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Abstract. We propose two new asynchronous algorithms for solving Distributed
Constraint Satisfaction Problems (DisCSPs). The first algorithm, AFC-ng, is a
nogood-based version of Asynchronous Forward Checking (AFC). The second
algorithm, Asynchronous Inter-Level Forward-Checking (AILFC), is based on
the AFC-ng algorithm and is performed on a pseudo-tree ordering of the con-
straint graph. AFC-ng and AILFC only need polynomial space.We compare the
performance of these algorithms with other DisCSP algorithms on random DisC-
SPs in two kinds of communication environments: Fast communication and slow
communication. Our experiments show that AFC-ng improves on AFC and that
AILFC outperforms all compared algorithms in communication load.

1 Introduction

Distributed Constraint Satisfaction Problems (DisCSPs) is a general framework for
solving distributed problems. DisCSPs have a wide range of applications in multi-agent
coordination, such as distributed resource allocation problems [1], distributed schedul-
ing problems [2], sensor networks [3], and log-based reconciliation [4].

DisCSPs are composed of agents, each holding its local constraint network. Vari-
ables in different agents are connected by constraints. Agents assign values to their
variables, attempting to generate a locally consistent assignment that is also consistent
with all constraints between agents [5, 6]. To achieve this goal, agents check the value
assignments to their variables for local consistency and exchange messages among them
to check consistency of their proposed assignments againstconstraints among variables
that belong to different agents.

Several efficient distributed algorithms for solving DisCSPs have been developed in
the last decade. Synchronous Backtrack (SBT) is the simplest DisCSP search algorithm
that performs assignments sequentially and synchronously. Only the agent holding a
Current Partial Assignment (CPA) performs an assignment or backtrack [7]. The first
complete asynchronous search algorithm for DisCSPs is the Asynchronous Backtrack-
ing ABT [8, 5, 9]. In ABT, agents perform assignments asynchronously and send out
messages to constraining agents, informing them about their assignments. Due to the
asynchronous nature of agents operations, the global assignment state at any particular
time during the run of asynchronous backtracking is in general inconsistent. Nogoods



are used to prevent the construction of globally inconsistent solutions. Another promis-
ing algorithm for DisCSPs is the Asynchronous Forward-Checking (AFC) algorithm
[10, 11]. This algorithm is based on the forward checking (FC) algorithm for CSPs, but
performs forward checking asynchronously.

In this paper, we present two new asynchronous algorithms for solving DisCSPs.
The first one is based on Asynchronous Forward Checking (AFC)and uses nogood
recording. We call it Nogood-Based AFC ( AFC-ng). The secondone is based on AFC-
ng and is performed on a pseudo-tree ordering of the constraint graph. We call it Asyn-
chronous Inter-Level Forward-Checking (AILFC).

This paper is organized as follows. Section 2 gives the necessary background on
DisCSPs. Sections 3 and 4 describe the algorithms AFC-ng andAILFC. Correctness
proofs are given in Section 5. Section 6 presents an experimental evaluation of our
proposed algorithms against three other well-known distributed algorithms. Section 7
summarizes several related works and we conclude the paper in Section 8.

2 Background

2.1 Distributed Constraint Satisfaction Problems

The Distributed Constraint Satisfaction ProblemDisCSPhas been formalized in [6] as
a tuple(A,X ,D, C), whereA is a set of agents{A1, . . . , Ak}, X is a set of variables
{x1, . . . , xn}, where eachxi is controlled by one agent inA.D = {D(x1), . . . , D(xn)}
is a set of domains, whereD(xi) is a finite set of values to which variablexi may be
assigned. Only the agent who is assigned a variable has control on its value and knowl-
edge of its domain.C is a set of binary constraints that specify the combinationsof
values allowed for the two variables they involve. A constraint cij ∈ C between two
variablesxi andxj is a subset of the Cartesian productD(xi) × D(xj).

For simplicity purposes, we consider a restricted version of DisCSP where each
agent owns exactly one variable. We identify the agent number with its variable index.
We also consider that the total order among agents that is used by a search algorithm is
the lexicographic orderingxi ≺ xj if i < j.

We assume that communication between two agents is not necessarily generalized
FIFO (aka causal order) channels [12]. Thus, all agents maintain their own counter,
calledCtr, and increment it whenever they change their value. The current value of the
countertagseach generated assignment. Anassignmentfor an agentAi ∈ A is a tuple
(xi, vi, Ctri) wherevi is a value from the domain ofxi andCtri is the tag value.

A nogoodng for valuec for variablexk is a clause of the formxi = a ∧ xj =
b ∧ . . . ⇒ xk 6= c, meaning that the assignmentxk = c (i.e., the right hand side
Rhs(ng) of ng) is inconsistent with the assignmentsxi = a, xj = b, . . . (i.e., the
left hand sideLhs(ng) of ng). When every value of a variablexk is ruled out by a
nogood, these nogoods are resolved computing a new nogoodnewNg. Let xj be the
lowest variable in the left-hand side of the nogoods, withxj = b. Lhs(newNg) is
the conjunction of the left-hand sides of all nogoods exceptxj = b. Rhs(newNg) is
xj 6= b.



Definition 1 (Current Partial Assignment (CPA)). Given an agentAi ∈ A, a CPA is
an ordered set of assignments{(x1, v1, Ctr1), . . . , (xi−1, vi−1, Ctri−1) | x1 ≺ . . . ≺
xi−1 ≺ xi}.

Definition 2 (AgentView). The agent view of an agentAi ∈ A stores the newest as-
signments received from agents that precedeAi in the ordering≺. It has a form similar
to a CPA and is initialized to the set of empty assignments{(xj , ∅, 0) | i 6= j}.

Definition 3 (Time-stamp). A time-stamp is an ordered list of counters〈Ctr1, Ctr2,

. . . , Ctrk〉. When comparing (lexicographically) two time-stamps, themost up to date
is one which is lexicographically greater, that is, the one with greatest value on the first
counter on which they differ, if any, otherwise the longest one.

2.2 Asynchronous Forward-Checking (AFC)

AFC is based on the Forward-Checking (FC) algorithm for CSPsbut it performs the for-
ward checking phase asynchronously [10, 11]. As in synchronous backtracking, agents
assign their variables only when they hold the current partial assignment (CPA). The
CPA is a unique message that is passed from one agent to the next one in the ordering.
The CPA carries the partial assignment that agents attempt to extend into a complete
solution by assigning their variables on it. Forward checking is performed as follows.
Every agent that sends the CPA to its successor also sends copies of the CPA to all
agents whose assignments are not yet on the CPA. Agents that received CPAs update
domains of their variables, removing all values that are in conflict with assignments on
the received CPA.

An agent that generates an empty domain as a result of a forward-checking oper-
ation initiates a backtrack by sendingNot OK messages which carry the inconsistent
partial assignment which caused the empty domain.Not OK messages are sent to all
agents with unassigned variables on the (inconsistent) CPA. When an agent holding a
Not OK receives a CPA, it sends this CPA back in a backtrack message.When multi-
ple agents reject a given assignment by sendingNot OK messages, only the first agent
that will receive a CPA and is holding a relevantNot OK message will eventually back-
track. After receiving a new CPA, theNot OK message becomes obsolete when the
CPA it carries is no longer a subset of the received CPA.

An improved backtrack method for AFC was described in Section 6 of [11]. Instead
of just sendingNot OK messages to all agents unassigned in the CPA, the agent who
detects the empty domain can itself initiate a backtrack operation. It sends a backtrack
message to the last agent assigned in the inconsistent CPA inaddition to theNot OK
messages to all agents not instantiated in the inconsistentCPA. The agent who receives
a backtrack message generates (if it is possible) a new CPA that will dominate older
ones thanks to the time-stamp mechanism (see Definition 3).

3 Nogood-based AFC

The nogood-based Asynchronous Forward-Checking (AFC-ng)is based on AFC but
it tries to enhance the asynchronism of the forward phase. The two main features of



procedure Start()
1: InitMyAgentView();
2: end← false; myAgentV iew.Consistent← true;
3: if(self = IA) then Assign();
4: while(¬end)
5: msg ← getMsg();
6: switch(msg.type)
7: CPA : ProcessCPA(msg);
8: BackCPA : ProcessBackCPA(msg);
9: Terminate : ProcessTerminate(msg);

procedure InitMyAgentView()
10: myAgentV iew← {(xj , ∅, 0) | xj ≺ self};

procedure Assign()
11: if(∃v ∈ myInitialDomain, 6 ∃ng ∈ myNogoodStore | Rhs(ng) = v) then
12: myV alue← ChooseValue(); /*not eliminated by myNogoodStore*/
13: myCtr← myCtr+1; CPA← myAgentV iew ∪ {(self, myV alue, myCtr)};
14: SendCPA(CPA);
15: else Backtrack();

procedure SendCPA(CPA)
16: next← getNextAgent();
17: if(next = nil) then BroadcastMsg:Terminate(myAgentV iew); end← true;
18: else for each xj ≻ self do sendMsg:CPA(CPA,next) to xj;

Fig. 1.Nogood-based AFC algorithm running by agent self (Part 1)

AFC-ng are the following. First, an agent finding an empty domain no longer sends
Not OK messages. It resolves the nogoods attached to its values andsends the back-
track message to the lower agent in the resolved nogood. Hence, multiple backtracks
may be performed at the same time coming from different agents having an empty do-
main. These backtracks are sent concurrently by these different agents to different des-
tinations. The re-assignments of the destination agents then happen simultaneously and
generate several CPAs. However, the CPA coming from the highest level in the search
tree will eventually dominate all others. Interestingly, the search process with the new
CPA of highest level can use nogoods reported by the (killed)lower level processes,
so that it benefits from their computational effort. Second,each time an agent performs
a forward-check, it revises itsinitial domain, (including values already removed by a
stored nogood) in order to store the best nogoods for removedvalues (one nogood per
value). When comparing two nogoods eliminating the same value, the nogood with the
highest possible lowest variableinvolved is selected (HPLV heuristic) [13]. As a result,
when an empty domain is found, the resolvent nogood containsvariables as high as
possible in the ordering, so that the backtrack message is sent as high as possible, thus
saving unnecessary search effort [9].

Description of the algorithm
We callself the variable that points to the agent itself. An AFC-ng agentself executes



the code shown in Figures 1 and 2. The data structure.myInitialDomain contains
all values of the initial domain ofself . self stores a nogood per removed value in
myNogoodStore. self calls the procedure Start() in whichself initiates its agent view
(line 1) by setting counters to zeros (line 10). The agent view contains a consistency
flag that represents whether the partial assignment it holdsis consistent. Ifself is the
initializing agent (IA), it initiates the search by calling procedure assign() (line 3). All
agents performing the main loop wait for messages, and process received messages
according to their types (line 4-9).

When calling assign()self tries to find an assignment, which is consistent with its
agent view. Ifself succeeds, it increments its counterCtr, generates a CPA from its
agent view augmented byself assignment (line 13), and then sends forward the CPA to
every agent whose assignments are not yet on the CPA, or reports a solution, when the
CPA includes all agents assignments (line 17). Before sending any CPA,self attaches
to every CPA message the ID of his successor (line 18). Only ifthe receiver ID equals
that attached to the CPA message, the receiver performs an assignment (line 26). When
self fails to find a consistent assignment, it calls procedure Backtrack() (line 15).

Agents use time-stamps to detect and discard obsolete CPAs.Function Compare-
TimeStamp(view, CPA) returns the indexsplitlevel of the first counter on which
view and CPA differ if CPA is newest (see Definition 3) or containsview (line 48).
If view is newest, it returns−1. Whenview and CPA are identical or when CPA is
included inview CompareTimeStamp returns0.

Wheneverself receives a CPA, procedure ProcessCPA() is called.self checks its
agent view status. If it is not consistent and the agent view is a subset of the received
CPA, this means thatself has already backtracked, thenself does nothing (line 19).
Otherwise,self compares the time-stamp of its agent view with the one of the re-
ceived CPA by calling CompareTimeStamp (line 20). If the received CPA is newest,
self updates its agent view and marks it consistent (lines 21-22). Procedure Update-
MyAgentView (lines 41-43) sets the agent view and the nogoodstore to be consistent
with the received CPA. Each nogood in the nogood store containing a value for a vari-
able different from that received in the CPA will be deleted (line 43). Next,self calls
procedure FCReviseInitialDomain() (in line 23) to store nogoods for values inconsis-
tent with the new agent view or to try to find a better nogood forvalues already having
one in the nogood store (line 46). A nogood is better according to theHPLVheuristic if
the lowest variable in the body of the nogood is higher.

When every value ofself ’s variable is ruled out by a nogood (line 24), the pro-
cedure Backtrack is called. These nogoods are resolved by computing a new nogood
newNg (line 27). If the new nogood is empty,self terminates execution after sending
a Terminate message to all agents in the system meaning that problem is unsolvable
(line 28). Otherwise,self updates its agent view by removing assignments of every
agent that is strictly greater than the last agent (Rhs(newNg)) in the newNg. self

also updates its nogood store by removing obsolete nogoods.Finally it marks its agent
view as inconsistent and it initiates a backtrack procedureby sending oneBackCPA

message to the lower priority agent (Rhs(newNg)) involved in thenewNg (line 34).

TheBackCPA message carries thenewNg and the inconsistent CPA containing
assignments of all agents smaller than or equal toRhs(newNg) in the agent ordering



ProcessCPA(msg)
19: if(¬myAgentV iew.Consistent ∧myAgentV iew ⊂ msg.CPA)then return;
20: splitlevel← CompareTimeStamp(myAgentV iew, msg.CPA);
21: if(splitlevel > 0)then
22: UpdateMyAgentView(msg.CPA, splitlevel);myAgentV iew.Consistent← true;
23: FC ReviseInitialDomain();
24: if(∀v ∈ myInitialDomain,∃ng ∈ myNogoodStore | Rhs(ng) = v)then Backtrack();
25: else CheckAssign(msg.Next)

procedure CheckAssign(next)
26: if(next = self)then Assign();

procedure Backtrack()
27: newNg ← solve(myNogoodStore);
28: if(newNg = empty)then BroadcastMsg:Terminate(∅); end← true;return;
29: for each xj ≻ Rhs(newNg)do
30: myAgentV iew.V alue[xj]← unknown ;
31: for each ng ∈ myNogoodStore do
32: if(xj ∈ Lhs(ng)) then remove(ng, myNogoodStore);
33: myAgentV iew.Consistent← false; myV alue← empty; CPA← myAgentV iew;
34: SendMsg:BackCPA(CPA, newNg) to Rhs(newNg);

ProcessBackCPA(msg)
35: if(¬myAgentV iew.Consistent ∧ myAgentV iew ⊂ msg.CPA)then return;
36: splitlevel← CompareTimeStamp(myAgentV iew, msg.CPA);
37: if(splitlevel = 0 ∧ myV alue = RhsValue(msg.Nogood)) then
38: add(msg.Nogood,myNogoodStore); myV alue← empty; Assign();

ProcessTerminate(msg)
39: end← true ; myV alue← empty;
40: if(msg.CPA 6= ∅)then myV alue← msg.CPA.Value[self];

procedure UpdateMyAgentView(CPA, splitlevel)
41: for each j ≥ splitlevel do myAgentV iew[j]← CPA[j]; /* update value and Ctr */
42: for each ng ∈ myNogoodStore do
43: if Lhs(ng) is inconsistent withmyAgentV iew then remove(ng,myNogoodStore);

procedure FC ReviseInitialDomain()
44: for each v ∈ myInitialDomain do
45: if(¬Consistent(v, myAgentV iew))then
46: store the best nogood forv; /* according to the HPLV heuristic*/

function CompareTimeStamp(view,CPA)
47: from j ← 1 to size(CPA) do
48: if (Ctr(CPA[j]) > Ctr(view[j])) then return j;
49: else if (Ctr(CPA[j]) < Ctr(view[j])) then return −1;
50: return 0;

Fig. 2.Nogood-based AFC algorithm running by agent self (Part 2)



(lines 29-30).self remains in an inconsistent state until receiving a new CPA holding
at least one agent assignment with counter higher than that in the agent view ofself
(lines 21-22).

When aBackCPA message is received,self checks the validity of receivedBackCPA

using agent view status and time-stamp (lines 35-36). IfBackCPA is accepted (line
37), self removes its last assignment, adds attached nogood to its nogood store, and
calls the procedure assign() (line 38).

ProcessTerminate procedure is called when an agent receives aTerminate mes-
sage. It marksend flag true to stop the main loop (line 39). If attached CPA is empty
then there is no solution. Otherwise, agent solution is retrieved from the CPA (line 40).

4 Asynchronous Inter Level Forward-Checking

A DisCSP can be represented by a constraint graphG = (X, E), whose nodes represent
the variables and edges represent the constraints (that is,X = X and{xi, xj} ∈ E ⇔
cij ∈ C). The graph can be re-arranged to form a pseudo-tree [14]. Apseudo-tree
GPT = (X, r, E, U) for the graphG is defined by a root noder ∈ X and a directed
treeT = (X, U) rooted inr such that for any edge{xi, xj} ∈ E, xi andxj are not
in different branches ofT . For any arc(xi, xj) ∈ U , the nodexi is the parent of the
nodexj . If xi is the parent ofxj , thenxj is a child ofxi. A nodexi is an ancestor of
a nodexj if xi is the parent ofxj or an ancestor of the parent ofxj . A nodexj is a
descendant of a nodexi if xi is an ancestor ofxj . A leaf is a node that has no child. In
our implementation, the pseudo-tree is built by a DFS traversal of the graph. Thus, we
haveU ⊆ E.

The AILFC algorithm is based on AFC-ng performed on a pseudo-tree ordering of
the constraint graph (built in a preprocessing step). Agents are prioritized according to
the pseudo-tree ordering in which each agent has a single parent and various children.
Using this priority ordering, AILFC performs multiple AFC-ng processes on the paths
from the root to the leaves. The root initiates the search by generating a CPA, assigning
its value on it, and sending CPA messages to its linked descendants (including its chil-
dren) that share a constraint with it. Each child that receives a copy of the CPA performs
AFC-ng on the sub-problem restricted to its ancestors (agents that are assigned in the
CPA) and the set of its descendants. Therefore, instead of giving the privilege of assign-
ing to only one agent, all agents who are in disjoint subtreesmay assign their variables
simultaneously. So, the Inter-Level Forward Checking is performed asynchronously on
each path from the root to any leaf. AILFC thus exploits the potential speed-up of a
parallel exploration in the processing of distributed problems.

An execution of AILFC on a sample DisCSP problem is shown in Figure 3. At
time t1, the rootx1 sends copies of the CPA on messages to its linked descendants
(including its children). Childrenx2, x3 andx4 assign their values simultaneously in
the received CPAs and then perform concurrently the AILFC algorithm. Agentsx7, and
x9 only perform a forward- checking. At timet2, x9 finds an empty domain and sends
a BackCPA message tox1. At the same time, other CPAs propagate down through
the other paths. For instance, a CPA has propagated down fromx3 to x7 andx8. x7

detects an empty domain and sends a nogood tox3 attached on aBackCPA message.
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Fig. 3.An example of the AILFC execution

For the CPA that propagates on the path(x1, x2, x5) (resp.(x1, x2, x6)), x5 (resp.x6)
successfully assigned its value and initiated a solution detection. However, whenx1

receives theBackCPA from x9, it initiates a new search process by sending a new
copy of the CPA which will kill any CPA wherex1 is assigned its old value.

In AFC-ng, a solution is reached when the last agent receivesthe CPA and succeeds
in assigning its variable. In AILFC, the situation is different because a CPA can reach a
leaf without being complete. When all agents are assigned and no constraint is violated,
this state is a global solution and the network has reached quiescence, meaning that no
message is traveling through it. Such a state can be detectedusing specialized snapshot
algorithms [15], but AILFC uses a different mechanism that allows to detect solutions
before quiescence. AILFC uses an additional type of messagecalled Accepted that
inform parents of the acceptance of their CPA. Termination can be inferred earlier and
the number of messages required for termination detection can be reduced. A similar
technique of solution detection was used in the AAS algorithm [16].

The mechanism of solution detection is as follows: whenevera leaf node succeeds
in assigning its value, it sends anAccepted message to its parent. This message con-
tains the CPA that was received from the parent incremented by the value-assignment
of the leaf node. When a non-leaf agentself receivesAccepted messages from all its
children that are all compatible with each other, all compatible with self ’s agent view
and withself ’s value,self builds anAccepted message being the conjunction of all
receivedAccepted messages plusself ’s value-assignment. Ifself is the root a solution
is found, andself broadcasts this solution to all agents. Otherwise,self sends the built
Accepted to its parent.

Description of the algorithm
A preprocessing step before starting the AILFC algorithm isperformed to convert the
constraint graph into a pseudo-tree.Children(self) ⊂ A is the set of children of agent
self in the pseudo-tree,Desc(self) is the set of its descendants andlinkedDesc(self) ⊂
Desc(self) is the set of its descendants (including its children) that are constrained with
self . Parent(self) ∈ A is the parent of agentself andAncestors(self) ⊂ A is the
set of its ancestors (including its parent).

In Figure 4, we present only the procedures that are new or different from those of
AFC-ng in Figures 1 and 2. In InitMyAgentView(), the agent view ofself is initialized



procedure Start()
..:
10: Accepted : ProcessAccepted(msg);

procedure InitMyAgentView()
11: myAgentV iew← {(xj , ∅, 0) | xj ∈ Ancestors(self)};
12: for each child ∈ children(self) accepted[child]← ∅; /*For Solution Detection*/

procedure SendCPA(CPA)
13: if(children(self)= ∅) then
14: SolutionDetection();
15: else for each desc ∈ linkedDesc(self)do sendMsg:CPA(CPA, self) to desc;

procedure CheckAssign(ancestor)
16: if(Parent(self)= ancestor) then Assign();

procedure SolutionDetection()
17: if(children(self) = ∅) then
18: SendAccepted(myAgentV iew ∪ {(self, myV alue, myCtr)}, self) to Parent(self);
19: else PA← BuildAccepted();
20: if(PA 6= ∅)then
21: if(self = root) then Broadcast(Terminate, PA); end← true;
22: else SendAccepted(PA, self) to Parent(self);

ProcessAccepted(msg)
23: if(accepted[msg.Sender]=∅∨CompareTimeStamp(msg.CPA,accepted[msg.Sender])>0)then
24: accepted[msg.Sender] ← msg.CPA;
25: SolutionDetection();

function BuildAccepted()
26: PA← myAgentV iew ∪ {(self, myV alue,myCtr)};
27: for each child ∈ children(self) do
28: if(accepted[child]= ∅ ∨ ¬Compatible(PA,accepted[child])) return ∅;
29: else PA← PA ∪ accepted[child];
30: return PA

Fig. 4.New lines/procedures of AILFC with respect to AFC-ng.

to the setAncestors(self ). Ctr is set to 0 for each agent inAncestors(self ) (line
11). The new data structure storing the receivedAccepted messages is initialized to
the empty set (line 12). In SendCPA(CPA), instead of sending copies of the CPA to
all agents not yet instantiated on it,self sends copies of the CPA only to its linked
descendants (linkedDesc(self )) (line 15). When the setlinkedDesc(self ) is empty
(i.e., self is a leaf),self calls the procedure SolutionDetection to build and send an
Accepted message. In CheckAssign(ancestor), self assigns its value if the CPA was
received from its parent (line 16) (i.e., ifancestor is the parent ofself ).

In SolutionDetection(), ifself is a leaf (Children(self ) is empty), it sends an
Accepted message to its parent. TheAccepted message sent byself contains its agent
view incremented by its assignment (lines 17-18). Ifself is not a leaf, it calls the
BuildAccepted() procedure to build an accepted partial solution PA (line 19). If the



returned partial solutionPA is not empty andself is the root,PA is a solution of the
problem. Then,self broadcasts it to other agents including the system agent andsets
theend flag totrue (line 21). Otherwise,self sends anAccepted message containing
PA to its parent (line 22).

In ProcessAccepted(msg), whenself receives anAccepted message from itschild

for the first time, or whenmsg is newer than that received before (lines 23-24),self

stores the content of this message and calls the SolutionDetection procedure (line 25).
In BuildAccepted(), if an accepted partial solution is reached.self generates a par-

tial solutionPA incrementing its agent view with its assignment (line 26). Next,self
loops over the set ofAccepted messages received from its children. If at least onechild

has never sent anAccepted message or theAccepted message is incompatible withPA,
then the partial solution has not yet been reached and the function returns empty (lines
27-28). Otherwise, the partial solutionPA is incremented by theAccepted message of
child (line 29). Finally, the accepted partial solution is returned (line 30).

5 Correctness Proofs

Theorem 1. AFC-ng is sound, complete, and terminates.

The argument for soundness is close to the one given in [11, 17]. The fact that agents
only forward consistent partial solution on the CPAs messages at only one place in
function assign() (line 14), implies that the agents receive only consistent assignments.
A solution is reported by the last agent only in function SendCPA(CPA) at line 17. At
this point, all agents have assigned their variables, and their assignments are consistent.
Thus the AFC-ng algorithm is sound.

For completeness, we need to show that AFC-ng is able to terminate and does not
report inconsistency if a solution exists.

Lemma 1. AFC-ng is guaranteed to terminate.

For sake of clarity, we assume that the order in which AFC-ng assigns the variables
is the lexicographic orderingX1, X2, . . . , Xn. We define the total ordero on CPAs as
follows. LetI1 be an assignment onX1, . . . , Xk1

, I2 be an assignment onX1, . . . , Xk2
,

ands be the smallest index on whichI1 andI2 differ. I1 ≺o I2 if and only if s = k1 +1
or the valueI1[s] is chosen before the valueI2[s] by the value ordering heuristics on
variableXs given the CPAI1[1..s − 1].

To prove the lemma we prove that AFC-ng performs a finite number of backtrack
steps. In AFC-ng, several backtracks can be performed simultaneously as they are gen-
erated concurrently by different agents to different destinations. The re-assignments of
destination agents then happen simultaneously, generating several CPAs. However, the
CPA at the highest level in the search hierarchy tree will eventually dominate all others
thanks to its greater time-stamp (see line 21 in Figure 2). Thus, every backtrack step
may be represented by the backtrack at the highest level. TheagentXi who has re-
ceived that backtrack of highest level has to replace its previous assignmentvi in the
CPA by a new onev′i because the backtrack message contains a nogood rejecting value
vi. If vi was not the first value chosen byXi since it has received the current CPA from



Xi−1 then we know that all other valuesvj preferred tovi were ruled out by a nogood
at the timevi was chosen. Now, the CPA onX1, . . . , Xi−1 has not changed since then,
otherwise this would not be the highest backtrack. As a result, the nogoods rejecting
valuesvj preferred tovi are still valid andv′i is necessarily thenextpreferred value in
the heuristic order. By definition of the ordero, the new CPA obtained is greater than
the previous one according too because it has not changed onX1, . . . , Xi−1 andv′i
is less preferred thanvi. Sinceo is a total order and since there are a finite number of
variables and a finite number of values per variable, there will be a finite number of
new CPAs generated. Now, each backtrack of highest level generates a new CPA. Thus,
AFC-ng performs a finite number of backtracks.

Lemma 2. AFC-ng cannot infer inconsistency if a solution exists.

Whenever a newer CPA or aBackCPA message is received, AFC-ng agent updates
its nogood store. Hence, for every CPA that may potentially lead to a solution, agents
only store valid nogoods. In addition, every nogood resulting from a CPA is redundant
with regard to the DisCSP to solve. Since all additional nogoods are generated by logical
inference when a domain wipe-out occurs, the empty nogood cannot be inferred if the
network is satisfiable. This mean that AFC-ng is able to produce all solutions.

Theorem 2. AILFC algorithm is sound, complete, and terminates.

AILFC agents only forward consistent partial assignments (CPAs). Hence, leaf agents
receive only consistent CPAs. Thus, leaf agents send Accepted message only holding
consistent assignments to their parent. Since a parent builds anAccepted message only
when theAccepted messages received from all its children are compatible witheach
other and all compatible with its own value, theAccepted message it sends contains a
consistent partial solution. The root broadcasts a solution only when it can build itself
such anAccepted message. Therefore, the solution is correct and AILFC is sound.

AILFC performs multiple AFC-ng processes on the paths of thepseudo-tree from
the root to the leaves. Thus, it inherits the completeness property of AFC-ng (empty
nogood cannot be inferred if the network is satisfiable (see Lemma 2). It also appears
that the agent of high priority cannot fall into an infinite loop. By induction on the level
of the pseudo-tree no agent can fall in such a loop, which ensures the termination of
AILFC.

6 Experimental Evaluation

In this section we compare experimentally AFC-ng and AILFC to three other algo-
rithms: AFC, ABT, and ABT-Hyb [18]. Algorithms are tested onthe same static agents
ordering usingmax-degreeheuristic and the same nogood selection heuristic (HPLV).
For ABT and ABT-Hyb we implemented an improved version of Silaghi’s solution de-
tection [12] and counters for tagging assignments. This allows to better treat non-causal
order channels [12]. All experiments were performed on the DisChoco platform [19]
in which agents are simulated by Java threads that communicate only through message
passing.
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Fig. 5.Total number of messages sent and NCCCs on fast communication

The algorithms are tested on uniform binary random DisCSPs which are character-
ized by〈n, d, p1, p2〉, wheren is the number of agents/variables,d the number of val-
ues per variable,p1 the network connectivity defined as the ratio of existing binary con-
straints, andp2 the constraint tightness defined as the ratio of forbidden value pairs. We
solved 100 instances of two classes of constraints graph: sparse graph〈20, 10, 0.25,p2〉
and dense graph〈20, 10, 0.75,p2〉. We vary the tightness from 0.10 to 0.90 by steps of
0.10.

We evaluate the algorithms performance by the average of total messages sent [20]
(including system messages) and the average of Equivalent Non-Concurrent Constraint
Checks (ENCCCs) [21]. ENCCCs are a weighted sum of processing and communica-
tion time. We simulate two scenarios of communication: fastcommunication (where
message delay is null and ENCCCs reduce to standard NCCCs), and slow communica-
tion with uniform random message delay (where the cost of thedelay is between 500
and 1000 constraint checks.)

Fast communication

Figure 5 presents performance of AILFC, AFC-ng, AFC, ABT andABT-hyb running
on a fast communication environment. The figure shows that inboth types of constraint
graphs (sparse and dense), AILFC has the lowest communication load (#MSGs). Con-
cerning NCCCs, AILFC is the fastest algorithm on sparse graphs (Fig. 5(b)). On dense
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Fig. 6.Total number of messages sent and ENCCCs on slow communication

graphs AILFC behaves like AFC and AFC-ng. Comparing AFC-ng with AFC, Fig. 5
shows that they perform the same number of NCCCs but AFC-ng exchanges less mes-
sages than AFC. Comparing AFC-ng with ABT and ABT-hyb, Fig. 5shows that in both
types of constraint graphs AFC-ng is faster than ABT-hyb andABT. However, on sparse
graphs, Fig 5(a) shows that AFC-ng sends more messages than ABT-hyb and ABT.

Slow communication

In Figure 6 we report experimental results with slow communication. The figure shows
that AILFC is again the best algorithm in terms of number of messages. Concerning
ENCCCs, as in the fast communication environment, AILFC is faster than or equal to
AFC and AFC-ng depending on whether the graph is sparse or dense. The comparison
of AFC and AFC-ng shows a pattern close to the one observed with fast communica-
tion: AFC-ng is better, or slightly better, both in terms of messages and ENCCCs. The
main difference between fast and slow communication is the performance of ABT and
ABT-hyb. Whereas they remain expensive in terms of messages, they become the best
algorithms in terms of ENCCCs, with a slight advantage to ABT. This confirms that in
slow communication environment, the more the algorithm is asynchronous, the better it
is.



Discussion

A first observation on these experiments is that ABT, ABT-hybon one side, and AFC,
AFC-ng on the other side, show quite opposite patterns. If message passing is not an
issue, ABT and ABT-hyb are good choices with slow communication whereas AFC and
AFC-ng are good when communication is fast. A second observation is that AILFC is
always better than or equivalent to AFC-ng, which is better than or equivalent to AFC,
both in terms of messages and amount of processing (ENCCCs).If limiting the commu-
nication load is important, AILFC is the best among all both for fast and slow communi-
cation. AILFC benefits both from running separate search processes in disjoint problem
subtrees, which pays off when a graph is sparse, and from using the same mechanism
as AFC-ng, which pays off when agents are highly connected (dense graphs).

7 Other Related Work

In [18, 7] the performance of asynchronous (ABT), synchronous ( Synchronous Con-
flict BackJumping (SCBJ)), and hybrid approaches (ABT-Hyb)was studied. It is shown
that ABT-Hyb improves over ABT and that SCBJ requires less communication effort
than ABT-Hyb. In Interleaved Asynchronous Backtracking (IDIBT) [22], agents par-
ticipate in multiple processes of asynchronous backtracking. Each agent keeps a sep-
arateAgentViewfor each search process in IDIBT. The number of search processes is
fixed by the first agent in the ordering. The performance of concurrent asynchronous
backtracking [22] was tested and found to be ineffective formore than two concur-
rent search processes [22]. Dynamic Distributed BackJumping (DDBJ) was presented
in [17]. It is an improved version of the basic AFC. It combines the concurrency of
an asynchronous dynamic backjumping algorithm, and the computational efficiency of
the AFC algorithm, coupled with thepossible conflict heuristicsof dynamic value and
variable ordering. As in DDBJ, AFC-ng performs several backtracks simultaneously.
However, AFC-ng should not be confused with DDBJ. DDBJ is based on dynamic
ordering and requires additional messages to compute ordering heuristics. In AFC-ng,
all agents that received aBackCPA message continue search concurrently. Once a
more up to date CPA is received by an agent, all nogoods already stored can be kept if
consistent with that CPA.

8 Conclusion

Two new complete, asynchronous algorithms are presented. The first algorithm, Nogood-
Based Asynchronous Forward Checking (AFC-ng), is an improvement on AFC. The
second, Asynchronous Inter-Level Forward-Checking (AILFC), is based on AFC-ng
and is performed on a pseudo-tree re-arrangement of the constraint graph. Experiments
ran on random DisCSPs show that AFC-ng improves AFC both in fast and slow com-
munication environments. Experiments show that AILFC is the more robust algorithm
in both communication types. In particular, it is the best interms of messages sent. In
slow communication environments, the performance of algorithms that perform vari-
able assignments sequentially deteriorates. This is observed for AFC and AFC-ng, and,
less significantly for ABT-Hyb, when compared to ABT.
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