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Abstract— This paper details the development of an adaptive 
control architecture permitting to improve the reliability and 
robustness of autonomous mobile robot. A continuous monitoring 
of the significant failures allows dynamically choosing the most 
relevant reaction ensuring the success of the mission. This 
adaptive behavior is implemented into the control architecture 
COTAMA. The key points of the specific mechanisms added to 
COTAMA are addressed and explained. Experimental results are 
proposed to illustrate the control architecture adaptive behavior. 

I. INTRODUCTION 

Mobile robotic missions are becoming more complex, 
leading to increased robot complexity. Robots have 
numerous powerful sensors which provide accurate 
information about the robot state and its surrounding 
environment. They also have various locomotion and 
interaction capacities thanks to efficient and adapted 
actuators. The control architecture is the central and critical 
part of the robot which manages increasingly complex robot 
activities. 
In a perfect world, a robot would succeed in completing its 
allocated missions whatever the encountered situation. 
Unfortunately, robots are hampered by numerous types of 
fault. The study of Carlson and al. [1] concerning 
unmanned ground vehicle operating in real environments 
demonstrates that robots are often unable to achieve their 
mission. The authors conclude that reliability, which is the 
capacity to ensure the ”continuity of correct service” [2], is 
low due to a huge variety of failures having many origins. 
Hence, in the real world robots do not always succeed in 
dealing with some adverse situations.  
To improve reliability, it is essential to design robust 
(capacity to deliver a suitable service in adverse situations 
due to uncertain system environments) and fault-tolerant 
(capacity to deliver a suitable service despite faults 
affecting system resources) robots [2]. In robotic control 
architectures, robustness and fault tolerance are mainly 
based on three principles [2]: fault or adverse situation 
detection, diagnosis, and recovery or treatment. The 
following section presents a short overview of existing 
works in this domain. 

A. Fault detection and recovery in control architectures  

Fault detection can be done using many techniques: 
detection uses timing checks (watchdogs), reasonableness 
checks (valid interval values verification), safety-bag 
checks (verifying commands), and model-based monitoring 

and diagnosis (detection of inconsistency between the 
measured system’s data and the corresponding model 
values). 
The detection of adverse situation using execution control is 
often used in control architecture to lead to specific 
reaction. Similarly, replanning is one of the most common 
reactions proposed in robotic. For example, in the LAAS 
architecture, the execution controller R2C [3] detects 
adverse situations and erroneous requests, then the IxTeT 
[4] component proposes high level re-planning strategies to 
tolerate faults. The CIRCA architecture [5] implements 
execution control in order to not execute actions which 
could lead to identified adverse situations. It then uses 
actions and functionalities redundancy to recover using high 
level replanning. Similarly, the ORCCAD architecture [6] 
uses Robot-Task redundancy to switch around actions to 
recover from failures. 
Some architectures focus on hardware faults, as the SFX-
EH (Sensor Fusion Effects Exception Handling) 
architecture presented in [7] proposes a methodology for 
faults classification. Then it proposes to recover from 
sensing ones using hardware reconfiguration. Brandstötter 
et al. expose in [8] a model-based fault diagnosis and 
reconfiguration framework using a probabilistic hybrid 
automaton modeling the considered failure modes and the 
nominal one.  
The NASA research centers propose different solutions in 
its various architectures. The RAX [9] architecture has a 
MIR (Mode Identification and Recovery) module which 
detects anomalous situations using model based diagnosis 
method and proposes to the executive module to recover 
from this situation. The RAX Remote Agent (RA) concept 
has also been employed in the IDEA architecture [10], 
which proposes to distribute timing checks observation on 
each agent. Furthermore, the CLARATy architecture [11] 
develops a resources manager to locally manage resources 
on affectation conflict and fault detection.  
Finally, in the IFREMER control architecture [12], Nana 
proposed to use Intelligent Diagnosis System with 
dedicated decisional module to detect faults and evaluate 
their criticality. To our knowledge, the reaction based on 
software redundancy is initiated by the Human supervisor. 
To complete this state of the art, interesting surveys with 
regard to detection, diagnosis and/or recovery mechanism 
in robotic control architectures could be find in [13], [14] 
and [15]. 
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B. Conclusion 

This short analysis concerning reliability and robustness in 
robotic control architectures highlights some limitations.  
Many architectures implements classic detection and 
recovery solutions, as timing checks, execution control and 
replanning. These fault-tolerant mechanisms are usually 
spread over the architecture and directly embedded in the 
different control algorithms. There is a lack of global 
structured approaches to efficiently integrate dependable 
concepts into the design of the robot control architecture. 
Moreover, except the replanning solutions, most of the fault 
recovery solutions proposed in the literature are generally 
very basic (often rebooting or stopping) ones, which are not 
always compatible with the current robot context. 
So, we propose a new global methodology, detailed in [16], 
allowing: identification of pertinent faults, detection and 
diagnosis of the identified faults and suitable reactions to 
these faults. This paper focuses on the decisional 
mechanisms based on the adaptation of the control 
architecture, and focuses on their integration into the 
COTAMA architecture. This one is presented in section II, 
and the proposed methodology is summarized section III. 
Then, after the presentation of the experiment context, 
section V details the decisional mechanisms implemented in 
COTAMA. To conclude experimental results are presented 
and discussed. 

II.  COTAMA CONTROL ARCHITECTURE  

COTAMA (COntextual TAsk MAnagement) [17] is a 
modular control architecture. It is split into two main parts: 
the executive and the decisional levels (Fig. 1). The 
executive level involves low level robotic control. The 
decisional level manages the executive one according to the 
robot mission evolution and its environment. 

 

A. Decisional level 

This level is divided into two sublevels, the global and 
local supervisors. The Global Supervisor (GS) is in 
charge of the mission execution. Depending on the 
mission, the environment and the robot state, it defines the 
objectives that have to be carried out by the Local 
Supervisor (LS). This last supervisor manages a given 
objective, splitting it into sub-objectives which are 
controlled by a scheduler. A sub-objective corresponds to 
a set of modules that have to be executed to achieve the 
corresponding task. The LS then decides which sub-
objective has to be executed depending on the context and 
the events received from the executive level. 

B. Executive level 

This level is composed of a scheduler and low level 
modules. These modules embed robotic algorithm, or 
implement specific functionalities (for example the WiFi 
communication management).  

 
Fig. 1 COTAMA architecture 

All modules are based on a specific middleware which 
manages real-time constraints and modules 
communications. These ones are made according to the 
consumer/producer paradigm using specific mailboxes. 
Using middleware allows the respect of maintainability, 
upgradeability and reusability concepts. Modules have a set 
of different types of ports: 

• Data – Communication of data values between the 
low level modules.  

• Events – Communication from the executive level to 
the decisional one. These communications are 
generated on specific contextual events (for 
example: the robot has reached its goal then the 
path following sub-objective has to be stopped). 

• Requests – Three types of requests (Activate, Stop 
or Kill ) are available to manage the low level 
modules. These ports are also used to configure 
Data and Events ports.  

• Parameters – The requests ports can be used for an 
external parameterization of the module. In this 
case, the request message is associated with a 
specific setting port. 

The scheduler manages the modules execution using their 
request port to activate or inactivate them. It also manages 
the real-time constraints on modules and sub-objectives 
execution. 

III.  THE PROPOSED METHODOLOGY 

This section describes the methodology proposed to 
enhance robustness and fault tolerance in COTAMA. This 
methodology is divided into several steps: fault 
identification, fault detection and diagnosis, then reaction to 
the detected faults.  

A. Fault identification 

This step of the methodology is necessary to identify the 
potential faults of the system, including physical faults 
(effecter, sensor, power, or in the control architecture), 
faults in environment representation and human design 
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faults. Human interaction faults are not yet considered. The 
FMECA (Failure Mode, Effects and Critical Analysis) 
approach [18] is used to study potential failures, and to 
determine the most critical ones. It begins with a functional 
decomposition of the system. For each identified robot's 
function, cause-and-effect diagrams [19] bring to light the 
pertinent faults to monitor. The fault severity is also 
analyzed according to the robot tasks and the considered 
autonomy level. Four severity levels are defined: weak, 
medium, hard and fatal, which will guide the reactions. 

B.  Fault detection 

For the detection of each identified fault, dedicated 
monitoring modules named Observers are integrated into 
the control architecture. Their role is to set a flag when a 
module malfunctioning is detected or when an 
inconsistency in the robot behavior is observed. Into an 
Observer, the most adapted existing fault detection 
algorithm is used to detect the faults or inconsistencies 
occurrence. 
The modular approach of the control architecture allows 
flexible management of these Observers so that the fault 
detection capacity will be adapted as a function of the robot 
mission, its environment or its available resources. 
Observers monitor the executive level of the architecture 
and convey information on faults to dedicated decisional 
modules. 

C. Reaction to detected faults 

The reaction to a fault uses the knowledge of the current 
robot available capacities to define a solution to pursue the 
mission. The software control architecture enables a broad 
range of reactions depending on the four severity levels 
used. For weak or medium faults the architecture adaptation 
concerns only the current autonomy level which can be 
adapted to consume fewer or different resources. For hard 
faults an architecture adaptation is required to switch to a 
different autonomy level which can involve the operator’s 
capacities. For example information can be requested from 
a human operator, or the robot can adjust its autonomy 
mode. Finally for fatal faults the robot mission can not be 
pursue and must be neatly ended. 

IV.  EXPERIMENTAL CONTEXT  

A. Mission and robot characteristics 

1) Experimental Mission 
The proposed robot mission is to deliver objects in the 
laboratory upon users’ request. The delivery mission is 
carried out in a known environment, from which an a priori 
map is available. However, the environment remains 
dynamic since, for example, some humans can interact in 
the neighborhood of the robot. 
The robot delivery mission involves four different 
objectives: waiting for a mission, driving into the 
laboratory, and receiving or delivering objects (interactive 

tasks with users). This paper only deals with the most 
significant one for a mobile robot: the Drive objective. This 
objective can be decomposed into two sub-objectives: path 
planning and path following. 

2) Robot characteristics 
The experiments were carried out with a Pioneer-3DX from 
MobileRobots with two driving wheels using reversible DC 
motors. To perceive the environment, the robot has the 
following embedded sensors: two sonar arrays, two 
bumpers rows and a camera. An embedded laptop hosts the 
control architecture COTAMA, under a Linux RTAI real-
time operating system, and communicates, with a serial 
connection, with the robot integrated microcontroller. It 
also communicates with a WiFi network with a remote PC 
which manages the overall mission and human-robot 
interactions.  

B. Low Level Modules 

In our experiment, autonomous, teleprogrammed and 
teleoperated autonomy modes are available. Each one 
requires different control laws, functional and observer 
modules. 
1) Control Modules 
Table I lists the robotic algorithms integrated into the 
control modules at the architecture executive level. The last 
column represents the name of these modules in the 
architecture implementation. 

 
TABLE I 

ROBOTIC ALGORITHM IN CONTROL MODULES 

Robotic tasks Algorithms Name 
Path planning Lazy PRM PPL 

Localization 
Monte Carlo Localization 

Robot's odometry 
MCL 
ODO 

Obstacle 
avoidance 

Deformable Virtual Zone 
Safe Maneuvering Zone  

DVZ 
SMZ 

Guidance Path following  GUI 

Control 
Asymptotic control with 

actuator 
 velocity saturation 

CTR 

 
2) Functional Modules 
Others low level modules ensuring non robotic tasks can be 
used: the functional modules. For example, the 
communications management is implemented into these 
modules: the LAN module to communicate with WiFi with 
the remote PC, the P3D module for the USB 
communication between the embedded laptop, where the 
control architecture is executed, and the robot 
microcontroller which collects sensors values and applies 
commands to motors.  
The SIM module allows performing HIL simulation. Our 
experiment is HIL: the real odometric and bumpers sensors 
are used, whereas the sonars values are simulated. Then, the 
UST module receives the raw sonars values and produces 
suitable data for the robotic algorithms. 
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3) Observer Modules 

The following Observers have been developed to monitor 
and diagnosis as much as possible the identified failures for 
the Drive function: 

• Hardware or collision failures observation: The robot's 
micro-controller embedded hardware monitors 
bumper sensors, battery voltage and motor stall. 
Those observations are included in the P3D module. 

• A Sensor Observer verifies sensors data with 
reasonable checking methods as valid interval 
verification and for sonar sensors timing checks. 

• An Effectors Observer uses model based approach: 
a multiple-model Kalman filter [20], to diagnosis 
failures on motors or wheels.  

•  A Communication Observer retrieves data on external 
communication (WiFi) status (link, level, noise) and 
proceeds to valid interval verification on these data. 

• The Scheduler module verifies modules and sub-
objectives real time constraints using watchdog. It 
acts as an observer detecting real time faults.  

• A Localization Observer monitors the localization data 
using valid interval verification. 

• A Path Following Observer verifies that the 
corresponding algorithm respects uniform 
convergence properties. The observer monitors the 
coherence of the robot moving along its path, and 
monitors the asymptotic control convergence of the 
algorithm. 

V. APPLICATION OF THE METHODOLOGY TO COTAMA.  

This section presents the architectural modifications added 
to COTAMA in order to integrate the previous proposed 
concepts and enhance robustness and fault tolerance. These 
modifications are represented in grey in Fig. 2. At the 
executive level Observer Modules and a Global 
Observation Module (GOM) are integrated to detect and 
diagnosis fault occurrences. At the decisional level a new 
Contextual Supervisor (CS) is added. It is in charge of 
determining the robot context depending on the current 
robot state, the functioning mode and the available 
functionalities. The Contextual Supervisor then manages the 
correlation between the current sub-objective and the robot 
context. Moreover it chooses the most suitable reaction, 
sending specific events to the concerned supervisor. Finally, 
an Adapter Supervisor (AS) is also introduced. It can select 
the most suitable functioning mode of a given sub-
objective. 

A. Observation and detection 

The detection-diagnosis paradigm is implemented in 
COTAMA with the following steps:  
1) Information collecting: the observation information, 
produced by the Observer Modules, are retrieved by the 
Global Observation Module. 
 

 
Fig. 2 Modified COTAMA architecture 

 
2) Diagnosis: the GOM uses this information to diagnose 
the original fault and to identify the actual faulty modules 
(as for example a corrupted data provided by sensors can 
produce faulty behaviors in all the control modules). The 
diagnosis results depend on the detected fault but also on 
the current module status. 
3) Module status: at this stage the GOM can estimate 
which functionalities, and then which modules (functional 
or control ones), remain active or become unavailable. The 
availability of the modules functionalities are represented 
has a module status vector, which is updated each time a 
modification of the context is detected. On such an update, 
an event is generated to the Contextual Supervisor. 

B. Contextual Supervisor 

Depending on the current state, the new module status, and 
the identified fault severity (stored in the database 
according to the FMECA analysis), the CS defines if the 
current sub-objective remains suitable to the new context. 
The severity of the defined context will be the base of the 
CS decision to alert the different supervisors using 
dedicated event: 

• An adapter event is produced if the severity of the 
failure is weak or medium, to continue the current 
sub-objective with an adapted configuration of the 
low level modules. 

• A local event is emitted to the local supervisor 
when the sub-objective cannot be pursued (hard 
failure). 

• A global event is generated to the global 
supervisor when the objective can not be managed 
or if vital capacities of the robot are not available 
anymore (fatal failure). 

C. Decisional level 

Previous sections show how a fault is detected and 
diagnosed and how the Contextual supervisor propagates 
the decision as an event to the other supervisors according 
to the failure severity for the robot and its mission. Now we 
present the different supervisors. 
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1) Global supervisor 
The GS manages the overall mission, i.e. the different 
objectives of the ongoing mission. In our delivery mission, 
it manages the driving objectives and interactions with users 
to receive and deliver objects. A specific security objective 
is also added to manage the fatal failure reported by the 
global events. This security objective leads the robot in a 
safe state (it stops), and warning signals are generated (as 
WiFi messages or alarms).  
2) Local supervisor 
The main task of the LS is to decompose objectives in sub-
objectives, as for example the Driving objective is 
decomposed in Path planning and Path following sub-
objectives. But the Local Supervisor has also to consider 
the different autonomy modes: when a hard failure is 
detected (local event reception) the LS switches to another 
autonomy mode. It manages human-robot interactions, in 
order to provide fault tolerance at the objective level. 

 
Fig. 3 Sub-objectives management for the Drive objective 

Fig. 3 shows the Petri net of the LS for the Drive objective. 
For example, in the autonomous Path following sub-
objective, if a local event is received, the current sub-
objective can not be pursued and a human robot interaction 
mode begins. The Human operator takes hand on the 
decision level of the Robot. For the Drive objective, two 
possibilities are implemented: teleprogrammation or 
teleoperation of the robot. In teleprogrammation mode, the 
operator can restart the autonomous path generation with 
new way points, or can give a new path to be followed  
3) Adapter supervisor 
The Adapter supervisor receives adapter events on low or 
medium faults. Thus, for a given sub-objective, it can 
propose two types of adjustments: modifying parameters of 
some modules to modify the behavior of the corresponding 
embedded algorithm, or switching from the current sub-
objective to a degraded version of it.  

  
Fig. 4 Adapted Sub-objectives management for the Path following 

sub-objective. 

For example Fig. 4 presents a simplified Petri net managing 
three failures in the autonomous Path following sub-
objective. It shows two kinds of reactions: an adaption of 
the parameters of the MCL module, and a switch to a 
degraded Path following sub-objective. 

VI.  EXPERIMENTS 

This experiment illustrates our methodology. It highlights 
the fault detections and the involved reactions in the 
architecture. This experiment is realized HIL (Hardware In 
the Loop).  Some of the observed faults were deliberately 
created to test the detection of unusual faults (like sonar 
failure). The considered mission is to deliver an object from 
office A to office B. Fig. 5 presents the recorded 
experimental robot trajectory and lists the different map 
points where relevant events were observed. When moving, 
the robot speed is 0.3 m/s. The control loop of each sub-
objective must be executed in less than 0.1 s.Description of 
the mission scenario 
Point 1: The mission objective is received and the 
corresponding path is generated. The path following sub-
objective is then engaged to reach point B. (The 
localization is performed by MCL. Blue line) 
Point 2:  A real-time fault on the MCL module is rapidly 
observed at the beginning of the path following task. As the 
complexity of this algorithm depends on its particles 
number, this number is decreased setting the parameters of 
the module to reduce its execution time. 
Point 3: The robot considers that it has a localization 
problem and so requests human help and solution.Point 4: 
The human operator decides to observe the robot 
environment with the on-board camera in teleoperated 
mode. (The localization is performed by odometers and 
operator. Dashed red line) 
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Point 5: The operator detects that an unforeseen obstacle is 
present and decides to change the followed path. The robot 
restarts the path following optimal sub-objective with this 
new path. (The localization is performed by MCL. cyan 
line) 
Point 6: A permanent fault is observed on sonars which 
cannot be used anymore. The degraded autonomous path 
following sub-objective with neither obstacle avoidance nor 
Monte-Carlo localization is chosen. The mission could be 
pursued anyway, relying on odometry for the localization, 
and decreasing the robot velocity in order to decrease the 
eventual damages caused by the collision with an obstacle. 
(The localization is performed by odometers and. Green 
line) 
Point 7: The robot bumps into an obstacle. So the human 
operator decides to complete the drive objective using 
degraded teleoperation (without obstacle avoidance).  
(The localization is performed by odometers and operator. 
Dashed red line) 

This experimental mission shows that the robot is able to 
detect the different faults that occurred, and to react 
depending on the current context. Sometimes the robot opts 
to ask the human operator for help, and sometimes it solves 
the problem on its own. Finally, the mission is achieved 
despite fault occurrences.  

A. Interesting Point 

This section focuses on specific detection, diagnosis and 
reaction of the experiments. 

1) Real time failure detection. 
The scheduler manages the real time execution of modules. 
It uses watchdog techniques to detect real time constraints 
violation. To tolerate transient real time violation, the 
scheduler gives extra-time to the faulty module in order to 
let it finish its job. But if a module has several consecutive 
violations it is considered to be faulty in a persistent way. 
An event is then sent to notify a real time failure. 
At point 1 in fig. 5 the scheduler detects a persistent real-
time failure in the Localization algorithm of MCL. As only 
one module is faulty, two solutions are available: release the 
module temporal constraint, or reduce the execution time of 

this module. In this case the Contextual supervisor chooses 
the second one and sends an event to the Adapter supervisor 
to set the MCL particles number. 

2) Localization failure. 
It exists numerous ways to detect or observe that "the robot 
is lost". This question is not so easy to resolve as it is very 
hard to diagnose the real origin of a localization loss. For 
example, the loss can be due to noisy odometric sensors or 
due to the localization algorithm. But it can also be 
triggered by a default (uncharted obstacle) in the a priori 
map of the environment, inducing a non-suited reference for 
the localization algorithm, the particle filter in our case. 
In our experiment fig. 6, two Observers are used to detect a 
localization problem. The first one analyzes the distance 
between the localization values from the odometric data and 
the MCL algorithm. It generates a flag of suspicious fault 
when the distance between these values grows up rapidly. 
The second Observer module detects that the robot moves 
back a too long time on its path. This duration has been 
experimentally tuned. This situation occurs when the robot 
cannot follow its path, due to an uncharted obstacle. The 
obstacle avoidance algorithm drives the robot to move 
around the obstacle and, if there is no solution to pursue its 
nominal path, induces the system to go back 

 
Fig. 6 Focus on the detection of localization failure 

Thus, a localization problem is encountered within point 3 
in Fig. 6. The two previous observers detect a problem but 

 
Fig. 5 Experimental mission scenario 
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unique diagnosis cannot be realized. So, the Contextual 
Supervisor decides to ask operator’s help to diagnosis the 
original faults. 
The operator with the onboard camera detects an uncharted 
obstacle. The diagnosis is relevant, the obstacle forced the 
robot to go backwards and the difference between the map 
and the real environment corrupts the MCL algorithm. 

3) Sonar failure 
When the real distance to obstacle can not be retrieve, or 
when the sonar is broken, the microcontroller gives the 
maximum value of sonar (5m). So, when this maximum 
value is observed for a long time while the robot is moving, 
this denotes that the concerned sensor is broken.  
In our experiment, one faulty sonar leads to consider all the 
sonars arrays as faulty from point 6 in Fig. 6. This could be 
refined considering that the robot could use only a part of 
active sonars. So an adapter event is sent to the Adapter 
supervisor which chooses the most degraded path following 
algorithm, without obstacle avoidance and MCL 
localization. 
 
Before the sonar failure detection, the robot executes the 
optimal autonomous path following sub-objective. In this 
experiment, the optimal strategy in the autonomous mode 
for the Path Following sub-objective is composed of the 
Monte-Carlo localization, the SMZ avoiding obstacle added 
to guidance and control. Thus, considering neither the 
Observer modules nor the GOM, the control loop of this 
sub-objective implies the following low level modules: 

P3D-SIM-UST-MCL-NAV-SMZ-LAN 

If the sonars are faulty, all the modules needing the 
proximity values become unavailable: UST, MCL, SMZ, 
and of course SIM which is not useful anymore.  
The Contextual supervisor then decides to send a local 
event to the Adapter supervisor to switch in a degraded path 
following mode, using only the odometric estimation of the 
position. In the degraded sub-objective only the following 
modules are executed:  

P3D-NAV-GUI-LAN 

The GUI module is used in the degraded sub-objective to 
execute the guidance functionality. Indeed, the SMZ 
module contains both the obstacle avoidance and the 
guidance functionalities, but only the obstacle avoidance 
one is not available anymore. 

4) Collision 
The detection of collision (Point 7 in Fig. 6) is made using 
bumper sensors by the robot microcontroller. Since the 
actual degraded navigation is of the dead reckoning type, a 
drift in the estimation of the position is expected. The 
occurrence of a collision implies that this global navigation 
is no more suitable. As the robot is ever in a degraded sub-
objective (without sonar), this failure leads the Contextual 

supervisor to create a local event. Human help is needed to 
decide what to do.  

VII.  CONCLUSION 

Recent studies demonstrate the low reliability of 
autonomous mobile robots. To improve this important 
weakness, robot's control architecture must integrate fault 
tolerance capacities. Based on a global approach analyzing 
the robot system to detect potential failures, this paper 
proposes to include in the control architecture dedicated 
Observer Modules monitoring the relevant ones. Depending 
on their severity the current functioning mode is adapted to 
face to the failure occurrence and to pursue the mission. 
This adaptation may involve limited Human-robot 
interaction or may need to switch from autonomous mode to 
teleprogrammed or teleoperated ones. 
The proposed experiment realized "Hardware in the loop" 
will be soon realized in our laboratory. In the future the 
global control architecture and the remote PC functions will 
have to be enriched to address more complex missions and 
situations. A series of tests will allow an estimation of the 
efficiency of the proposed approach and mechanisms and 
consequently the impact on robot's reliability. 
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