
HAL Id: lirmm-00547856
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00547856v1

Submitted on 17 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Tolerance Enhancement using Autonomy
Adaptation for Autonomous Mobile Robots

Bastien Durand, Karen Godary-Dejean, Lionel Lapierre, Robin Passama,
Didier Crestani

To cite this version:
Bastien Durand, Karen Godary-Dejean, Lionel Lapierre, Robin Passama, Didier Crestani. Fault
Tolerance Enhancement using Autonomy Adaptation for Autonomous Mobile Robots. SysTol: Control
and Fault-Tolerant Systems, Oct 2010, Nice, France. pp.24-29, �10.1109/SYSTOL.2010.5676030�.
�lirmm-00547856�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00547856v1
https://hal.archives-ouvertes.fr

Abstract — This paper presents how autonomy adaptation can
be useful to enhance the fault tolerance of autonomous mobile
robots. For that, we proposed a global and structured methodology
which allows integrating specific fault tolerant mechanisms into an
adaptive control architecture. When a problem is detected, the
autonomous behavior of the robot is automatically adapted to
overcome it. The human operator can punctually or definitively be
inserted in the control loop to replace the damaged functionalities
and to ensure the success of the mission. Experimental results on a
mobile robot are proposed to illustrate the autonomy adaptation.

I. INTRODUCTION
Nowadays there is a huge gap between the expected

dependability of autonomous robots and the observed one
during real world mission. Carlson and Murphy demonstrate
in [1] that an autonomous system must face to many
hardware, software or human faults, and that the mission
must often be aborted. So, dependability principles [2],
which are well defined and carried out in critical systems,
must be applied to autonomous robotic systems.

During design or operational phases, systems are
necessarily affected by internal (dormant) or external
(coming from the environment) faults. A fault is a malicious
entity which, once activated, is propagated through the
system until a failure occurs in the system services. So the
dependability of a system can be defined as "the ability to
avoid service failure that are more frequent and more severe
than is acceptable" [2]. Consequently two main means exist
to enhance the dependability of a system: to suppress the
faults or to try to deliver a correct service in spite of their
occurrences.

A. Dependability approaches for automous robots
1) Fault forecasting: Before avoiding a fault or

correcting its effect an important step would be to evaluate
which ones are the most harmful for the system. However,
practically, few results are available for autonomous robot
systems, except [1] which shows qualitative experimental
results identifying, classifying and ranking the observed
failure modes. The FMECA (Failure Mode Effects and
Critical Analysis) [3] methodology would be interesting to
determine the most relevant failures.

2) Fault avoidance: To minimize the amount of faults,
faults prevention and removal techniques can be used.

Fault prevention mainly depends on software development
methods ensuring easy maintainability, analyzability and
testability. For example, modularity using software
components is observed in robot control architectures such
as LAAS [4], IDEA [5], CLARATy [6] or COTAMA [7].

Fault removal concerns tests and formal validation.
Simulation and intensive testing can be deployed like for the
RAX architecture [8] to point out system's faults. However,
for autonomous robots, the test generally remains
incomplete and the conclusion cannot be considered as a
proof. Formal validation approaches are based on properties
verification. The validation capacity of synchronous
languages as Esterel has been used in different control
architectures in [9] or ORCCAD [10], and Model-Based
Programming Language in [11]. In [12] the system's
description is translated into a formal representation for
symbolic model checking. In the LAAS architecture, the
formal validation of safety properties using model checking
has been developed for the execution controller [13].

Unfortunately, all the faults could not be avoided, as for
example sensors or effectors breakdown. Solutions must
then be proposed and implemented as fault tolerance and
robustness approaches.

3) Fault tolerance and Robustness: Depending on the
location of the problem, robust (“capacity to deliver a
suitable service in adverse situations due to uncertain system
environments”) and fault-tolerant (capacity to deliver a
suitable service despite faults affecting system resources)
issues can be distinguished for autonomous robots [14]. In
robotic control architectures, robustness and fault tolerance
are mainly based on fault (or adverse situation) detection,
diagnosis, and recovery (or treatment).

Fault detection can be done using timing checks,
reasonableness checks, safety-bag checks, or model-based
monitoring and diagnosis [14]. Some architecture focus on
hardware faults, as the SFX-EH [15] which proposes to
recover from sensing faults using hardware reconfiguration.
Brandstötter et al. expose in [16] a model-based fault
diagnosis and reconfiguration framework using a
probabilistic hybrid automaton. IDEA [5] distributes timing
checks observation over each agent. CLARATy [6] develops
a resources manager to locally manage resources on
affectation conflict and fault detection.

Fault Tolerance Enhancement using Autonomy Adaptation
for Autonomous Mobile Robots

B. Durand, K. Godary-Dejean, L. Lapierre, R. Passama and D. Crestani
Laboratoire Informatique Robotique Microélectronique de Montpellier

Université Montpellier 2 / C.N.R.S.
{durand, godary, lapierre, passama, crestani}@lirmm.fr

2010 Conference on Control and Fault Tolerant Systems
Nice, France, October 6-8, 2010

WeA1.3

978-1-4244-8152-1/10/$26.00 ©2010 IEEE 24

Adverse situation detection commonly uses execution
control. The CIRCA architecture [17] implements execution
control to trigger high level re-planning. Like in ORCCAD
[10] redundancy permits to recover from failures. In the
LAAS architecture, the execution controller R2C [4] detects
adverse situations and erroneous requests, then the IxTeT
[18] component proposes high level re-planning or plan
repair strategies to tolerate faults.

B. Objective of the paper
Evidently fault forecasting, fault prevention and fault

removal are interesting and sometimes powerful means to
limit the amount of faults. However since it is impossible to
suppress all the possible internal and external faults it seems
evident that fault tolerance and robustness will be essential
to provide dependable robots. Adaptive control architecture
is an interesting way to reach this objective. Unfortunately,
autonomous robots are not able to handle all the system
resources malfunctioning or adverse situations. Then, the
operator help seems to be for still a long time, the unique
possibility to deliver an acceptable service.

In spite of numerous works concerning dependability
concepts for autonomous robots, there is a lack of global and
structured approach including all these aspects of fault
tolerance. We have proposed in [19] a methodology aiming
to address, in a flexible and generic way, all these aspects. It
is based on four successive steps allowing the enhancement
of robots reliability: fault identification, fault detection and
diagnosis, and fault recovery.

This paper focuses on the recovery mechanisms
developed and implemented into the COTAMA (COntextual
TAsk MAnagement) architecture [7]. It shows how control
architectures may use relevant autonomy level adaptation to
ensure the success of a whole mission, even in presence of
faults. This article presents the specific decisional
mechanisms used to manage the autonomy adaptation.

Next section presents the main autonomy sharing
principles. Section III details the fault tolerant mechanisms
used in COTAMA architecture to support relevant autonomy
adaptation. Before concluding, section IV explains some
experiment results.

II. AUTONOMY SHARING
Autonomy is one of the main objectives to achieve in

mobile robotic. The definition of Autonomy is not unique as
it depends on the point of view. However for robotics and
multi-agent systems the following one seems to be
acceptable: “A system (or agent) is autonomous if, alone, it
is able to define and perform its action”. This definition
remains wide, and needs to be refined, from the point of
view of applications focusing on autonomy evaluation.

The ALFUS group proposes [20] a three-axis based
evaluation: the operator independency, the mission
complexity and the environmental difficulty. In [21], Clough
et al. propose to evaluate autonomy using an Autonomous

Control Level (ACL) chart based on the degree of
interaction between the robot and the human operator.
Unfortunately these works remain limited due to the
concepts complexity.

The most important result is that the autonomy can be
leveled in function of the Human Robot Interaction (HRI). A
well-known scale has been presented in [22], by Sheridan et
al., proposing 10 levels of autonomy. Since then, various
authors have proposed variations based on this scale. For
example, in [23] the authors propose a review of Human-
Robot Interaction providing a synthetic point of view of the
numerous fields related to HRI. It proposes a variation of the
Sheridan's scale focusing on "mixed initiative interaction",
which is defined as a “flexible interaction strategy in which
each agent (human and [robot]) contributes what it is best
suited at the most appropriate time”. This new scale is
shown fig. 1. On the direct control side, the operator as to do
the entire job; the user interface must be enhanced in order
to reduce the operator workload. On the other extreme, peer-
to-peer collaboration requires full autonomous robots which
have high appropriate skills in order to interact with the
operator.

Fig. 1 Levels of autonomy proposed in [23]

To perform dynamic autonomy using mixed initiative
paradigm, two questions remain central to adapt the level of
autonomy. Which one holds the adaptivity decision? How
the autonomy levels can be adapted during the mission?

Some works try to answer to these questions. Opermann
et al. analyze in [24], the spectrum of adaptivity from
adaptive (where the system initiates adaptivity) to adaptable
(where the user initiates it). In [25], the INEEL architecture
has been developed for Urban Search and Rescue context.
The robot has several functioning modes and autonomous
behaviour modes. A specific system suggests to the user to
choose the most appropriate mode depending on the robot
state and the supposed operator problem. Then the adaptivity
is suggested to the user, which could choose to adapt or not.

The following section details the COTAMA architecture
initial concepts and the fault tolerant mechanisms we add to
enhance robot reliability.

III. COTAMA CONTROL ARCHITECTURE
COTAMA is a modular control architecture initially

exposed in [7]. To enhance reliability and robustness of
robotic systems, we propose to integrate in this architecture
fault tolerant mechanisms for fault detection and fault
recovery. These mechanisms are included in a global
methodology detailed in [19].

25

The architecture decomposition is presented Fig. 2.
COTAMA is split into two main parts: the executive and the
decisional levels. The executive level involves low level
robotic control, as well as specific modules dedicated to
fault detection and diagnosis. The decisional level manages
the executive one according to the robot mission evolution
and its environment, and implements fault recovery
mechanisms.

Fig. 2 COTAMA architecture

A. Executive level
This level is composed of a scheduler and low level

modules. There is three types of low level modules: control
modules, which embed robotic algorithms (for example
Monte-Carlo Localization MCL); functional modules which
implement specific functionalities (for example the WiFi
communication management); and the specific Observer
modules which implement fault detection. All modules are
based on a specific middleware which manages real-time
constraints and modules communications. Using middleware
allows the respect of maintainability, upgradeability and
reusability concepts. The modularity concept is also a useful
one for fault prevention, insuring independent design and
test of the robotic algorithms.

The Observer modules produce observation information
which are retrieved by the Global Observation Module
(GOM). This specific module uses these information to
diagnose the original fault and to identify the actual faulty
modules (as for example a corrupted data provided by
sensors can produce faulty behaviors in all the control
modules). The diagnosis results depend on the detected fault
but also on the current Modules status. Indeed, at this stage
the GOM can estimate which functionalities, and then which
modules (functional or control ones), remain active or
become unavailable. The availability of the modules
functionalities are represented as a Modules status vector,
which is updated each time a modification of the context is
detected.

Finally, the Scheduler manages the modules, activating or
inactivating them using specific events. It also manages the

real-time constraints on modules and sub-objectives
execution. In one hand it allocates predefined execution time
to each module and verifies using watchdogs that these
constraints are not violated. If a module is too often late, the
scheduler detects a real time fault for this module. In other
hand, it verifies that all the modules of the current sub-
objective could be executed within a predefined duration. If
not, the scheduler detects a real time problem on this sub-
objective execution. In both cases, it reports the problem to
the decisional level.

An important characteristic of the COTAMA architecture
is the ability to dynamically reconfigure modules
parameters, interconnections and scheduling, allowing so to
adapt control algorithms related observers to the current
robot and mission states. Adaptation decision is taken by the
decisional level.

B. Decisional level
This level was initially divided into two sublevels, the

Global and Local Supervisors. The Contextual Supervisor,
as well as the Adapter Supervisor, have been added to
implement fault recovery mechanisms. All the supervisors
react on events received from their superior supervisor or
from the Contextual one.

The Global Supervisor (GS) is in charge of the mission
execution. Depending on the mission, the environment and
the robot state, it defines the objectives that have to be
carried out by the Local Supervisor (LS). The GS also
implements a specific security objective which leads the
robot in a safe state in case of fatal failures.

The main task of the Local Supervisor (LS) is to manage a
given objective, splitting it into sub-objectives which are
controlled by a scheduler. A sub-objective corresponds to a
set of modules that have to be executed to achieve the
corresponding task. The LS has also to consider the different
autonomy modes: it decides which sub-objective has to be
executed depending on the context. It manages human-robot
interactions, in order to provide fault tolerance at the
objective level.

The third supervisor, the Adapter Supervisor (AS),
manages the different functioning modes for a given sub-
objective and a given autonomy level. It can propose two
types of adjustments: modifying parameters of some
modules to modify the behavior of the corresponding
embedded algorithm, or switching from the current sub-
objective to a degraded version of it. For example for the
path following sub-objective in autonomous level, it could
define optimal path following or degraded (for example
without obstacle avoidance) ones.

Finally, the Contextual Supervisor (CS) is a specific
module dedicated to fault recovery. It determines the robot
context depending on the current robot state, the functioning
mode and the available functionalities. It then manages the
correlation between the current sub-objective and the robot
context. Moreover, this module chooses the most suitable

26

reaction, depending on the modules status updated by the
Global Observation Module.

The severity of the defined robot context will be the base
of the CS decision, which alerts the different supervisors
using dedicated event. An adapter event is produced if the
severity of the failure is weak or medium, to continue the
current sub-objective with an adapted configuration of the
low level modules. A local event is emitted to the local
supervisor when the sub-objective cannot be pursued (hard
failure). A global event is generated to the global supervisor
when the objective can not be managed or if vital capacities
of the robot are unavailable (fatal failure).

The next section illustrates the use of the COTAMA
adaptative mechanisms in a delivery mission.

IV. EXPERIMENT

A. Experimental context
1) Experimental Mission: The proposed robot mission is

to deliver objects in the laboratory upon users’ request. The
delivery mission is carried out in a known environment,
from which an a priori map is available. However, the
environment remains dynamic since, for example, some
humans can interact in the neighborhood of the robot.

The robot delivery mission involves four different
objectives: waiting for a mission, driving into the laboratory,
and receiving or delivering objects (interactive tasks with
users). This paper only deals with the most significant one
for a mobile robot: the Drive objective.

In the following subsections we focus only on the design
of supervisors, since they are the entities that take the
autonomy adaptation decision.

2) Robot characteristics: The experiments were carried
out with a Pioneer-3DX from MobileRobots with two
driving wheels using reversible DC motors. To perceive the
environment, the robot has two bumpers rows and a camera.
An embedded laptop hosts the control architecture
COTAMA, under a real-time OS, Linux RTAI, and
communicates, with a serial connection, with the robot
integrated microcontroller. It also communicates with a
WiFi network with a remote PC which manages the overall
mission and human-robot interactions.

3) Autonomy levels and functioning modes: The
experimental mission is basically executed in an
autonomous mode. But for reliability purpose, all the
mission objectives have been defined for three autonomy
levels: autonomous, teleprogrammed and teleoperated.
Indeed, the robot could have to face to failures and to adjust
the autonomy level. For a given objective, each autonomy
level requires different low level modules, as the control
law, the needed functionalities and then the related
observers.

For example, Fig. 3 shows the Petri net of the LS for the
Drive objective of the robot mission. This objective is
composed of two sub-objectives: Path Generation and Path

Following. The LS manages those autonomous sub-
objectives, but also the teleprogrammed and teleoperation
ones. In teleprogrammation mode, the operator can restart
the autonomous path generation with new way points, or can
give a new path to be followed autonomously. A specific
sub-objective is dedicated for "Human-Robot Interactions",
in which the Robot waits for Human decision.

Fig. 3 Autonomy level management for the Drive objective

Furthermore, each of the autonomy level can be decline in
several functioning modes depending on the context and the
robot available resources.

For example, Fig. 4 presents a simplified Petri net
managing three functioning modes for the autonomous Path
following sub-objective: optimal path following with
efficient localization and obstacle avoidance algorithms; and
two degraded functioning mode, one using only the
imprecise odometric localization, and another one without
obstacle avoidance. The AS proposes two kinds of reactions
to recover on failures: an adaptation of the parameters of the
MCL module (staying in the optimal functioning mode), and
a switch to a degraded Path following sub-objective.

Fig. 4 Functioning mode management for the Path Following sub-objective

27

Fig. 5 Experimental mission scenario

B. Experimental results
This part illustrates our methodology. It highlights the

fault detections and the involved reactions in the
architecture. This experiment is realized Hardware In the
Loop (HIL). Faults as actuators, sensors, communication or
real-time faults can be observed and managed. Some of
these faults were deliberately created to test the detection of
unusual faults (like sonar failure). The considered mission is
to deliver an object from office A to office B.

1) Description of the mission scenario: Fig. 5 presents
the recorded experimental robot trajectory and lists the
different map points where relevant events were observed.
When moving, the robot speed is 0.3 m/s. The control loop
of each sub-objective must be executed in less than 0.1 s. It
is the maximal reaction time to a detected fault.
The interesting points of the recorded mission are:
Point 1: The mission objective is received and the
corresponding path is generated. The Path Following sub-
objective is then engaged to reach point B. In this optimal
functioning mode, represented in blue continuous line, the
localization is performed using Monte Carlo algorithm [26].
Point 2: A real-time fault on the MCL module is rapidly
observed at the beginning of the Path Following task. As the
complexity of this algorithm depends on its particles
number, this number is decreased setting the parameters of
the module in order to reduce its execution time.
Point 3: The robot is confronted to an uncharted obstacle. It
then considers that it could have a localization problem, and
suspects an uncharted obstacle as it was forced to go back
on its path. This situation is complex, so it requests human
help.
Point 4: The human operator decides to observe the robot
environment with the on-board camera in teleoperated mode
(red dashed line) to validate the presence of this obstacle.
Point 5: The operator detects the uncharted obstacle and
decides to change the path. The robot restarts the path

following optimal sub-objective with this new path (cyan
continuous line).
Point 6: A permanent fault is observed on sonar sensors
which cannot be used anymore. As a degraded autonomous
Path Following sub-objective, since neither obstacle
avoidance nor Monte-Carlo localization is available, the
robot chooses to pursue the mission. Now, the localization is
performed by odometers (green line). It decreases its
velocity in order to reduce the eventual damages caused by
the collision with an obstacle.
Point 7: The robot bumps into an obstacle. So a human
operator help is asked. To complete the drive objective he
decides to use degraded teleoperation (without obstacle
avoidance). (The localization is performed by odometers;
dashed red line).

As we could see, this experimental mission includes
autonomy levels adaptation to ensure the success of the
mission despite faults occurrence.

2) Autonomy adaptation: In fig. 6 the evolution of the
autonomy levels is presented functions of the mission
scenario points.

Fig. 6 Autonomy adjustment during the mission

28

During this mission scenario three autonomy levels are
used: autonomous, teleprogrammation and teleoperation
modes. Moreover, the autonomous mode is decomposed into
two functioning modes: an optimal and a degraded one. The
human help request is not done systematically but only on
relevant faults and contexts. When it is possible the control
architecture adaptation is realized autonomously.

It can be noticed that, without the human help the mission
would be aborted at point 3. Thanks to the human capacities
to handle non consistent situation, the encountered problem
is identified and the mission can continue from a new robot
coherent state. At this point the cooperation between the
operator and the robot is just punctual. However, at point 7,
the robot possibilities are too limited to pursue the mission:
there are no sonars anymore, nor localization and obstacle
avoidance. As the robot bumps into something, either it is
lost or it encounters an uncharted obstacle, then it concludes
that it could not resolve this situation by itself.

V. CONCLUSION
Due to the increasing complexity of autonomous mobile

robots and its difficulty to face to unknown environment and
situations, the potential faults sources remain very large.
Autonomy sharing, between the robot and the operator, will
be, for still a long time, a robust solution to ensure the
success of a mission. Adaptive control architecture
implementing fault tolerance principles will be essential to
address this issue. This paper presents an adaptive control
architecture with specific mechanisms dedicated to the
enhancement of robot reliability and robustness using
autonomy adaptation. However this last concept needs to
answer a central question "Which entity takes the decision to
adapt the autonomy level?". This paper considers only a part
of the answer since, when the robot encounter an unsolved
problem, it asks for human help. The symmetric answer
needs to be considered in future works. When the operator
seems to have a problem, the robot could suggest helping
him and proposed an adaptation of its autonomy level.

REFERENCES
[1] J. Carlson and R. Murphy, “How UGVs physically fail in the field,”

IEEE Transactions on Robotics, vol.21, no.3, pp.423-437, June 2005.
[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic

concepts and taxonomy of dependable and secure computing,” IEEE
Transactions on dependable and secure computing, vol.1, no.1,
pp.11–33, January-March 2004.

[3] Guide to failure modes, effects and criticality analysis (FMEA and
FMECA), British Standard Std. 5760-5, 1991.

[4] S. Bensalem, M. Galien, F. Ingrand, I. Kahlou, T. H. Nguyen,
"Toward a More Dependable Software Architecture for Autonomous
Robots", Special issue on Software Engineering for Robotics of the
IEEE Robotics and Automation Magazine, vol. 16, no. 1, 2009.

[5] N. Muscettola, G. A. Dorais, C. Fry , R. Levinson, C. Plaunt, “IDEA:
Planning at the Core of Autonomous Reactive Agents”, in proc. of the
3rd Int. NASA Workshop on Planning and Scheduling for Space,
2002.

[6] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das, “The
CLARATy architecture for robotic autonomy”, IEEE Aerospace
Conference, vol. 1, pp. 121-132, 2001.

[7] A. El Jalaoui, D. Andreu, B. Jouvencel, ”Contextual Management of
Tasks and Instrumentation within an AUV control software
architecture.”, in proc. of the Int. Conf. on Intelligent Robots and
Systems (IROS’06), Beijing, China, 2006.

[8] D. E. Bernard, E. B. Gamble, N. F. Rouquette, B. Smith, Y. W. Tung,
N. Muscettola, G. A. Dorias, B. Kanefsky, J. Kurien, W. Millar, P.
Nayal, K. Rajan, W. Taylor, "Remote Agent Experiment DS1
Technology Validation Report", Ames Research Center and JPL,
2000.

[9] B. Espiau, K. Kapellos, M. Jourdan, "Formal Verification in Robotics:
Why and How", in proc. of the 7th Int. Symposium of Robotics
Research, Munich, Germany, Cambridge Press, pp. 201-213, October
1995.

[10] J. Borrelly, E. Coste-Manière, B. Espiau, K. Kapellos, R. Pissard-
Gibollet, D.Simon and N. Turro, “The ORCCAD Architecture”, Int.
Journal of Robotics Research ,special issue on Integrated
Architectures for Robot Control and Programming, vol. 18, pp. 338-
359 , 1998.

[11] B. C. Williams, M. D. Ingham, S. H. Chung, P. H. Elliott, M. Hofbaur,
T. Sullivan, "Model-Based Programming of Fault-Aware Systems", AI
Magazine, Vol. 24, no 4, pp. 61-75, 2003.

[12] R. Simmons, C. Pecheur, G. Srinivasan, "Towards Automatic
Verification of Autonomous Systems", in IEEE/RSJ Int. conf. on
Intelligent Robots & Systems, 2000.

[13] A. Basu, M. Gallien, C. Lesire, T. H. Nguyen, S. Bensalem, F.
Ingrand, J. Sifakis, "Incremental Component-Based Construction and
Verification of a Robotic System", ECAI 2008 18th European
Conference on Artificial Intelligence, Greece, 2008.

[14] B. Lussier, A. Lampe, R. Chatila, J. Guiochet, F. Ingrand, M. O.
Killijian, D. Powel, "Fault Tolerance in Autonomous Systems: How
and How Much?", in proc. of the 4th IARP - IEEE/RAS - EURON
Joint Workshop on Technical Challenges for Dependable Robots in
Human Environments, Japan, 2005.

[15] R. Murphy and D. Hershberger, “Classifying and recovering from
sensing failures in autonomous mobile robots,” in proc. of the
National Conference on Artificial Intelligence, pp. 922-929, 1996.

[16] M. Brandstötter, M.W. Hofbaur, G. Steinbauer, and F. Wotawa,
“Model based fault diagnosis and reconfiguration of robot drives,” in
proc. of the Int. conf. of Intelligent Robots and Systems, pp. 1203-
1209, 2007.

[17] R. P. Goldman, D. J. Musliner, and M. J. Pelican, “Using model-
checking to plan hard real-time controllers,” in AIPS Workshop on
Model-Theoretic Approaches to Planning, April 2000.

[18] S. Lemai-Chenevier, “IXTET-EXEC: Planning, Plan Repair and
Execution Control with Time and Resource Management”, PhD thesis,
LAAS-CNRS, 2004. [in French].

[19] B. Durand, K. Godary-Dejean, L. Lapierre and D. Crestani,”Global
methodology in control architecture to improve mobile robot
reliability”, in proc. of the Conf. of Intelligent Robots and Systems,
(IROS’10), Taipei, Taiwan, 2010. (to be published)

[20] H-M, Huang, K. Pavek, B. Novak, J. Albus, and E. Messina, "A
Framework For Autonomy Levels For Unmanned Systems (ALFUS),"
Proceedings of the AUVSI's Unmanned Systems North America, June
2005, Baltimore, Maryland.

[21] B. T. Clough, “Metrics, Schmetrics! How The Heck Do You
Determine a UAV’s Autonomy Anyway?”, Performance Metrics for
Intelligent Systems Workshop, Gaithersburg, MA, USA, 2002.

[22] T. B. Sheridan and W. L. Verplank, “Human and Computer Control
for Undersea Teleoperators”. MIT Man-Machine Systems Laboratory,
1978.

[23] M. A Goodrich, and A. C. Schultz, “Human–Robot Interaction: A
Survey”, Foundations and Trends ® In Human-Computer Interaction,
2007, no.3, pp. 203-275.

[24] Oppermann, R. and Simm, H. “Adaptability: user-initiated
individualization”. In Oppermann, R. (Ed.), Adaptive User Support:
Ergonomic Design of Manually and Automatically Adaptable
Software, Lawrence Erlbaum Associates, pp. 14-64, 1994.

[25] M. Baker and H. A. Yanco, “Autonomy Mode Suggestions for
Improving Human-Robot Interaction”, in proc. of the IEEE Conf. on
Systems, Man and Cybernetics, 2004.

29

