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Abstract. Decision tree induction techniques attempt to find small trees that fit
a training set of data. This preference for smaller trees, which provides a learning
bias, is often justified as being consistent with the principle of Occam’s Razor. In-
formally, this principle states that one should prefer the simpler hypothesis. In this
paper we take this principle to the extreme. Specifically, we formulate decision
tree induction as a combinatorial optimisation problem in which the objective is
to minimise the number of nodes in the tree. We study alternative formulations
based on satisfiability, constraint programming, and hybrids with integer linear
programming. We empirically compare our approaches against standard induc-
tion algorithms, showing that the decision trees we obtain can sometimes be less
than half the size of those found by other greedy methods. Furthermore, our deci-
sion trees are competitive in terms of accuracy on a variety of well-known bench-
marks, often being the most accurate. Even when post-pruning of greedy trees
is used, our constraint-based approach is never dominated by any of the existing
techniques.

1 Introduction

Decision trees [5] are amongst the most commonly used classifiers in real-world ma-
chine learning applications. Part of the attraction of using a decision tree is that it is easy
to use and interpret. For example, consider the data set for a simple classification task
in Figure 1(a). Each training example is defined by a set of weather features (outlook,
temperature, humidity, windy) and a class: 4+ (—) meaning I am happy (unhappy) to
play outdoors under the given weather conditions. A decision tree for this training set is
presented in Figure 1(b). The decision tree makes classifications by sorting the features
of an instance through the tree from the root to some leaf node. At each internal node a
test on a feature is performed, and each subtree corresponds to a possible outcome for
that test. Classifications are made at the leaf nodes.

Traditional decision tree induction techniques attempt to find small trees that fit a
training set of data. This preference for smaller trees is often justified as being consistent
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outlook temp. humidity windy | play?

sunny hot high false -
sunny hot high true - T F
dull hot high false +
rain mild high false + |oullook=rain| |oullook=sunny|
rain cool normal false +
rain cool normal true - T \; T
dull cool normal true +
sunny mild high false -
sunny cool normal false + 7/ \F
rain mild normal false +
sunny mild normal true + I windy
dull mild high true +
dull hot normal false +
rain mild high true -
(a) An example data-set. (b) A decision tree.

Fig. 1. An example decision tree learning problem.

with the principle of Occam’s Razor. Informally, this principle states that one should
prefer simpler hypotheses. However, the majority of existing decision tree algorithms
are greedy and rely on heuristics to find a small tree without search. While the decision
trees found are usually small, there is no guarantee that much smaller, and possibly more
accurate, decision trees exist. Finding small decision trees is often of great importance.
Consider a medical diagnosis task in which each test required to diagnose a disease
is intrusive or potentially risky to the well-being of the patient. In such an application
minimising the number of such tests is of considerable benefit.

In this paper we study the problem of minimising decision tree size by regarding
the learning task as a combinatorial optimisation problem in which the objective is to
minimise the number of nodes in the tree. We refer to this as the Smallest Decision
Tree Problem. We study formulations based on satisfiability, constraint programming,
and hybrids with integer linear programming. We empirically compare our approaches
against standard induction algorithms, showing that the decision trees we obtain can
sometimes be less than half the size of those found by other greedy methods. Further-
more, our trees are competitive in terms of accuracy on a variety of well-known bench-
marks, often being the most accurate. Even when post-pruning of greedy trees is used,
our constraint-based approach is never dominated by any of the existing techniques.

The remainder of the paper is organised as follows. In Section 2 we present the tech-
nical background and define the problem we solve in this paper. We present a formula-
tion of the problem using satisfiability (Section 3), constraint programming (Section 4),
and a hybrid of constraint programming and linear programming (Section 5). Our ex-
perimental results are presented in Section 6. Finally, we position our approach with
respect to the existing literature in Section 7, and conclude in Section 8 highlighting
some directions for future work.



2 Background

SAT and Constraint Programming. A propositional satisfiability (SAT) formula con-
sists of a set of Boolean variables and a set of clauses, where a clause is a disjunction
of variables or their negation. The SAT problem is to find an assignment O (false) or 1
(true) to every variable, such that all clauses are satisfied. SAT is a very simple formal-
ism, but it is extremely expressive, making the SAT problem NP-hard. In addition to
its simplicity, SAT has the advantage that significant research effort has led to several
extremely efficient SAT solvers being developed.

A constraint network is defined by a set of variables, each with a finite domain
of values, and a set of constraints specifying allowed combinations of values for some
subsets of variables. The constraint satisfaction problem is to find an assignment to each
variable with a value from its domain such that all constraints are satisfied. Constraint
programming (CP) involves expressing decision problems with constraint networks,
called models of the problem to be solved.

The Smallest Decision Tree Problem. A standard approach to evaluating the quality
of a machine learning technique is to first learn a hypothesis on a selected training set of
examples, and then evaluate the accuracy of the learned hypothesis on a test set of ex-
amples. Although more sophisticated measurements can also be taken, we consider the
problem of finding the smallest decision tree consistent with a training set of examples,
which is known to be NP-Hard [2].

Let £ = {ey,...,em} be a set of examples, that is, Boolean valuations of a set F
of features, and let £, £ be a partition of £. We denote by e[ f] the valuation (0 or
1) of the feature f € F in example ¢ € £. Let T = (X, U, ) be a binary tree rooted
by r € X, where L C X denotes the set of leaves of T'. A decision tree based on T is
a labelled tree in which each internal node z € X \ L is labelled with an element of
F, denoted by f(z). Each edge (z,y) € U is labelled with a Boolean g(x,y), where
g(x,y) = 0if y is the left child of  and g(x,y) = 1 if y is the right child of z. The
size of the decision tree is the number of nodes of 7. Given [ € L, p(l) denotes the
path in T" from the root r to leaf [. To each example e € £, we can associate the unique
leaf [(e) € L such that every edge (x,y) in p(I(e)) is such that e[f(z)] = g(z,y). A
decision tree classifies a set of examples £ iff for every paire; € £1,e; € £~ we have
l(e;) # l(e;). Given a set of examples £, we want to find a decision tree that classifies £
with a minimum number of nodes. Alternatively, we can minimise the longest branch.

In the rest of the paper, we assume that all features admit a Boolean valuation. Cat-
egorical features can be encoded numerically, and a non-binary feature f € [1,...,s]
can be represented by a set of binary features f1, ..., fs. These Boolean features corre-
spond to equality splits, that is where f, = 1 stands for f = v and f, = 0 stands
for f # wv. It is standard in machine learning to split numerical data with a dise-
quality split (fle] < v or fle] > v). In order to allow these two types of split, we
add to each example a second set of Boolean features fi,..., f. standing for dis-
equality splits. That is, where f; = 1 stands for f < v and f/ = 0 stands for
f > wv. For instance, let f! € [1..4], f2 € [1..4], f3 € [1..4] be three features and
e = (2,4,1) be an example. The binary encoding would yield the following example:
0100 0001 1000 0111 0001 1111, on the set of Boolean features: { f{,..f3, fit,..f3}.



3 A SAT-based Encoding

We first introduce a SAT model to find decision trees. This baseline approach requires
a large number of clauses to represent the problem. Furthermore, guiding search with
the generic heuristics of SAT solvers is not efficient (see Section 6). However, this
approach underlines the critical aspects of this problem that need to be addressed in
order to develop an efficient approach.

Given a binary tree T = (X, U, r) and a training set £, we present a SAT formula
that is satisfiable iff there is a decision tree based on 7" that classifies £.

Intuition. Given a set of features F = {a, b, g, r}, suppose there are two examples e;
in €T and e; in £~ that have a similar value on the set of features eq(e;, ¢;) = {a, b}
(with e;[a] = ej[a] = 0, e;[b] = e;[b] = 1) and that differ on the set of features
F\eq(ei,ej) = {g,r}. The SAT encoding has to ensure that e; and e; are not associated
with the same leaf. Examples e; and e; are not both associated with a given leaf | € L
iff there exists an edge (x,y) € p(l) such that:

fx) € F\egleie;) V (f(x) € eqles, e5) & g(x,y) # el f(2)])-

The first case ensures that if [(e;) and [(e;) have x as a common ancestor, they appear
in one of the two subtrees rooted in x; the second case ensures that none of [(e;), [(e;)
is equal to ! since they will both branch on the opposite child of z.

Encoding. For every node x € X \ L, for every feature f € F, we introduce a literal
t.f, whose value 1 will mean that node x is labelled with feature f. For each pair
e; € ET and e; € £, for each leaf | € L, we build a clause that forbids e; and e; to be
classified at . On the example above, suppose there is a path p(l) = (z1, z2,1) in the
tree such that x5 is the left child of x; and [ is the right child of 5. We would add the
clause: ty, g Vigr Vig,g Viasr Vi s Vitg,a. e, o means xy is labelled with a feature
that discriminates between e; and e; because ¢ € F \ eq(e;, €;). t,,,» means the feature
labelling x; will classify both e; and e; in the branch that does not lead to ! because
p(1) uses the left child of x; whereas e;[b] = e;[b] = 1. Formally, we build the clauses:

( V tay)
(z,y)ep(l),feeq(ei,ej) | g(z,y)#eilf]

v ( V toy) (1)

(z,y)ep(l),fEF \eq(ei,e;)
V(es,e;) € ET x 7Vl e L.
The following clauses ensure that each node is labelled with at most one feature:

(mtep V —tyg), VYoxe X\ LVf feF. )

By construction, a solution to the SAT formula defined above completely characterises
a decision tree. Let M be such a solution. A node x € X \ L will be labelled with
feFiff Mty ] = 1.



We add redundant clauses specifying that two nodes on a same path should not take
the same feature as it speeds up the resolution process:

A (~tef V —tpy), VIELNfEF. 3)

(z,y)ep(l),(z’,y")ep(l),x#a’

Complexity. Given n = |X|,k = |F|,m = |&|, the number of literals is in O(nk).
Observe that the number of literals is independent of the size of £. However, the num-
ber of clauses strongly depends on the size of £. We build at most m? - n/2 clauses of
type (1), each of length in O(kn), and n/2 - k? clauses of type (2), each of length in
O(1), which gives a space complexity in O(kn?m? + nk?). There are at most n/2 - k
conjunctions of n? binary clauses of type (3), which gives an extra space in O(kn?).
Observe that we approximate the depth of 7" by n. This is a brute force approximation.
If the tree is balanced, the depth will be in O(log(n)).

Observation. Our encoding has an interesting characteristic: it deals with "useless’
nodes for free. A node x € X \ L is useless if none of the examples in £ will go
through z to be classified, that is, Ve € £, ¢ p(l(e)). In our encoding a node z is
useless if it is not assigned any feature, that is, Vf € F,t;r = 0 in the solution. We
then can add an extra type of redundant clauses to avoid decision trees going through
useless nodes before reaching a real node:

\/ (tag) V ~typ, V(w,y) €Uy e X \LVf € F. )
feF

There are nk such clauses, each of size in O(k), which gives a total size in O(k?n).

4 A CP Model

The SAT encoding introduced in the previous section has several drawbacks. It does not
scale well with the number of examples in the training set, and even less so with the
depth of the decision tree. This latter problem is because the binary tree we encode is
a ‘superset’ of the decision tree we find, and is fixed in advance. Moreover, when the
number of examples m is large it would be too costly to maintain variables or clauses
representing examples. We therefore introduce a special kind of set variable, where
only the lower bound is stored and can be pruned. Usually, a set variable is represented
using two reversible sets, one standing for the elements that must be in the set (lower
bound) and one for the elements that can be in the set (upper bound). We implement
these simplified set variables using a single reversible list of integers, representing the
lower bound. The upper bound is implicit and the only possible operation is to shrink
it to match the lower bound. This type of variable allows us to reason about large sets
(sets of examples here), at a very low computational cost. Another observation from the
SAT encoding is that starting from a complete tree is impractical, even for relatively
small depths. We therefore use the expressivity of CP to get around this problem. We
do not fix the binary tree on which to label. We simply assume an upper bound n on the
number of nodes, and seek the smallest decision tree with n nodes or less. That is, both
the tests to perform and the topology of the tree are decided within the model. We can
therefore find potentially deep trees with a relatively small number of nodes.



4.1 Variables

We label nodes with integers from 1 to n, then for all ¢ € [1..n] we introduce the
following variables:

€ [1..n]: the index of the parent of node .

€ [1..n]: the index of the left child of node i.

€ [1..n]: the index of the right child of node i.

€ [0..2]: the number of children of node i.

€ [1..k]: the index of the feature tested at node 1.
D” € {0, 1}: “node j is a descendant of node i”.
0 C BE; C{1,...,m}: the subset of £ such that the leaves associated with elements
in F; are all descendants of node 7. We shall use the notation E;“ (resp. E;) for
(E;NET) (resp. (E; NET)).
e UB € [0..n]: an upper bound on the size of the decision tree (initialised to n + 1
and set to the size of the smallest decision tree found so far)

4.2 Constraint Program

The graph defined on nodes {1,...,n} with an edge (4, 7) iff P, = ¢ must form a
tree. We use the TREE global constraint to enforce this requirement [4]. Notice that this
constraint uses a data structure to store the set of descendants of every node. We make
it explicit by using the Boolean variables D. We use a slightly modified version of the
constraint that ensures the resulting graph is, in fact, composed of a single tree, and
possibly a set of unconnected nodes; a node ¢ is connected ift P; # i or 35 # ¢, P; = i.
We, therefore, can add the constraint TREE(P, D) to the model.

Next, we channel the variables N, L, R and P with the following constraints, thus
making sure that the tree is binary.

Vi#j e [l.n], P;=ie ((Li = j)xor (R; = j)). (5)
Vi, Ny=> Pj=i. (6)
i

The next constraint ensures that no feature is tested twice along a branch.

Now we introduce some constraints to ensure that for all ¢, the variables F; stand for
the set of examples that shall be tested on node i.

Li=j=E;={k|keE; N e]F;] =0} ()
Ri=j=FE;={k|kecE; N e[Fj]=1}. )
For each node i, we ensure that unless all examples are classified, (i.e., there is no pair

of examples with opposite polarity agreeing on the feature tested on this node) it cannot
be a leaf.

3k € Eff A 3K € E] A er[F)] = ew[Fi] = N; > 0. (10



4.3 Inference

We introduce a number of implied constraints to improve this model. The first constraint
ensures that the feature tested at a given node splits the examples in a non-trivial way.

3k € Ef, 3k € B, st. ex[Fi] # ew [F). (11)

This constraint does not improve the search, but it does help the subsequent constraint to
work effectively. When, for a given node, every feature splits the examples so that both
positive and negative examples are represented left and right, we know that this node
will need not one, but two children. Let E be a set of examples and f be a feature, we
denote by I(f, E') (resp. r(f, E)) the cardinality of the subset of F that will be routed
left (resp. right) when testing f.

UF;,, Ef) - U(Fi, E]) -r(Fi, Ef) -r(Fi, Ef ) #0= N; = 2. (12)

Due to the previous constraint, we can compute a lower bound on the number of past
and future nodes that will be required. A simple sum constraint ensures we do not seek
trees larger than one already found:

N; < UB. (13)
>

i€[l..n]

4.4 Symmetry Breaking

A search algorithm over the constraint model might repeatedly explore isomorphic trees
where only node labellings change, significantly degrading performance. To avoid this,
we ensure that the trees are ordered from root to leaves and from left to right by adding
the following constraints:

Vi€ [Ll.n— 1), P, < min(i, Pip1). (14)
Vie[ln], i <R <2%i+2. (15)
Vie[l.n], i < L; <min(2*i+ 1, R;). (16)

4.5 Search

Even when adding implied constraints and symmetry breaking constraints, the problem
is often too large for the model above to explore a significant part of the search space
in a reasonable amount of time. Thus, it is critical to use an efficient search heuristic in
order to find good solutions quickly. We used the well known information gain heuristic,
used in standard decision tree learning algorithms, as a search strategy. Therefore, the
first branch explored by our constraint model is similar to that explored by C4.5 [6].

We also observed that diversifying the choices made by the search heuristic (via ran-
domization) and using a restart strategy was beneficial. We used the following method:
instead of branching on the feature offering the best information gain, we randomly
picked among the three best choices. This small amount of randomization allowed us to
restart search after unsuccessful dives. Each successive dive is bounded by the number
of fails, initialised to 100 and then geometrically incremented by a factor of 1.5.



S Hybrid CP and LP Model

Next we discuss a promising inference method to deduce a good lower bound on the
number of nodes required to classify a set of examples. Consider a partial solution of the
CP model, such that when a node i of the decision tree is assigned (that is, the parent of
1 and the feature tested on ¢ are both known) then its parent is also assigned. It follows
that the set of examples tested on an assigned node is perfectly known. We can compute
a lower bound on the number of nodes required to classify this set of examples. By
summing all these lower bounds for every assigned node without assigned children, we
obtain a lower bound on the number of extra nodes that will be necessary to classify
all yet unclassified examples. If this lower bound is larger than the number of available
nodes we can backtrack, cutting the current branch in the search tree.

Consider a pair of examples (e;,e;) such that e; € €7 and e¢; € £~. We de-
fine d(e;, ;) to be the set of discrepancies between examples e; and e; as follows:
0(ei e;) = {f | eilf] # eilf]}. Furthermore, we denote by C' the corresponding col-
lection of sets: C'(€) = {d(ei, e;) | e; € ET A e; € E}. A hitting set for a collection
S1,...,S, of setsis a set H such that H N.S; # 0,7 € 1..n.

Theorem 1. If a decision tree classifies a set of examples E, the set of features tested
in the tree is a hitting set of C ().

Proof. Let Fr be the set of features tested in the decision tree and let e; € £ and
e;j € £7. Clearly, in order to classify e; and e;, at least one of the features for which
e; and e; disagree must be tested. That is, we have Fir N d(e;, ;) # 0. Hence Fr is a
hitting set for C'(&). O

Consequently, the size of the minimum hitting set on C'(£) is a lower bound on the
number of distinct tests, and hence of nodes of a decision tree for classifying a set of
examples £. At the root node, this hitting set problem might be much too hard to solve,
and moreover, it might not be a tight lower bound since tests can be repeated several
times on different branches. However, during search on the CP model described above,
there shall be numerous subtrees, each corresponding to a subset of £, for which solv-
ing, or approximating the hitting set problem might give us a valuable bound. We can
solve the hitting set problem using the following linear program on the set of Boolean
variables V' = {vy | f € F}:

minimise Z vy subject to : Ve € C(€), va > 1.
fer fec

This linear program can be solved efficiently by any LP solver. At each node of the
search tree explored by the CP optimiser, let OP be the set of nodes of the decision
tree whose parent is known (assigned) but children are unknown (not yet assigned). For
each node i € OP, we know the exact set of examples F; to be tested on i. Therefore,
a lower bound [b(7), computed with the LP above, of the cardinality of the associated
MINIMUM HITTING SET problem is also a valid lower bound on the number of de-
scendants of 7. Let I be the set of nodes (of the decision tree) already assigned, and



U B be the size of the smallest tree found so far. We can replace Constraint 13 with the
following constraint:

1]+ > 1b(i) < UB. (17)
i€OP
In order to avoid computing large linear relaxations too often, we use a threshold on the
cardinality of C(F;) that is | E;"| x |E; |. Whenever this cardinality is larger than the
threshold, we use N; + 1 instead of [b(¢) in Constraint 17.

6 Experimental Results

We performed a series of experiments comparing our approach against the state-of-
the-art in machine learning, as well as studying the scalability and practicality of our
optimisation-based methods. An important distinction between our approach and stan-
dard greedy decision tree induction algorithms, is that we seek the smallest tree that has
perfect classification accuracy on the training set. In this sense, our approach can be
regarded as a form of knowledge compilation in which we seek the smallest compiled
representation of the training data [3]. Standard decision tree induction algorithms can
be forced to generate a tree that also has perfect classification accuracy on the data, but
these trees tend to be large, since they overfit the training data. To overcome this over-
fitting, greedy methods are often post-pruned by identifying sub-branches of the tree
that can be removed without having too significant an impact on its accuracy.

In our experiments, therefore, we compared the decision trees obtained from our
optimisation approach against the decision trees obtained from standard tree induction
methods, both unpruned and pruned. The results clearly show that the constraint pro-
gramming approach produces very accurate trees, that are smaller than those found
using standard greedy unpruned methods, and in a scalable manner. Even when com-
pared against pruned trees, the accuracy of our decision trees is never the worst, and is
often competitive with, or exceeds that of pruned trees built using standard methods.

All our experiments were run on a 2.6GHz Octal Core Intel Xeon with 12Gb of
RAM running Fedora core 9. In Table 1, we report some characteristics (number of
examples and features) of the benchmarks used in our experiments.

Table 1. Characteristics of the data-sets, and the sizes of the corresponding SAT formulae.

[Benchmark “Weather Mouse Cancer Car Income Chess Hand w. Magic Shuttle Yeast]
#examples 14 70 569 1728 30162 28056 20000 19020 43500 1484
#features 10 45 3318 21 494 40 205 1887 506 175
CNF size (depth 4) 27K 3.5M 92G 842M  354G* 180G 248G 967G* 118G* 13G

6.1 The Scalability of the SAT Encoding

In Table 1 we give the space complexity, in bytes, of the CNF encoding for each data
set, assuming a maximum depth of 4 for the decision tree. In most cases, however, the



depth of minimal trees is much larger. Recall that the space complexity of the SAT
formula increases exponentially with depth. Therefore, the reformulation is too large in
almost all of our data sets (the results marked with an asterisk (*) were obtained using
only 10% of the examples in the data set).

In order to study the behaviour of a SAT solver on this problem we ran SAT4J? on
the SAT encoding of the two smallest data sets (Weather and Mouse). We used the
depth of the smallest tree found by the CP model (see Section 6.2) to build the SAT
encoding. To minimise the size of the decision tree, SAT4J features an ATLEASTK
constraint ensuring that the number of 0’s in a model is at least a given number K.
The value of K is initialised to 0, and on each successful run, we set K to 1 plus the
number of 0’s in the previous model. We stop when either SAT4J returns false, or a
time cutoff of 5 minutes has elapsed without improving the current model. We report
the runtime for finding the best solution (sol.) and also the total elapsed time, including
the time spent on proving or attempting to prove optimality (tot.). We also report the
size (nodes) of the smallest tree found.

Benchmark SAT model

time (sol.) time (tot.) tree size
Weather 0.14 0.37 9
Mouse 277.27 577.27 15

It is remarkable how well SAT4J can handle such large CNF files. For instance, the
encoding of Mouse involves 74499 often very large clauses. However, it was clear the
SAT method does not scale since these two tiny data sets produced large formulas. On
the one hand, for the smaller data-set (Weather) SAT4J quickly found an optimal
decision tree, but was slightly slower than the CP method (0.06s). On the other hand,
for the larger data-set (Mouse), the CP model found a decision tree of 15 nodes in
0.05s, whilst the SAT required 277.27s to find a solution of equal quality but failed to
prove its optimality within the 5 minute time limit.

6.2 The CP model

In this experiment we compared the size of the decision trees produced by our CP
classifier with respect to standard implementations of C4.5. We compare our results in
terms of tree size and accuracy against WEKA [8] and ITI [7], using a number of data-
sets from the UCI Machine Learning Repository*. For each data set, and for a range
of ratios (%) we produced 100 random training sets of the given ratio by
randomly sampling the whole data-set, using the remainder of the data for testing. Each
classifier is trained on the same random sample. We report averages over the 100 runs
for each classifier.

We first compare the size of the decision trees when they are complete (100% accu-
rate classification) on the training data. Therefore, we switched off all post-pruning
capabilities of WEKA and ITI. Moreover, WEKA also pre-prunes the tree, that is,
it does not expand subtrees when the information gain measure becomes too small.

3 http://www.satdj.org
* http://archive.ics.uci.edu/ml/



We, therefore, modified WEKA to avoid this behaviour’. The following command lines
were used for WEKA and ITI, respectively: java weka.classifiers.trees.J48
-t train.set -T test.set -U -M Oand iti dir -ltrain_set -gtest_set
-t. The CP optimiser was stopped after spending five minutes without improving the
current solution. We report the size of the tree found in the first descent of the CP opti-
miser and the size of the smallest tree found. We also report some search information —
number of backtracks and runtime in seconds — to find the smallest tree.

The results for these unpruned decision trees are reported in the columns ‘C4.5, no
pruning’ and ‘cp’ of Table 2. One could imagine that the information gain heuristic
would be sufficient to find near-minimal trees with ITI or WEKA. The results show that
this is not the case. The decision trees computed by I'TI or WEKA without pruning are
far from being minimal. Indeed C4.5 does not actively aim at minimising the tree size.
Smaller decision trees can be found, and our CP model is effective in doing so.

It is somewhat surprising that even the first solution of the CP model is often better
(in terms of tree size) than that of WEKA or ITI. This can be explained by the fact
that we turn the data set into a numerical form, and then systematically branch using
either equality or disequality splits. On the other hand, WEKA uses only equality splits
on categorical features, and disequality splits on the numerical features. Our method
allows tests with better information gain in certain cases.

In the rightmost columns of Table 2, we report the size of the pruned decision trees
computed by ITI and WEKA. When compared against the pruned C4.5 trees, the CP
tree is always dominated in terms of size. However, two points should be noted about
this. Firstly, we have made no attempt to post-prune the CP trees. If we did so, we
could expect a reduction in tree size, possibly comparable to that obtained for the trees
generated using C4.5. Secondly, after pruning, the decision tree is no longer guaranteed
to have 100% classification accuracy on the original training set.

Table 3 presents a detailed comparison of classification accuracy between the trees
built using our CP approach and those built using WEKA and ITI, both pruned and
unpruned. For each of the standard approaches we present the average classification
accuracy of its trees based on 100 tests. In addition, we present the complement to 1
of the p-value, obtained from a paired t-test performed using the statistical computing
system RO; this statistic is presented in the column labelled ‘sig’ (for significance).
Suppose that for two methods, their average accuracy x and y over 100 runs are such
that < y, this value (1 — p) can be interpreted as the probability that x is indeed
less than y. For each reported average accuracy, we compute the significance of its
relation to the CP accuracy. We regard a difference as statistically significant if the
corresponding ‘sig’ value is at least 0.95. For example in the first line of the table the
unpruned WEKA accuracy is 91.54, while the CP accuracy is 91.66. The significance of
this difference is 0.42 which means that this is not a statistically significant difference.

The two right-most columns of Table 3 indicate the relative performance of the CP
model. We assume that method A gives better trees than method B iff the accuracy is
significantly better, and we define a dominance relation with respect to the CP model,

5 This change was made in consultation with the authors of WEKA to ensure the system was not
adversely affected.
® http://www.r-project.org/



Table 2. A comparison of the sizes of decision trees obtained from WEKA without pruning (WEKA), WEKA with pruning
(WEKA (p)), ITI without pruning (ITI), ITI with pruning (ITI (p)), and CP. We also present statistics on the running time of
the CP approach.

C4.5, no pruning cp C4.5, pruning

Benchmark Prop. || WEKA  ITI first best WEKA (p) ITI (p)
size size size size time (s) backtracks size size

0.2 11.66  11.94| 10.92 922 47.12 17363.04 7.76 5.00

0.3 16.12  16.74 1430 1248 27.22 7411.31 10.26 7.28

Cancer 0.5 23.48 2598|| 20.40| 18.48 45.05 8448.93 15.08 10.72

0.7 31.10 36.18|| 26.22| 24.26 38.00 6361.05 20.56  12.76

0.9 37.98 41.56|| 32.40| 30.08 57.92 7801.57 23.46  15.08

0.05 30.09 23.38|] 24.82| 1852 848 250851.11 1230 10.92

0.1 46.67 37.20|| 40.16| 30.12 2632 1228232.51 1898 17.04

0.2 70.97 55.26|| 59.82| 47.70 41.60 1840811.13 29.04 2740

Car 0.3 87.67 68.96|| 74.16] 60.06 29.66 1107230.15 37.14 3440

0.5 11451 84.50|| 93.32| 75.60 33.52 1025980.81 52.66  47.56

0.7 13922 96.12|| 105.54| 86.30 32.05 839389.68 60.70  57.76
0.9 161.73 100.76|| 115.24| 92.02 44.81 1086473.89 66.45  64.62
0.01 185.86 108.82|| 85.12| 76.22 3599 141668.94 34.08  26.68

Income 0.015]| 265.23 160.89| 123.60| 112.87 36.81 108710.27 46.37 38.95
0.05 || 791.03 534.69|| 390.65| 364.83 63.99 56624.72 12421 122.39
0.01 126.84  89.46|| 81.54| 66.58 49.13 1486914.05 1.00 18.46
Chess 0.015|| 172.36 130.52|| 119.60| 98.90 48.86 1376762.87 1.06  29.64
0.05 || 434.54 372.54| 317.20| 274.66 41.57 360814.88 1.00 108.92
0.1 73526 644.22|| 525.48| 458.80 66.11 112665.88 34.08 217.88
0.01 11.54 14.24|| 10.66 8.78 10.86 22525.52 5.66 5.98
0.015 1452 17.92|| 13.66| 10.66 21.24 38645.64 5.66 7.56
0.05 33.80 42.24|| 31.50| 24.16 28.60 28678.29 1036 10.78

Hand writing (A)] o4 51.84  67.68|| 4822 3958 4062 5121942 1754 1828
02 || 7616 109.92|| 7540 6298 4137  5161347|| 20.60 34.94

0.3 9422 144.36|| 95.26] 80.28 40.93 53276.16 4336 46.52
0.01 18.28  19.68 1630 12.82 19.27 84162.49 5.96 5.02
0.015|| 24.58 27.66|| 22.04] 17.06 20.19 95053.05 9.24 7.00
Hand writing (B) 0.05 64.60 70.30|| 55.92| 47.10 40.20 211587.58 2342 1722
0.1 106.56 119.58|| 95.78| 84.76 33.72 171899.21 3692  33.04

0.2 180.36  199.72|| 160.20| 145.04 42.05 212308.28 72.16  58.04
0.3 240.18 268.92|| 214.48| 196.42 33.64 146700.04 105.56  78.68

0.01 14.12  15.64 13.08| 10.34 17.10 58892.16 7.04 4.70
0.015 19.38  21.00 17.80| 14.00 20.54 79994.81 8.82 6.10
Hand writing (C) 0.05 48.64  52.62 43.16| 3552 30.89 119385.76 18.40 16.64
0.1 80.86 88.42 73.76| 6196 44.43  150533.20 29.74  30.72
0.2 132.36 146.52|| 121.50| 104.74 39.99 113072.51 49.72  52.52
0.3 175.44 193.56|| 160.64| 139.36 49.49 135286.41 66.56  72.24
0.01 52774 57.24 48.44| 44.02 39.19 38038.14 3270 17.10
Magic 0.015 76.14  82.42 69.76| 64.28 32.59 22821.48 4554 24.16
0.05 23470 257.02|| 204.38| 195.94 95.97 20816.56 132.36 70.48
0.05 19.02  25.20 12.96 8.06 48.58 7107.41 10.38  13.14
Shuttle 0.1 24.18 31.54 16.14| 10.88 69.49 5639.98 1522 17.56
0.2 2846  35.38 20.76 13.62 14.94 3691.08 18.04 2498
0.05 3326  38.70 30.26| 25.30 37.16 353351.68 21.72 9.84
0.1 67.50 76.42 59.08| 50.88 39.86 291145.95 36.52 19.14
Yeast CYT 0.2 130.30 147.70|| 113.36| 103.78 37.57 215424.60 64.64  37.50
0.3 197.26 222.16|| 172.22| 157.12 28.72  136221.02 96.18  53.58
0.5 32430 364.62|| 284.10| 263.42 4136 167958.64 147.66  87.82
0.7 450.06 507.30|| 395.16| 371.46 35.35 100452.08 199.52 122.10
0.05 22.00 24.46 18.62| 1570 11.55 65659.79 8.68 5.10
0.1 42.60 47.38 37.12| 31.62 22.06 118185.26 13.36 9.04
0.2 81.70  92.26 70.80| 6330 21.04 79821.79 22.66 19.40
Yeast MIT

0.3 121.48 138.72|| 103.28| 94.88 2896 117579.25 29.86  27.64
0.5 200.92 227.88|| 169.32| 156.60 33.17 128659.70 42.00 42.00
0.7 279.12 310.26|| 232.72| 217.30 36.27 117305.35 59.10  57.76




Table 3. A comparison of the classification accuracies of decision trees obtained from WEKA without pruning (WEKA),
WEKA with pruning (WEKA (p)), ITI without pruning (ITI), ITI with pruning (ITI (p)), and CP.

Benchmark Prop WEKA ] WEKA (p? ITI ] ITI (p) ] cp Relation
accur.  sig.| accur. sig.| accur. sig.| accur. sig.| accur.|| versus all versus complete
0.2 91.54 0.42] 91.71 0.17] 91.09 0.97| 90.86 0.99| 91.66|| among best  among best
0.3 91.74 0.59] 91.96 0.09| 91.76 0.47| 91.96 0.07| 91.93|| among best  among best
Cancer 0.5 92.57 0.86] 92.95 0.23| 92.43 0.96| 92.90 0.07| 92.88|| among best  among best
0.7 92.85 0.96| 93.36 0.07| 93.33 0.17| 93.90 0.96| 93.39|| among best  among best
0.9 9322 0.83]| 93.50 0.51| 93.66 0.24| 93.78 0.01| 93.78|| among best  among best
0.05 88.34 0.54| 87.22 0.99| 88.69 0.18| 87.26 0.99| 88.61|| among best — among best
0.1 91.07 0.99| 89.41 1.00| 92.24 0.92| 90.58 0.99| 91.84|| among best — among best
0.2 94.13 0.99] 92.88 1.00| 94.89 0.26| 94.23 0.99| 94.83|| among best  among best
Car 0.3 95.45 1.00{ 94.05 1.00| 96.25 0.89| 95.47 1.00| 96.44|| among best  among best
0.5 96.87 1.00| 96.14 1.00| 97.67 0.99| 97.13 1.00| 97.92|| best best
0.7 97.60 1.00| 96.97 1.00| 98.49 0.99| 97.93 1.00| 98.72|| best best
0.9 97.92 1.00| 97.67 1.00| 99.18 0.24| 98.61 0.99| 99.22|| among best  among best
0.01 || 78.00 0.96| 80.46 1.00| 76.61 1.00| 78.79 0.87| 78.47|| incomp. best
income 0.015|| 78.58 0.99| 81.30 1.00| 77.11 1.00| 79.26 0.47| 79.12|| incomp. best
0.05 || 79.76 1.00| 82.79 1.00| 77.76 1.00| 80.41 0.34| 80.45|| incomp. best
0.01 || 84.43 0.99| 89.94 1.00| 84.15 0.99| 87.75 1.00| 85.16|| incomp. best
Chess 0.015|| 85.43 0.99| 89.93 1.00| 84.62 1.00| 87.50 1.00| 86.35|| incomp. best
0.05 || 89.11 1.00| 89.94 1.00| 87.59 1.00| 88.23 1.00| 90.40|| best best
0.1 91.53 1.00[ 90.22 1.00| 89.84 1.00| 89.48 1.00| 92.91|| best best
0.01 97.48 0.60| 98.04 0.99| 96.84 0.98| 97.14 0.69| 97.33|| incomp. among best
0.015|| 97.90 0.97| 98.48 1.00| 97.39 0.97| 97.87 0.91| 97.66|| incomp. incomp.
Hand writing (a) 0.05 || 98.48 0.20| 98.87 1.00| 98.26 0.99| 98.63 0.99| 98.47 l:ncump‘ among best
0.1 98.83 0.81| 99.05 1.00| 98.60 1.00| 98.85 0.89| 98.80|| incomp. among best
0.2 99.17 0.99] 99.23 1.00| 98.91 1.00| 99.04 0.99| 99.10|| incomp. incomp.
0.3 99.35 1.00| 99.36 1.00| 99.06 1.00| 99.14 1.00| 99.26|| incomp. incomp.
0.01 94.65 0.41] 9579 1.00| 94.79 0.17| 95.98 1.00| 94.75|| among worst among best
0.015[| 95.03 0.97| 96.01 0.99| 95.12 0.87| 96.17 1.00| 95.33|| incomp. among best
Hand writing (B) 0.05 || 96.29 0.98| 97.00 1.00| 96.42 0.19| 97.15 1.00| 96.43|| incomp. among best
0.1 96.99 0.22| 97.42 1.00| 96.95 0.49| 97.35 1.00| 96.98|| among worst among best
0.2 97.62 0.99| 97.80 1.00| 97.51 0.09| 97.74 1.00| 97.51|| among worst among worst
0.3 97.94 0.99| 98.03 1.00| 97.79 0.39| 97.93 1.00| 97.80|| among worst among worst
0.01 95.81 0.65| 96.14 0.99| 95.84 0.72| 96.33 0.99| 95.67|| among worst among best
0.015]| 96.15 0.89| 96.61 0.97| 96.27 0.49| 96.49 0.77| 96.35|| among worst among best
Hand writing (C) 0.05 97.38 0.86] 97.75 1.00| 97.41 0.72| 97.57 0.94| 97.47 among worst among best
0.1 97.99 0.25| 98.22 1.00| 97.90 0.97| 98.02 0.72| 97.98|| incomp. among best
0.2 98.43 0.57| 98.63 1.00| 98.37 0.87| 98.42 0.18| 98.41|| among worst among best
0.3 98.63 0.63| 98.76 1.00| 98.58 0.99| 98.64 0.31| 98.65|| incomp. among best
0.01 || 75.00 0.93| 75.84 0.40| 75.04 0.96| 76.61 0.99| 75.65|| incomp. among best
Magic 0.015|| 76.32 0.89| 77.35 0.99| 76.08 0.98| 77.84 0.99| 76.69|| incomp. best
0.05 || 78.29 1.00 79.66 0.99| 78.21 1.00| 80.50 1.00| 78.98|| incomp. best
0.05 || 99.77 1.00| 99.72 1.00| 99.76 1.00| 99.71 1.00| 99.85|| best best
Shuttle 0.1 99.85 1.00| 99.80 1.00| 99.85 1.00| 99.79 1.00| 99.91|| best best
0.2 99.93 1.00| 99.90 1.00| 99.92 0.99| 99.90 1.00| 99.95|| best best
0.05 || 65.21 0.74| 65.34 0.83| 63.46 0.99| 65.11 0.55| 64.79|| among best  among best
0.1 66.53 0.86| 67.19 0.99| 64.72 0.99| 66.87 0.98| 66.14|| incomp. among best
Yeast CYT 0.2 66.93 0.15] 68.04 0.99| 6594 0.99| 68.04 0.99| 66.98|| incomp. among best
0.3 67.87 0.98] 69.19 1.00| 66.42 0.99| 68.84 1.00| 67.28|| incomp. incomp.
0.5 68.53 0.40| 70.19 1.00| 67.79 0.99] 69.73 1.00| 68.41|| incomp. among best
0.7 69.09 0.94| 7099 1.00| 68.75 0.43| 70.39 1.00| 68.59|| among worst among best
0.05 || 80.21 0.52| 83.32 1.00{ 80.27 0.42| 83.51 1.00| 80.50|| among worst among best
0.1 81.14 0.05| 85.24 1.00| 80.53 0.92| 84.46 1.00| 81.12|| among worst among best
Yeast MIT 0.2 81.92 0.13| 85.83 1.00| 81.46 0.95| 84.98 1.00| 81.89|| incomp. among best
0.3 82.30 0.31| 86.34 1.00{ 81.89 0.89| 85.76 1.00| 82.22|| among worst among best
0.5 82.62 0.85| 86.77 1.00| 82.48 0.98| 85.99 1.00| 82.90|| incomp. among best
0.7 82.50 0.99| 86.37 1.00| 82.65 0.99| 86.11 1.00| 83.17|| incomp. among best




Table 4. Runtime, #Backtracks & Tree size (CP vs CP+LP).

CP model CP+LP model
time bts tree size|| time bts  size

4437 16206 9.24| 31.64 10421 9.20
27.61 7098  12.48|| 21.48 4569 12.44
Cancer [42.82 7910  18.50|| 42.54 4461 18.62

8.75 250449 18.52{| 12.30 7733 18.52
29.13 1390076  30.10|| 51.15 33182 29.58
Car 48.21 2206249  47.64|| 87.05 32979 46.46
29.69 1106445  60.06|| 48.97 15829 59.18
33.53 1025011  75.60|| 53.40 17715 75.64
35.03 140917  76.22|| 59.98 11875 76.68
Income |38.69 114533 112.81| 89.08 11074 113.26
63.3 54219.82 364.83||119.14 6802.40 368.87

Benchmark

based on this pairwise relation. We say that the CP model is the best, denoted “best”
(resp. the worst, denoted “worst”) iff it gives trees that are significantly better (resp.
worse) than all other methods. We say that the CP model is among the best, denoted
“among best” (resp. among the worst, denoted “among worst”) if there is no other
method giving better (resp. worse) trees, and if it is not the best (resp. worst). Finally, we
say that it is incomparable, denoted “incomp.”, iff there exists at least one method giving
better trees and one giving worse trees. We report this comparison for each instance. In
the penultimate column (“versus all”’) we compare against all methods. The CP model
is the best in 13% of the cases, among the best in 20% of the cases, incomparable in
45% of the cases, among the worst in 22% of the cases, and is never the worst. In the
last column (“versus complete”), we compare against only complete methods, that is,
WEKA and ITI without post-pruning. The CP model is the best in 25% of the cases,
among the best in 64% of the cases, incomparable in 7% of the cases, among the worst
in 4% of the cases, and is never the worst.

It is clear that the CP generated trees are almost always better than those generated
by standard decision tree methods that do not do pruning. Also, when compared against
methods that use post-pruning, the CP approach is not dominated by either one. This is
an encouraging result since it suggests that while the CP generated trees are competitive
with advanced decision tree induction methods, they can only be improved further if
they were also post-pruned.

6.3 Improving the CP model using LP

The aim of this experiment was to assess if the linear relaxation method introduced in
Section 5 can improve the CP model. We run it using the same setting as described in
Section 6.2, and on 3 benchmarks and with an arbitrary threshold” of 600 that was a
good compromise. In Table 4, we report the runtime and number of backtracks to find
the best solution, as well as the quality (tree size) of this solution.

We observe that the search space explored by the CP+LP model can be orders of
magnitude smaller (see #backtracks), but the runtime can still be slightly worse because
of the overhead of solving the linear relaxation. Thus, even if it is difficult to judge if

7 As defined in Section 5.



overall the method is better than the basic CP model, we can expect it to scale well on
harder problems.

7 Related Work

Decision trees are usually constructed using greedy algorithms [5, 6] relying on a search
bias that attempts to find smaller trees. Finding the minimum sized tree is NP-Hard [2].
[1] have proposed a technique for improving the accuracy of a decision tree by selecting
the next attribute to test as the one with the smallest expected consistent sub-tree size
estimated using a sampling technique. The use of combinatorial optimisation to improve
decision trees has also been reported [9], where the focus has been on determining
linear-combination splits for the decision tree. These papers are not concerned with
minimising overall tree-size. Our work contrasts with these approaches since we take an
extreme view of Occam’s Razor and seek to find the minimum sized decision tree using
alternative approaches from the field of combinatorial optimisation. We have found that
size can usually be reduced considerably, without negatively impacting accuracy.

8 Conclusion

We have presented a variety of alternative approaches to minimising the number of
nodes in a decision tree. In particular, we have shown that while this problem can be
formulated as either a satisfiability problem or a constraint program, the latter is more
scalable. Our empirical results show the value of minimising decision tree size. We find
smaller trees that are often more accurate than, but never dominated by, those found
using standard greedy induction algorithms.
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