of
stable periodic motions in simulation [12] as well as in real-
time experiments [13].

The above listed control approaches assume that the
ground is continuous and flat. However, it is generally not
the case when the robot moves in real environment where the
ground can be irregular. Therefore a trajectory planning will
be necessary. In [14], a sequence planner is proposed, it aims
to find sequences of foot placements on a flat artificial ground
with holes. Recently reactive planning techniques have been
proposed in [15].

Other recent research works have been particularly focused
on the biomimetism. The physiological characteristics of
animals have directly been imitated in insect hopping robots
[16] or mammals [17].

This paper is organized as follows. Section II describes the
mechanical structure and the dynamic model of Kangaroo
hopping robot during the different phases of the jumping
cycle. In section III, a nonlinear model predictive control
is combined with Raibert’s control approach for one-leg
planar hopping robot [1]. Section IV presents the obtained
simulation results of the proposed nonlinear model predictive
running control approach compared with Raibert’s control
approach. Finally, conclusion and future work are made in
section V.

II. KANGAROO HOPPING ROBOT DESIGN AND
MODELING

A. Jump Cycle Description

Hopping robots are variable structure hybrid underactuated
systems [18]. Control of jump requires a dynamic modeling
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of the robot for the different phases of the jump cycle (cf.
Fig. 1). The number of degrees of freedom of the system
changes from one phase to another.

Fig. 1. Decomposition of a jump cycle

The jump cycle can be decomposed into two main phases
and two transitions as illustrated in Fig. 1:

Lift-off transition: it characterizes the switch between the
stance phase and the flight phase. At that moment,
the impulse of the leg during the contact phase
gives enough energy to throw up the robot in flight
phase.

Flight phase: a main phase in which the robot is in
the air and describes a ballistic movement. It is
characterized by the instant when the robot reaches
the maximum height which is called Apex.

Touchdown transition: it characterized by the switch
between the flight phase and the stance phase.

Stance phase:a main phase in which the robot is in con-
tact with the ground and follows a swing motion.
The moment marked by a vertical position of the
leg is called Bottom.

B. Kangaroo Hopping Robot Design

Consider Kangaroo robot illustrated in Fig. 2. Its a one
leg planar hopping robot. It’s mechanical structure (cf. Fig.
2) has the following five degrees of freedom:

x,z : two degrees of freedom for the cartesian position
of the body in the XOZ sagittal plane

l : one degree of freedom for the length of the leg
φ : one degree of freedom for the angle of the body in

the sagittal plane
ν : one degree of freedom for the angle of the leg in

the sagittal plane
The system includes three bodies, they are considered

as three point masses located at their respective center of
gravity: mt for the body of the robot, ml for the leg and mu
for the foot. The center of gravity of the body mt is located
at a distance de from the hip’s pivot and forms an angle α

with the longitudinal axis of the robot’s body (cf. Fig 2).
The center of mass of the leg ml is located at a distance
d from the hip of the robot. The first extremity of the leg

Fig. 2. Kangaroo Robot’s mechanical structure [4]

spring is fixed to the leg upper part, at a distance p from
the center of gravity of the leg. The other one is fixed at the
foot of the robot, the tube containing the spring slides freely
in the upper part of the leg. The spring is characterized by a
stiffness coefficient kl and a length s (s0 at rest). The length l
represents the total length of the leg (l0 at rest) and define the
distance from the center of gravity of the foot mu to the hip.
The moments of inertia of the body and the leg are denoted
respectively by Jl and Jt . The modeled viscous frictions are
located respectively at the hip ch and at the leg cl . For more
details about the dynamic parameters presented above, the
reader is referred to [4],[1]. The robot is equipped with two
actuators, an angular actuator at the hip which acts on the
body’s orientation and a linear actuator in the leg acting on
the elongation and contraction of the leg.

C. Dynamic Modeling of the Hopping Robot

The Kangaroo robot has five degrees of freedom, the
vector of generalized coordinates which enables to describe
the system is given by q =

[
q1 q2 q3 q4 q5

]T =[
x z l φ υ

]T . In the following, the robot is modeled
on the two main phases of the jump cycle.

1) Flight Phase:
During the flight phase, the robot is in a ballistic move-

ment and isn’t subject to any constraint. The Lagrangian
dynamic model [19] of the robot is written as:

M(q)q̈+N(q, q̇)q̇+F(q̇)+G(q) = Su (1)

where M is the inertia matrix, N is the matrix of Coriolis and
centrifugal terms, F is the friction vector, G is the gravity
vector, S is a matrix of dimensions 5x2 that distributes the
control inputs on the generalized coordinates, u is the control
input vector.

2) Stance Phase:
The dynamic model during the stance phase is obtained

from the one of the flight phase by adding constraints of
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contact with the ground. These constraints introduce an
additional term representing contact forces with the ground.
Assuming that friction between the foot and the ground is
sufficient to prevent any sliding. The contact constraints can
be expressed as follows:

{
x f = q1 +q3 sin(q5) = constant

z f = q2−q3 cos(q5) = 0
(2)

where (x f ,z f ) are the Cartesian coordinates of the robot’s
foot. These constraints are derived twice to be integrated
with the dynamics (1). The resulting dynamic model of the
stance phase is then given by:

{
M(q)q̈+N(q, q̇)q̇+F(q)+G(q) = U + J(q)T

λ

J(q)q̈+P(q, q̇) = 0
(3)

where J(q) is the Jacobian matrix of the contact constraints
with the ground, P(q, q̇) = J̇(q, q̇)q̇ and λ is the vector of
Lagrange multipliers related to the contact forces.

3) Transitions between main phases:
During the stance phase, the vertical component of contact

force exerted on the ground λ2 can only be positive. We are in
the case of a unilateral constraint, that is to maintain contact
with the ground, the hopping robot has to exert only positive
force at the contact and the ground don’t retain the robot’s
foot if this last one lift-off. The instant of transition from
one phase to another is detected by analyzing the vertical
component of the force generated by the constraints. When
λ2 ≤ 0, the robot lift-off and enters in flight phase.

The transition from flying to the contact phase is val-
idated when the robot’s foot touches the ground that is
z− lcos(ν) ≤ 0. Other conditions on velocity are added to
overcome eventual numerical problems (eg. chattering). The
robot must be respectively in ascending phase to lift-off and
in descendant phase to touchdown. This prevents inadvertent
crossing between the main phases.

III. ROBOT RUNNING CONTROL

This section addresses the problem of control for planar
moving of Kangaroo hopping robot. Firstly, the control
approach developed by Raibert for one-leg hopping robot
is described. Then, a nonlinear model predictive control
approach is proposed to control the leg thrust and combined
with Raibert’s controller.

A. Raibert’s Controller

In [1], Raibert proposed a control system including the
three following controllers.

1) Thrust Control:
The basic principle of this controller is to apply, by means

of the linear actuator, a constant force Fl on the leg during
its extension in stance phase:

Fl = constant , if l̇ =
dl
dt

> 0 (4)

This control enables to compensate energy losses due to
friction by injecting the energy during the stance phase and
to control the height of the jump.

2) Forward Speed Control:
The hopping robot is an underactuated system, therefore it

is not possible to control directly the horizontal movement of
the robot while controlling the thrust and the body attitude.
The position of the foot, when it touches the ground at the
end of the flight phase, has a crucial impact on the evolution
of the passive part of the robot during the stance phase.
Thus, there is a neutral foot position x f 0 in relation to the
hip position at the touchdown which provides unaccelerated
travel for the body of the robot during the stance phase.
To accelerate/decerelate the machine, the control system has
to displace the foot from its neutral position. Acceleration
is needed to stabilize the forward speed against errors and
external disturbances and to switch from one forward speed
to another. The control system uses a linear function of the
error in forward speed to find a displacement of the foot
from hip at touchdown:

x f = x f 0 + kẋ(ẋ− ẋd) with x f 0 =
ẋTs

2
(5)

where kẋ is a feedback gain and ẋ, ẋd are respectively the
forward speed and the desired forward speed. The duration
of the stance phase Ts (it depends on the leg stiffness) allows
to compute the neutral foot position x f 0.

3) Body Attitude Control:
The robot’s body can be positioned only during the contact

phase. The contact between the ground and the foot of
the robot in this phase enables the angular actuator of
the hip to control the angle of the body without causing
high accelerations on the leg. The control system enables
to control the hip’s torque Γ thanks to a conventional PD
controller and allows the body to follow a desired path:

Γ = kp(φd−φ)− kv(φ̇) (6)

where φ , φd are the body angle and the desired body angle
relative to horizontal axis and kp, kv are respectively the
proportional and derivative gains of the controller.

Remark 1: For more details about the Raibert’s con-
trollers presented above, the reader is referred to [1], Chapter
2.

B. Nonlinear Model Predictive Running Controller

In this section our proposed control scheme is introduced,
it consists of an improved Raibert’s control. That is, the
forward speed and body attitude controllers are those of
Raibert, however, a nonlinear model predictive controller
[20] is proposed to command the thrust exerted by the leg.

1) Ballistic trajectory:
The ballistic trajectory is determined during lift-off. The

force of gravity exerts continuously an action on the vertical
acceleration of the robot. Therefore, the horizontal compo-
nent of the velocity of the robot’s body ẋ does not vary
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during the flight phase, and should correspond to the desired
speed of movement of the robot at lift-off ẋlo = ẋd . In [9],
the vertical velocity of the robot’s body needed at the lift-off
żlo to jump to a desired height zapd has been computed:

żlo =
√

2g(zapd− zlo) (7)

where zlo is the body height at lift-off and g is the ac-
celeration of gravity. To follow the vertical and horizontal
components of velocity, the corresponding angle and speed
of the leg has to be identified. By deriving the coordinates of
the center of mass of the robot’s body at lift-off, the following
set of nonlinear equations is obtained and used to identify
the desired angle υd and the leg’s speed lυ̇ .

{
ẋlo =−l̇d sin(υd)− lυ̇ cos(υd)

żlo = l̇d cos(υd)− lυ̇ sin(υd)
(8)

2) Proposed control approach:
When the robot is in contact with the ground and the

leg begins relating, the nonlinear model predictive control
calculates a control sequence to minimize a performance
criterion J subject to constraints:

min
u

J =
N p

∑
k=1

Q1(l0(k)− l(k))2 +Q2(ẋlo(k)− ẋ(k))2

+Q3(żlo(k)− ż(k))2

under |ui|< umax f or all i ∈ {1, ...,Nc}

(9)

where l(k), ẋ(k) and ẏ(k) are respectively the length of the
leg, the horizontal speed and the vertical speed predicted
along the prediction horizon N p. This optimization criterion
is used to follow horizontal speed ẋlo and vertical speed żlo
corresponding to the desired ballistic trajectory (cf. section
III-B.1). Therefore, the height of the jump as well as the
speed of the robot are controlled during flight. In order to
limit spending energy, the difference between the length of
the leg l at lift-off and this length at rest must be also
minimized. The weights Q1, Q2 and Q3 to give more/less
importance to the minimization of their corresponding terms.
ui is the control sequence computed along the control horizon
Nc and umax is the constraint on the control input.

The optimization problem is nonlinear and constrained, it
is impossible to find an analytical solution. Therefore, the
computer must solve numerically the optimization problem
at each sampling time. It must determine a control sequence
of size Nc, which minimizes the criterion J on a prediction
horizon N p taking into account the eventual constraints.
The control horizon is generally less than or equal to the
prediction horizon [20]. At the end of the control horizon,
the control input is kept at zero until the end of the prediction
horizon.

From the control sequence computed along the prediction
horizon, only the first sample is really applied to the system.
The current state of the system is measured, the horizon is
shifted of one sampling period and the same optimization

problem is repeated considering the new measured state as
initial state. This operation (called technique of receding
horizon) is repeated at each sampling instant and allows
to increase the control robustness towards the modeling
errors/uncertainties and the inevitable perturbations that may
affect the system.

IV. SIMULATION RESULTS

A. Simulation Environment

A simulator Kangaroo robot was developed using the
Graphical User Interface of Matlab software. The developed
graphical interface of our simulator is shown in Fig. 3.

Fig. 3. Graphical User Interface of Kangaroo’s developed simulator

This graphical interface enables to easily manipulate sim-
ulations, choose/change initial conditions and parameters of
the robot as well as the simulation parameters. It allows also
to display the robot movement during simulation.

B. Raibert and Nonlinear Model Predictive Running Control
Comparaison

Both Raibert’s control and the nonlinear model predictive
control are implemented in our simulator. The same model-
ing parameters are used to compare easily the performance
of these two controllers. The different parameters of the
Raibert’s control (R) and the nonlinear model predictive
control (P) are summarized in table I. Simulation results

Parameter Value Controller Parameter Value Controller
kp 1000 R&P Fl 240 N R
kv 50 R&P Nu 3 P
kP 200 R&P N p 6 P
kV 10 R&P Te 0.01 s P
kẋ 0.05 R&P Q1 1 P
ẋd 1 m/s R&P Q2 1 P
φd 30 deg R&P Q3 1 P

TABLE I
PARAMETERS OF RAIBERT AND PREDICTIVE CONTROL

obtained are presented in Fig. 4-7. In Fig. 4 and 7 dash-
dots lines correspond to Raibert’s control, while solid lines
correspond to nonlinear model predictive control.

The Kangaroo robot hip is initially positioned at 1.3 m
in relation to the ground and with a horizontal velocity of
0 m/s. The desired forward speed of robot is fixed at 1 m/s
whereas the desired maximum hopping height of the robot’s

3637



Fig. 4. Evolution of the horizontal speed and the vertical position of the
hip for both proposed controllers

hip is 1.8 m. From the evolution of the horizontal velocity
(cf. Fig. 4-top) and the vertical displacement (cf. Fig. 4-
bottom) it can be noticed that the two schemes enable to
control the robot jumps to converge to cyclic trajectories.
The desired reference hopping speed is 1 m/s (cf. dashed
lines Fig. 4-top). With the assumption that the robot starts
movements from rest the initial speed is fixed to zero, then
it converges in about 6 s to 2.7 m/s with the Raibert’s
control and in about 9 s to 1.6 m/s with nonlinear model
predictive control. Predictive control converges a little slower
than Raibert’s control to a steady state, however it gives a
more precise tracking. Indeed, the reference on the hopping
speed is much better tracked with the proposed predictive
control since the error on the speed is reduced to 60 % with
respect to 170 % with Raibert’s control. For the height of the
jump (cf. Fig. 4-bottom), it converges much faster towards
the final value with nonlinear model predictive control. The
transient regime is about 2 s while it is about 12 s with
the Raibert’s control. Unlike Raibert’s control which uses
open loop control to compute the force exerted on the leg,
nonlinear model predictive control allows to follow, in closed
loop, a reference on the height of the jump. In our simulation,
a reference of 1.8 m is fairly well followed, the steady state
error is about 6 %.

Phase portraits (z, ż), (φ , φ̇), (l, l̇) and (υ , υ̇) shown in
Fig. 5 (for Raibert’s control) and Fig. 6 (for nonlinear model
predictive control) highlight a faster convergence of the
controlled system with nonlinear model predictive control.
The generated forces and torques exerted respectively at the
leg and the hip are presented in Fig. 7. The open-loop control
of Raibert (cf. dash-dots line Fig. 7-top) which controls the
thrust of the leg during the stance phase was set to 240 N so
that the jumping height converges to 1.8 m. This command
does not enable to control the speed of horizontal movement.
The thrust of the leg produces a horizontal speed excessive
for the flight phase. During this phase, the forward speed
controller positions the robot’s leg forward to allow the robot

(a)

(c)

(b)

(d)

Fig. 5. Raibert’s control: phase portraits

(a)

(c)

(b)

(d)

Fig. 6. Nonlinear model predictive control: phase portraits

to slow down during the following contact phase (cf. section
III-A.2). Although the mass and inertia of the body are fairly
small compared to those of the leg, the torque exerted at the
hip (cf. dash-dots line in Fig. 7-bottom) causes a rotation of
the body as wide as the angular clearance of the leg will
be important. The speed of the robot is much higher than
the reference, the body undergoes an important rotation (cf.
Fig. 5.(c)) at touchdown. The control law to reposition the
body during the stance phase involves a necessary torque of
particular importance at the hip, which can reach 1450 N.m.

The nonlinear model predictive control enables to take
into account the constraints of the system to control the
force exerted on the leg (cf. solid line Fig. 7-top). Here,
the control has been deliberately saturated (Umax = 400 N in
(9)). Actually, the system will converge more rapidly towards
its steady state as this value is higher. In our case, three
or four jumps are necessary to reach the high jump and
speed of desired movement. The control of the horizontal
speed at lift-off minimizes the angular clearance of the leg
and body of the robot during the flight phase (cf. Fig.
6.(c) and 6.(d)). Consequently, the torque exerted to control
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Fig. 7. Evolution of the control inputs versus time

the body orientation in the sagittal plane during the stance
phase is less important compared to Raibert’s controller (cf.
Fig. 7-bottom). To show the saturation of the control at
Umax and the verification of this constraint (imposed in the
optimization criterion (9)), a zoom is achieved on the control
input computed by the nonlinear model predictive controller
(cf. Fig. 7-top).

In order to proceed to a comparison between Raibert’s
control and nonlinear model predictive control, the mean
values of the generated control inputs (force for the linear
actuator and torque for the angular actuator) are computed
and compared. For Raibert’s control scheme, the average of
the control force is 24.192 N, and 25.363 N for the nonlinear
model predictive control. However, the average values of the
torque are respectively 40.069 N.m and 19.954 N.m.
It is worth to notice the efficiency of the proposed controller
in terms of spending energy w.r.t Raibert’s controller. Indeed,
it needs a half of energy for the generated torque, with
roughly the same energy for the generated force to control
the system.

The use of nonlinear model predictive scheme to control
the thrust before lift-off has significantly improved the over-
all behavior of the Kangaroo robot. Now it is possible to
control the height of jump of the robot, which was impos-
sible with the Raibert’s controller. The robot follows more
precisely references and converges faster to a stable cyclic
movement. Furthermore, this control enables to improve the
response of Raibert’s forward speed and body attitude control
minimizing the torque exerted at the hip. This paper is
accompanied with a movie showing the obtained hopping
movement of the robot under the proposed control scheme.

V. CONCLUSIONS AND FUTURE WORK

The objective of this work was to design a control ap-
proach for the one-leg planar hopping robot Kangaroo in
order to generate stable periodic motions. To reach this
objective, the Lagrangian dynamic model of the hopping
robot on the different phases of the jumping cycle has been

computed and a simulator has been developped. Then a
control scheme has been proposed to generate stable periodic
motions in the sagittal plane. The proposed control scheme
on the whole jumping cycle is derived from Raibert’s control
approach. To overcome the Raibert’s control drawbacks re-
lated to the movements speed and jumping height a nonlinear
model predictive control has been introduced to improve its
performances.
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