
HAL Id: lirmm-00547852
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00547852v1

Submitted on 17 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Adaptive Control Architecture to Enhance Mobile
Robot Reliability

Bastien Durand, Karen Godary-Dejean, Lionel Lapierre, Robin Passama,
Didier Crestani

To cite this version:
Bastien Durand, Karen Godary-Dejean, Lionel Lapierre, Robin Passama, Didier Crestani. Using
Adaptive Control Architecture to Enhance Mobile Robot Reliability. TAROS 2010 - 11th Annual
Conference Towards Autonomous Robotic Systems, 2010, Plymouth, United Kingdom. pp.54-61.
�lirmm-00547852�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00547852v1
https://hal.archives-ouvertes.fr

1

Abstract— This paper details the development of an adaptive
control architecture permitting to improve the reliability and
robustness of autonomous mobile robot. A continuous monitoring
of the significant failures allows dynamically choosing the most
relevant reaction ensuring the success of the mission. This
adaptive behavior is implemented into the control architecture
COTAMA. The key points of the specific mechanisms added to
COTAMA are addressed and explained. Experimental results are
proposed to illustrate the control architecture adaptive behavior.

I. INTRODUCTION

Mobile robotic missions are becoming more complex,
leading to increased robot complexity. Robots have
numerous powerful sensors which provide accurate
information about the robot state and its surrounding
environment. They also have various locomotion and
interaction capacities thanks to efficient and adapted
actuators. The control architecture is the central and critical
part of the robot which manages increasingly complex robot
activities.
In a perfect world, a robot would succeed in completing its
allocated missions whatever the encountered situation.
Unfortunately, robots are hampered by numerous types of
fault. The study of Carlson and al. [1] concerning
unmanned ground vehicle operating in real environments
demonstrates that robots are often unable to achieve their
mission. The authors conclude that reliability, which is the
capacity to ensure the ”continuity of correct service” [2], is
low due to a huge variety of failures having many origins.
Hence, in the real world robots do not always succeed in
dealing with some adverse situations.
To improve reliability, it is essential to design robust
(capacity to deliver a suitable service in adverse situations
due to uncertain system environments) and fault-tolerant
(capacity to deliver a suitable service despite faults
affecting system resources) robots [2]. In robotic control
architectures, robustness and fault tolerance are mainly
based on three principles [2]: fault or adverse situation
detection, diagnosis, and recovery or treatment. The
following section presents a short overview of existing
works in this domain.

A. Fault detection and recovery in control architectures

Fault detection can be done using many techniques:
detection uses timing checks (watchdogs), reasonableness
checks (valid interval values verification), safety-bag
checks (verifying commands), and model-based monitoring

and diagnosis (detection of inconsistency between the
measured system’s data and the corresponding model
values).
The detection of adverse situation using execution control is
often used in control architecture to lead to specific
reaction. Similarly, replanning is one of the most common
reactions proposed in robotic. For example, in the LAAS
architecture, the execution controller R2C [3] detects
adverse situations and erroneous requests, then the IxTeT
[4] component proposes high level re-planning strategies to
tolerate faults. The CIRCA architecture [5] implements
execution control in order to not execute actions which
could lead to identified adverse situations. It then uses
actions and functionalities redundancy to recover using high
level replanning. Similarly, the ORCCAD architecture [6]
uses Robot-Task redundancy to switch around actions to
recover from failures.
Some architectures focus on hardware faults, as the SFX-
EH (Sensor Fusion Effects Exception Handling)
architecture presented in [7] proposes a methodology for
faults classification. Then it proposes to recover from
sensing ones using hardware reconfiguration. Brandstötter
et al. expose in [8] a model-based fault diagnosis and
reconfiguration framework using a probabilistic hybrid
automaton modeling the considered failure modes and the
nominal one.
The NASA research centers propose different solutions in
its various architectures. The RAX [9] architecture has a
MIR (Mode Identification and Recovery) module which
detects anomalous situations using model based diagnosis
method and proposes to the executive module to recover
from this situation. The RAX Remote Agent (RA) concept
has also been employed in the IDEA architecture [10],
which proposes to distribute timing checks observation on
each agent. Furthermore, the CLARATy architecture [11]
develops a resources manager to locally manage resources
on affectation conflict and fault detection.
Finally, in the IFREMER control architecture [12], Nana
proposed to use Intelligent Diagnosis System with
dedicated decisional module to detect faults and evaluate
their criticality. To our knowledge, the reaction based on
software redundancy is initiated by the Human supervisor.
To complete this state of the art, interesting surveys with
regard to detection, diagnosis and/or recovery mechanism
in robotic control architectures could be find in [13], [14]
and [15].

Using Adaptive Control Architecture to enhance
Autonomous Mobile Robot Reliability

B. Durand, K. Godary-Dejean, L. Lapierre, R. Passama and D. Crestani
Laboratoire Informatique Robotique Microélectronique de Montpellier - Université Montpellier 2

{durand, godary, lapierre, passama, crestani}@lirmm.fr

2

B. Conclusion

This short analysis concerning reliability and robustness in
robotic control architectures highlights some limitations.
Many architectures implements classic detection and
recovery solutions, as timing checks, execution control and
replanning. These fault-tolerant mechanisms are usually
spread over the architecture and directly embedded in the
different control algorithms. There is a lack of global
structured approaches to efficiently integrate dependable
concepts into the design of the robot control architecture.
Moreover, except the replanning solutions, most of the fault
recovery solutions proposed in the literature are generally
very basic (often rebooting or stopping) ones, which are not
always compatible with the current robot context.
So, we propose a new global methodology, detailed in [16],
allowing: identification of pertinent faults, detection and
diagnosis of the identified faults and suitable reactions to
these faults. This paper focuses on the decisional
mechanisms based on the adaptation of the control
architecture, and focuses on their integration into the
COTAMA architecture. This one is presented in section II,
and the proposed methodology is summarized section III.
Then, after the presentation of the experiment context,
section V details the decisional mechanisms implemented in
COTAMA. To conclude experimental results are presented
and discussed.

II. COTAMA CONTROL ARCHITECTURE

COTAMA (COntextual TAsk MAnagement) [17] is a
modular control architecture. It is split into two main parts:
the executive and the decisional levels (Fig. 1). The
executive level involves low level robotic control. The
decisional level manages the executive one according to the
robot mission evolution and its environment.

A. Decisional level

This level is divided into two sublevels, the global and
local supervisors. The Global Supervisor (GS) is in
charge of the mission execution. Depending on the
mission, the environment and the robot state, it defines the
objectives that have to be carried out by the Local
Supervisor (LS). This last supervisor manages a given
objective, splitting it into sub-objectives which are
controlled by a scheduler. A sub-objective corresponds to
a set of modules that have to be executed to achieve the
corresponding task. The LS then decides which sub-
objective has to be executed depending on the context and
the events received from the executive level.

B. Executive level

This level is composed of a scheduler and low level
modules. These modules embed robotic algorithm, or
implement specific functionalities (for example the WiFi
communication management).

Fig. 1 COTAMA architecture

All modules are based on a specific middleware which
manages real-time constraints and modules
communications. These ones are made according to the
consumer/producer paradigm using specific mailboxes.
Using middleware allows the respect of maintainability,
upgradeability and reusability concepts. Modules have a set
of different types of ports:

• Data – Communication of data values between the
low level modules.

• Events – Communication from the executive level to
the decisional one. These communications are
generated on specific contextual events (for
example: the robot has reached its goal then the
path following sub-objective has to be stopped).

• Requests – Three types of requests (Activate, Stop
or Kill) are available to manage the low level
modules. These ports are also used to configure
Data and Events ports.

• Parameters – The requests ports can be used for an
external parameterization of the module. In this
case, the request message is associated with a
specific setting port.

The scheduler manages the modules execution using their
request port to activate or inactivate them. It also manages
the real-time constraints on modules and sub-objectives
execution.

III. THE PROPOSED METHODOLOGY

This section describes the methodology proposed to
enhance robustness and fault tolerance in COTAMA. This
methodology is divided into several steps: fault
identification, fault detection and diagnosis, then reaction to
the detected faults.

A. Fault identification

This step of the methodology is necessary to identify the
potential faults of the system, including physical faults
(effecter, sensor, power, or in the control architecture),
faults in environment representation and human design

3

faults. Human interaction faults are not yet considered. The
FMECA (Failure Mode, Effects and Critical Analysis)
approach [18] is used to study potential failures, and to
determine the most critical ones. It begins with a functional
decomposition of the system. For each identified robot's
function, cause-and-effect diagrams [19] bring to light the
pertinent faults to monitor. The fault severity is also
analyzed according to the robot tasks and the considered
autonomy level. Four severity levels are defined: weak,
medium, hard and fatal, which will guide the reactions.

B. Fault detection

For the detection of each identified fault, dedicated
monitoring modules named Observers are integrated into
the control architecture. Their role is to set a flag when a
module malfunctioning is detected or when an
inconsistency in the robot behavior is observed. Into an
Observer, the most adapted existing fault detection
algorithm is used to detect the faults or inconsistencies
occurrence.
The modular approach of the control architecture allows
flexible management of these Observers so that the fault
detection capacity will be adapted as a function of the robot
mission, its environment or its available resources.
Observers monitor the executive level of the architecture
and convey information on faults to dedicated decisional
modules.

C. Reaction to detected faults

The reaction to a fault uses the knowledge of the current
robot available capacities to define a solution to pursue the
mission. The software control architecture enables a broad
range of reactions depending on the four severity levels
used. For weak or medium faults the architecture adaptation
concerns only the current autonomy level which can be
adapted to consume fewer or different resources. For hard
faults an architecture adaptation is required to switch to a
different autonomy level which can involve the operator’s
capacities. For example information can be requested from
a human operator, or the robot can adjust its autonomy
mode. Finally for fatal faults the robot mission can not be
pursue and must be neatly ended.

IV. EXPERIMENTAL CONTEXT

A. Mission and robot characteristics

1) Experimental Mission
The proposed robot mission is to deliver objects in the
laboratory upon users’ request. The delivery mission is
carried out in a known environment, from which an a priori
map is available. However, the environment remains
dynamic since, for example, some humans can interact in
the neighborhood of the robot.
The robot delivery mission involves four different
objectives: waiting for a mission, driving into the
laboratory, and receiving or delivering objects (interactive

tasks with users). This paper only deals with the most
significant one for a mobile robot: the Drive objective. This
objective can be decomposed into two sub-objectives: path
planning and path following.

2) Robot characteristics
The experiments were carried out with a Pioneer-3DX from
MobileRobots with two driving wheels using reversible DC
motors. To perceive the environment, the robot has the
following embedded sensors: two sonar arrays, two
bumpers rows and a camera. An embedded laptop hosts the
control architecture COTAMA, under a Linux RTAI real-
time operating system, and communicates, with a serial
connection, with the robot integrated microcontroller. It
also communicates with a WiFi network with a remote PC
which manages the overall mission and human-robot
interactions.

B. Low Level Modules

In our experiment, autonomous, teleprogrammed and
teleoperated autonomy modes are available. Each one
requires different control laws, functional and observer
modules.
1) Control Modules
Table I lists the robotic algorithms integrated into the
control modules at the architecture executive level. The last
column represents the name of these modules in the
architecture implementation.

TABLE I

ROBOTIC ALGORITHM IN CONTROL MODULES

Robotic tasks Algorithms Name
Path planning Lazy PRM PPL

Localization
Monte Carlo Localization

Robot's odometry
MCL
ODO

Obstacle
avoidance

Deformable Virtual Zone
Safe Maneuvering Zone

DVZ
SMZ

Guidance Path following GUI

Control
Asymptotic control with

actuator
 velocity saturation

CTR

2) Functional Modules
Others low level modules ensuring non robotic tasks can be
used: the functional modules. For example, the
communications management is implemented into these
modules: the LAN module to communicate with WiFi with
the remote PC, the P3D module for the USB
communication between the embedded laptop, where the
control architecture is executed, and the robot
microcontroller which collects sensors values and applies
commands to motors.
The SIM module allows performing HIL simulation. Our
experiment is HIL: the real odometric and bumpers sensors
are used, whereas the sonars values are simulated. Then, the
UST module receives the raw sonars values and produces
suitable data for the robotic algorithms.

4

3) Observer Modules

The following Observers have been developed to monitor
and diagnosis as much as possible the identified failures for
the Drive function:

• Hardware or collision failures observation: The robot's
micro-controller embedded hardware monitors
bumper sensors, battery voltage and motor stall.
Those observations are included in the P3D module.

• A Sensor Observer verifies sensors data with
reasonable checking methods as valid interval
verification and for sonar sensors timing checks.

• An Effectors Observer uses model based approach:
a multiple-model Kalman filter [20], to diagnosis
failures on motors or wheels.

• A Communication Observer retrieves data on external
communication (WiFi) status (link, level, noise) and
proceeds to valid interval verification on these data.

• The Scheduler module verifies modules and sub-
objectives real time constraints using watchdog. It
acts as an observer detecting real time faults.

• A Localization Observer monitors the localization data
using valid interval verification.

• A Path Following Observer verifies that the
corresponding algorithm respects uniform
convergence properties. The observer monitors the
coherence of the robot moving along its path, and
monitors the asymptotic control convergence of the
algorithm.

V. APPLICATION OF THE METHODOLOGY TO COTAMA.

This section presents the architectural modifications added
to COTAMA in order to integrate the previous proposed
concepts and enhance robustness and fault tolerance. These
modifications are represented in grey in Fig. 2. At the
executive level Observer Modules and a Global
Observation Module (GOM) are integrated to detect and
diagnosis fault occurrences. At the decisional level a new
Contextual Supervisor (CS) is added. It is in charge of
determining the robot context depending on the current
robot state, the functioning mode and the available
functionalities. The Contextual Supervisor then manages the
correlation between the current sub-objective and the robot
context. Moreover it chooses the most suitable reaction,
sending specific events to the concerned supervisor. Finally,
an Adapter Supervisor (AS) is also introduced. It can select
the most suitable functioning mode of a given sub-
objective.

A. Observation and detection

The detection-diagnosis paradigm is implemented in
COTAMA with the following steps:
1) Information collecting: the observation information,
produced by the Observer Modules, are retrieved by the
Global Observation Module.

Fig. 2 Modified COTAMA architecture

2) Diagnosis: the GOM uses this information to diagnose
the original fault and to identify the actual faulty modules
(as for example a corrupted data provided by sensors can
produce faulty behaviors in all the control modules). The
diagnosis results depend on the detected fault but also on
the current module status.
3) Module status: at this stage the GOM can estimate
which functionalities, and then which modules (functional
or control ones), remain active or become unavailable. The
availability of the modules functionalities are represented
has a module status vector, which is updated each time a
modification of the context is detected. On such an update,
an event is generated to the Contextual Supervisor.

B. Contextual Supervisor

Depending on the current state, the new module status, and
the identified fault severity (stored in the database
according to the FMECA analysis), the CS defines if the
current sub-objective remains suitable to the new context.
The severity of the defined context will be the base of the
CS decision to alert the different supervisors using
dedicated event:

• An adapter event is produced if the severity of the
failure is weak or medium, to continue the current
sub-objective with an adapted configuration of the
low level modules.

• A local event is emitted to the local supervisor
when the sub-objective cannot be pursued (hard
failure).

• A global event is generated to the global
supervisor when the objective can not be managed
or if vital capacities of the robot are not available
anymore (fatal failure).

C. Decisional level

Previous sections show how a fault is detected and
diagnosed and how the Contextual supervisor propagates
the decision as an event to the other supervisors according
to the failure severity for the robot and its mission. Now we
present the different supervisors.

5

1) Global supervisor
The GS manages the overall mission, i.e. the different
objectives of the ongoing mission. In our delivery mission,
it manages the driving objectives and interactions with users
to receive and deliver objects. A specific security objective
is also added to manage the fatal failure reported by the
global events. This security objective leads the robot in a
safe state (it stops), and warning signals are generated (as
WiFi messages or alarms).
2) Local supervisor
The main task of the LS is to decompose objectives in sub-
objectives, as for example the Driving objective is
decomposed in Path planning and Path following sub-
objectives. But the Local Supervisor has also to consider
the different autonomy modes: when a hard failure is
detected (local event reception) the LS switches to another
autonomy mode. It manages human-robot interactions, in
order to provide fault tolerance at the objective level.

Fig. 3 Sub-objectives management for the Drive objective

Fig. 3 shows the Petri net of the LS for the Drive objective.
For example, in the autonomous Path following sub-
objective, if a local event is received, the current sub-
objective can not be pursued and a human robot interaction
mode begins. The Human operator takes hand on the
decision level of the Robot. For the Drive objective, two
possibilities are implemented: teleprogrammation or
teleoperation of the robot. In teleprogrammation mode, the
operator can restart the autonomous path generation with
new way points, or can give a new path to be followed
3) Adapter supervisor
The Adapter supervisor receives adapter events on low or
medium faults. Thus, for a given sub-objective, it can
propose two types of adjustments: modifying parameters of
some modules to modify the behavior of the corresponding
embedded algorithm, or switching from the current sub-
objective to a degraded version of it.

Fig. 4 Adapted Sub-objectives management for the Path following

sub-objective.

For example Fig. 4 presents a simplified Petri net managing
three failures in the autonomous Path following sub-
objective. It shows two kinds of reactions: an adaption of
the parameters of the MCL module, and a switch to a
degraded Path following sub-objective.

VI. EXPERIMENTS

This experiment illustrates our methodology. It highlights
the fault detections and the involved reactions in the
architecture. This experiment is realized HIL (Hardware In
the Loop). Some of the observed faults were deliberately
created to test the detection of unusual faults (like sonar
failure). The considered mission is to deliver an object from
office A to office B. Fig. 5 presents the recorded
experimental robot trajectory and lists the different map
points where relevant events were observed. When moving,
the robot speed is 0.3 m/s. The control loop of each sub-
objective must be executed in less than 0.1 s.Description of
the mission scenario
Point 1: The mission objective is received and the
corresponding path is generated. The path following sub-
objective is then engaged to reach point B. (The
localization is performed by MCL. Blue line)
Point 2: A real-time fault on the MCL module is rapidly
observed at the beginning of the path following task. As the
complexity of this algorithm depends on its particles
number, this number is decreased setting the parameters of
the module to reduce its execution time.
Point 3: The robot considers that it has a localization
problem and so requests human help and solution.Point 4:
The human operator decides to observe the robot
environment with the on-board camera in teleoperated
mode. (The localization is performed by odometers and
operator. Dashed red line)

6

Point 5: The operator detects that an unforeseen obstacle is
present and decides to change the followed path. The robot
restarts the path following optimal sub-objective with this
new path. (The localization is performed by MCL. cyan
line)
Point 6: A permanent fault is observed on sonars which
cannot be used anymore. The degraded autonomous path
following sub-objective with neither obstacle avoidance nor
Monte-Carlo localization is chosen. The mission could be
pursued anyway, relying on odometry for the localization,
and decreasing the robot velocity in order to decrease the
eventual damages caused by the collision with an obstacle.
(The localization is performed by odometers and. Green
line)
Point 7: The robot bumps into an obstacle. So the human
operator decides to complete the drive objective using
degraded teleoperation (without obstacle avoidance).
(The localization is performed by odometers and operator.
Dashed red line)

This experimental mission shows that the robot is able to
detect the different faults that occurred, and to react
depending on the current context. Sometimes the robot opts
to ask the human operator for help, and sometimes it solves
the problem on its own. Finally, the mission is achieved
despite fault occurrences.

A. Interesting Point

This section focuses on specific detection, diagnosis and
reaction of the experiments.

1) Real time failure detection.
The scheduler manages the real time execution of modules.
It uses watchdog techniques to detect real time constraints
violation. To tolerate transient real time violation, the
scheduler gives extra-time to the faulty module in order to
let it finish its job. But if a module has several consecutive
violations it is considered to be faulty in a persistent way.
An event is then sent to notify a real time failure.
At point 1 in fig. 5 the scheduler detects a persistent real-
time failure in the Localization algorithm of MCL. As only
one module is faulty, two solutions are available: release the
module temporal constraint, or reduce the execution time of

this module. In this case the Contextual supervisor chooses
the second one and sends an event to the Adapter supervisor
to set the MCL particles number.

2) Localization failure.
It exists numerous ways to detect or observe that "the robot
is lost". This question is not so easy to resolve as it is very
hard to diagnose the real origin of a localization loss. For
example, the loss can be due to noisy odometric sensors or
due to the localization algorithm. But it can also be
triggered by a default (uncharted obstacle) in the a priori
map of the environment, inducing a non-suited reference for
the localization algorithm, the particle filter in our case.
In our experiment fig. 6, two Observers are used to detect a
localization problem. The first one analyzes the distance
between the localization values from the odometric data and
the MCL algorithm. It generates a flag of suspicious fault
when the distance between these values grows up rapidly.
The second Observer module detects that the robot moves
back a too long time on its path. This duration has been
experimentally tuned. This situation occurs when the robot
cannot follow its path, due to an uncharted obstacle. The
obstacle avoidance algorithm drives the robot to move
around the obstacle and, if there is no solution to pursue its
nominal path, induces the system to go back

Fig. 6 Focus on the detection of localization failure

Thus, a localization problem is encountered within point 3
in Fig. 6. The two previous observers detect a problem but

Fig. 5 Experimental mission scenario

7

unique diagnosis cannot be realized. So, the Contextual
Supervisor decides to ask operator’s help to diagnosis the
original faults.
The operator with the onboard camera detects an uncharted
obstacle. The diagnosis is relevant, the obstacle forced the
robot to go backwards and the difference between the map
and the real environment corrupts the MCL algorithm.

3) Sonar failure
When the real distance to obstacle can not be retrieve, or
when the sonar is broken, the microcontroller gives the
maximum value of sonar (5m). So, when this maximum
value is observed for a long time while the robot is moving,
this denotes that the concerned sensor is broken.
In our experiment, one faulty sonar leads to consider all the
sonars arrays as faulty from point 6 in Fig. 6. This could be
refined considering that the robot could use only a part of
active sonars. So an adapter event is sent to the Adapter
supervisor which chooses the most degraded path following
algorithm, without obstacle avoidance and MCL
localization.

Before the sonar failure detection, the robot executes the
optimal autonomous path following sub-objective. In this
experiment, the optimal strategy in the autonomous mode
for the Path Following sub-objective is composed of the
Monte-Carlo localization, the SMZ avoiding obstacle added
to guidance and control. Thus, considering neither the
Observer modules nor the GOM, the control loop of this
sub-objective implies the following low level modules:

P3D-SIM-UST-MCL-NAV-SMZ-LAN

If the sonars are faulty, all the modules needing the
proximity values become unavailable: UST, MCL, SMZ,
and of course SIM which is not useful anymore.
The Contextual supervisor then decides to send a local
event to the Adapter supervisor to switch in a degraded path
following mode, using only the odometric estimation of the
position. In the degraded sub-objective only the following
modules are executed:

P3D-NAV-GUI-LAN

The GUI module is used in the degraded sub-objective to
execute the guidance functionality. Indeed, the SMZ
module contains both the obstacle avoidance and the
guidance functionalities, but only the obstacle avoidance
one is not available anymore.

4) Collision
The detection of collision (Point 7 in Fig. 6) is made using
bumper sensors by the robot microcontroller. Since the
actual degraded navigation is of the dead reckoning type, a
drift in the estimation of the position is expected. The
occurrence of a collision implies that this global navigation
is no more suitable. As the robot is ever in a degraded sub-
objective (without sonar), this failure leads the Contextual

supervisor to create a local event. Human help is needed to
decide what to do.

VII. CONCLUSION

Recent studies demonstrate the low reliability of
autonomous mobile robots. To improve this important
weakness, robot's control architecture must integrate fault
tolerance capacities. Based on a global approach analyzing
the robot system to detect potential failures, this paper
proposes to include in the control architecture dedicated
Observer Modules monitoring the relevant ones. Depending
on their severity the current functioning mode is adapted to
face to the failure occurrence and to pursue the mission.
This adaptation may involve limited Human-robot
interaction or may need to switch from autonomous mode to
teleprogrammed or teleoperated ones.
The proposed experiment realized "Hardware in the loop"
will be soon realized in our laboratory. In the future the
global control architecture and the remote PC functions will
have to be enriched to address more complex missions and
situations. A series of tests will allow an estimation of the
efficiency of the proposed approach and mechanisms and
consequently the impact on robot's reliability.

REFERENCE

[1] J. Carlson and R. Murphy, “How UGVs physically fail in the field,”

IEEE Transactions on Robotics, vol. 21, no. 3, pp. 423–437, June
2005.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Transactions on dependable and secure computing, vol. 1, no. 1,
pp. 11–33, January-March 2004.

[3] Py, F. & Ingrand, F. “Real-Time Execution Control for Autonomous
Systems”, Proc. of the 2nd European Congress ERTS, Embedded
Real Time Software, 2004.

[4] S. Lemai-Chenevier, “IXTET-EXEC: planning, plan repair and
execution control with time and resource management”, PhD thesis,
LAAS-CNRS, 2004. [in French].

[5] R. P. Goldman, D. J. Musliner, and M. J. Pelican, “Using model-
checking to plan hard real-time controllers,” in AIPS Workshop on
Model-Theoretic Approaches to Planning, April 2000.

[6] J. Borrelly, E. Coste-Manière, B. Espiau, K. Kapellos, R. Pissard-
Gibollet, D.Simon and N. Turro, “The Orccad Architecture”,
International Journal of Robotics Research, special issue on
Integrated Architectures for Robot Control and Programming, vol.
18, pp 338–359, 1998.

[7] R. R. Murphy and D. Hershberger, “Classifying and recovering from
sensing failures in autonomous mobile robots,” in Proc. of the Nat.
Conf. on Artificial Intelligence, pp. 922–929, 1996.

[8] M. Brandstötter, M.W. Hofbaur, G. Steinbauer, and F. Wotawa,
“Model based fault diagnosis and reconfiguration of robot drives,”
in proc. of the Int. Conf. of Intelligent Robots and Systems, pp.
1203–1209, 2007.

[9] N. Muscettola, “Remote Agent: To Boldly Go Where No AI System
Has Gone Before”, Artificial Intelligence, vol.103 no.(1-2), pp 5-48,
1998.

[10] N. Muscettola, G. A. Dorais , C. Fry , R. Levinson , C. Plaunt,
“IDEA: Planning at the Core of Autonomous Reactive Agents”, in
Proc. of the 3rd Int. NASA Workshop on Planning and Scheduling
for Space, 2002.

8

[11] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das, “The
CLARATy architecture for robotic autonomy”, IEEE Aerospace
Conference, Aerospace Conference, vol. 1, pp. 121-132, 2001.

[12] L. T. Nana, “Investigating software dependability mechanisms for
robotics applications”, The IPSI BgD Transactions on Internet
Research, vol. 3, no 1, pp. 50–55, 2007.

[13] Z. Duan, Z. Cai, and J. Yu, “Fault diagnosis and fault tolerant
control for wheeled mobile robots under unknown environments: A
survey,” in Proc. of the Int. Conf. on Robotics and Automation, pp.
3439–3444, 2005.

[14] B. Lussier, “Fault Tolerance in autonomous systems”, Phd Thesis,
LAAS-CNRS, 2007.[in French].

[15] L.T. Nana, L. Marcé, J. Opderbecke, M. Perrier and V. Rigaud,
“Investigation of safety mechanisms for oceanographic AUV
missions programming”, Proc. of the IEEE OCEAN 05 Europe
conference, 2005.

[16] B. Durand, K. Godary-Dejean, L. Lapierre and D. Crestani,”Global
methodology in control architecture to improve mobile robot
reliability”, in Proc. of the Int. Conf. of Intelligent Robots and
Systems, 2010. (to be published)

[17] A. El Jalaoui, D. Andreu, B. Jouvencel,”Contextual Management of
Tasks and Instrumentation within an Auv control software
architecture.”, in Proc. of the Int. Conf. on Intelligent Robots and
Systems, Beijing, China, October 9-15, 2006.

[18] Guide to failure modes, effects and criticality analysis (FMEA and
FMECA), British Standard Std. 5760-5, 1991.

[19] K. Ishikawa, What is Total Quality Control? The japanese Way,
Prentice-Hall, 1985.

[20] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey, “Fault detection
and identification in a mobile robot using multiple model
estimation,” in Proc. of the Int. Conf. on Robotics and Automation,
vol. 3, pp. 2223–2228, May 1998.

