
HAL Id: lirmm-00548738
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00548738v1

Submitted on 20 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Differential Power Analysis Enhancement with
Statistical Preprocessing

Victor Lomné, Amine Dehbaoui, Philippe Maurine, Lionel Torres, Michel
Robert

To cite this version:
Victor Lomné, Amine Dehbaoui, Philippe Maurine, Lionel Torres, Michel Robert. Differential Power
Analysis Enhancement with Statistical Preprocessing. DATE: Design, Automation and Test in Europe,
2010, Dresden, Germany. pp.1301-1304, �10.1109/DATE.2010.5457007�. �lirmm-00548738�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00548738v1
https://hal.archives-ouvertes.fr


Differential Power Analysis Enhancement

with Statistical Preprocessing

Victor Lomné, Amine Dehbaoui, Philippe Maurine, Lionel Torres, Michel Robert

LIRMM, UMR 5506, University Montpellier 2 - CNRS, 161, rue Ada, 34392 Montpellier, France

Email: {firstname.lastname}@lirmm.fr

Abstract—Differential Power Analysis (DPA) is a powerful
Side-Channel Attack (SCA) targeting as well symmetric as
asymmetric ciphers. Its principle is based on a statistical treat-
ment of power consumption measurements monitored on an
Integrated Circuit (IC) computing cryptographic operations. A
lot of works have proposed improvements of the attack, but no
one focuses on ordering measurements. Our proposal consists
in a statistical preprocessing which ranks measurements in a
statistically optimized order to accelerate DPA and reduce the
number of required measurements to disclose the key.

I. INTRODUCTION

In past decades, cryptologists have mainly focused on the

theoretical security of cryptographic algorithms. But since the

90’s, more and more embedded systems, like smart-cards,

are used to manage sensible data and therefore integrate

cryptosystems. These embedded systems are generally built in

Complementary Metal Oxide Semi-conductor (CMOS) tech-

nology, and this technology has an interesting property from

a cryptanalytic point-of-view : physical leakages emanating

from the device are correlated with processed data. Then

researchers have focused on exploiting these leakages as a

new source of information to disclose the secret key used to

cipher sensible data.

As a result, different attacks exploiting the computational

time (Timing Attack (TA) [1]), the power consumption (Differ-

ential Power Analysis (DPA) [2]) or electromagnetic radiations

of the device (Differential ElectroMagnetic Analysis (DEMA)

[3]) appeared. This class of attacks has been called the Side-

Channel Attacks (SCA).

In this context, a lot of improvements have been proposed to

enhance the original DPA algorithm, like multi-bits DPA [4]

[5], Correlation Power Analysis (CPA) [6], Partition Power

Analysis (PPA) [7], or Mutual Information Analysis (MIA)

[8]. All these enhancements aim at improving the selection

function, the backbone of the attack, describing the way to

correlate physical leakages with processed data. When con-

sidering all the proposed improvements of the original DPA,

no one focuses on ordering power consumption measurements

(also called power consumption curves (PCCs)). Indeed,

using, at first, PCCs with the most useful informations on

processed data should accelerate the attack and decrease the

number of PCCs required to guess the key. Then our proposal

is a statistical technique which aims at selecting PCCs with

the greatest information leakage, and ordering them in a

decreasing order of information leakage.

In the scope of the SCA, an international competition

has been launched at CHES’08, the dpacontest [9], which

consists in providing PCCs monitored on a hardware Data

Encryption Standard (DES) co-processor, and where the goal

of the challengers is to propose the fastest attack to retrieve

the secret key. The criterion used to compare the different

implementations is the number of PCCs required to retrieve

the full key of the DES.

To validate our proposal, we have led multi-bits DPA

and CPA on PCCs provided by the dpacontest, first using

a random order, and secondly using our algorithm which

provides a statistically optimized order. Results show that our

technique reduces significantly the number of PCCs required

to guess the key involved in a DES encryption.

The outline of the article is the following : our statistical

preprocessing technique is presented in part 2, and the part 3

gives concrete results applied on measurements provided by

the dpacontest. Finally, part 4 concludes the article.

II. STATISTICAL PREPROCESSING TECHNIQUE

A. Intuitive idea

In the rest of the article, the DES will be used as example,

because of it is the well-known block cipher and principles

of SCA stay the same on others cryptographic algorithms.

Moreover, we consider, for convenience, that the adversary

is in the case of a known-plaintext attack and tries to guess

the round-key 1 of the DES (the remaining 8 bits could be

found with a bruteforce attack).

Because of the set of all possible values for the round-key

1 is too big to test all of them, the adversary divides usually

the round-key 1 in 8 parts of 6 bits (called here sub-key) and

attacks each sub-key independently and sequentially.

In the classical DPA attack, the adversary computes, for

each sub-key hypothesis, a differential curve following equa-

tion (1) [2]:

∆Ks
[j] =

∑N

i=1
D(PTIi, Ks)Ti[j]

∑N

i=1
D(PTIi, Ks)

(1)

−
∑N

i=1
(1 − D(PTIi, Ks))Ti[j]

∑N

i=1
(1 − D(PTIi, Ks))

= ǫ1 − ǫ2

where Ks is the sub-key hypothesis, ∆Ks
[j] is the j-th

sample of the differential curve, N is the number of PCCs
used, PTIi is the i-th Plaintext Input, Ti[j] is the j-th sample

 

 
 
 
 
978-3-9810801-6-2/DATE10 © 2010 EDAA 
 

 



of the PCC and D the decision function ranking PCCs in

sets A or B, also called selection function.

If the hypothesis of the sub-key is good, a spike will

appear at the time index of the differential curve, where the

Intermediate Value (IV ) is computed.

The number of PCCs necessary to perform the attack

depends mainly on the measurements conditions. From (1)

and for the spike to be identified

ǫ1 − ǫ2 > σ/
√

N (2)

must hold [10], where σ represents the noise and N the

number of necessary PCCs. To decrease N, an adversary

would like to amplify the difference ǫ1 − ǫ2 in (2).

Intuitively, an intermediate value where the four bits switch

will induce the maximum of power consumption than these

four bits can consume on the PCC at the time index where

the IV is computed. Inversely, an intermediate value where

no bit switch will induce the minimum of power consumption

than these four bits can consume on the PCC at the same

time index.

Thus, if the adversary could choose PTIs in order to obtain

only IV s where all the bits switch and others where no

one switch, he should obtain PCCs with greater spikes and

others with smaller spikes than randomly, and maximize the

difference in (2). But our improvement does not concern a

chosen-plaintext attack.

Rather than optimizing number of switching bits of IV s,
we aim at selecting PCCs with greatest and smallest spikes

during the attacked clock cycle. Then, begining the attack

by processing first these selected PCCs will increase the

difference ǫ1 − ǫ2, and verify (2) with less PCCs than in

the case of random selection of PCCs.
The only requirement necessary for this idea is to know

before launching the preprocessing where is the targeted clock

cycle. But applying a Simple Power Analysis (SPA) on one of

the measured PCCs often allows to identify the clock cycle

matching with the first or last round of the DES. Another way

to identify this clock cycle is to perform a DPA with few

PCCs, and select time indexes where spikes appear (even if

these spikes do not match with the good key hypothesis).

Note that two cases have to be considered. The first one

concerns implementations where the whole round is computed

as the same time (i.e. the data path has a size of 64 bits

in the case of the DES). This is the case of most hardware

implementations, for instance the co-processor used for the

dpacontest. The second case concerns software implementa-

tions, especially on 8 bits processors, where the data path is

8 bits sized. Our idea has been applied on co-processors of

the first case, that means that the R register is fully updated

during the same clock cycle (the 8 sboxes are computed at the

same time). So PCC with the greatest spike at the attacked

clock cycle will not mean that the whole 4 bits of the 8

parts of the R register switch. But statistically, this PCC
has more bits switching than another one where the attacked

spike has a value closed to the mean value of all considered

spikes. Our idea could be applied on implementations with 8

Algorithm 1 PDF as maximum of the spike

Require: N PCCs, tMin, tMax
Ensure: N ranked PCCs
1: initialize tab1 as array Nx2

2: initialize tab2 as array Nx1

3: for i = 1 to N do

4: tab1[i, 1] = maxt∈{tMin,tMax}(PCCi[t])
5: tab1[i, 2] = i
6: end for

7: sort(tab1) following the first column

8: for i = 1 to N/2 do

9: tab2[2i − 1, 1] = tab1[i, 2]
10: tab2[2i, 1] = tab1[N − i + 1, 2]
11: end for

12: return tab2

bits data path, but we should adapt the principle on software

implementations. For instance we could sum the eight spikes

where 4 bits values linked to sboxes are computed, and

considering this sum rather than the value of one spike.

From this intuitive idea, we propose two techniques to

select and rank PCCs with greatest and smallest spikes at

the attacked clock cycle. One can look for the maximum of

the spike, or for the integral of the parabola drawn by the

spike. Formally, considering the maximum or the integral as a

random variable called X , we aim at evaluating the probability

density function (PDF) of each observation of X . Thus, we

select for half observations of X with the greatest PDF, and

for half those with the smallest PDF.

B. Algorithm 1 : PDF as maximum of the spike

This first technique ranks PCCs following the decreasing

maximum amplitude of the targeted spike. Thus, the algorithm

selects PCC with the greatest amplitude as first PCC in the

new statistically optimized order, then PCC with the smallest

amplitude as second PCC in the new order, PCC with the

second greatest amplitude will be the third PCC in the new

order, etc ... That gives the algorithm 1.

C. Algorithm 2 : PDF as integral of the parabola drawn by

the spike

The second technique follows the same algorithm as above,

but rather than ranking PCCs following the decreasing maxi-

mum amplitude of the targeted spike, we compute the integral

of the parabola drawn by the spike. More precisely, for all

the considered PCCs, we compute the average value of the

targeted spike. Then we compute the area of the spike above

the horizontal line with ordonnate equal to the computed

average.This horizontal line allows to evaluate the noise and

static consumption threshold. This technique is described in

algorithm 2.

III. CONCRETE RESULTS

The dpacontest provides PCCs of a hardware Data Encryp-

tion Standard (DES) co-processor. We have used the campaign

secmatv1 composed of 81089 PCCs.



Algorithm 2 PDF as integral of the parabola drawn by the

spike

Require: N PCCs, tMin, tMax
Ensure: N ranked PCCs
1: initialize tab1 as array Nx2

2: initialize tab2 as array Nx1

3: for i = 1 to N do

4: tab1[i, 1] = meant∈{tMin,tMax}(PCCi[t])
5: end for

6: m̄ = mean(tab1[:, 1])
7: for i = 1 to N do

8: for j = tMin to tMax do

9: if (PCCi[j] < m̄)&(PCCi[j + 1] > m̄) then

10: t1 = j
11: end if

12: if (PCCi[j] > m̄)&(PCCi[j + 1] < m̄) then

13: t2 = j
14: end if

15: end for

16: tab1[i, 1] =
∫ tMax

tMin
(PCCi[t])dt−

m̄ ∗ (PCCi[t2] − PCCi[t1])
17: tab1[i, 2] = i
18: end for

19: sort(tab1) following the first column

20: for i = 1 to N/2 do

21: tab2[2i − 1, 1] = tab1[i, 2]
22: tab2[2i, 1] = tab1[N − i + 1, 2]
23: end for

24: return tab2

Note that our attacks are performed under the following

conditions :

• we apply multi-bit DPA or CPA.

• we guess 6 bits of sub-key at a time

• we regard the Hamming Distance between L15 and L16

• we attack the 16th round of the DES, and we focuse the

key search on time indexes 14450 until 14550

To evaluate the efficiency of our proposal, we have led 2

kind of experiments. The first one evaluate the average success

rate of the preprocessing methods in comparison with classical

attacks on a fixed number of PCCs. The second shows that

the efficiency of our techniques increases with the number

of PCC preprocessed. Note that the computational time for

the two techniques is very small, for instance ranking some

hundreds of PCCs needs less than 10 seconds in average.

A. Evaluate the average success rate of the methods

Following guidelines given in [11], a smart way to compare

the effectiveness of different SCA methods is to evaluate the

success rate of the attack. Thus we have applied the following

experiment 100 times :

• create a random order of 500 PCCs
among the whole 81089 PCCs,

• apply DPA and CPA on this random order,

Fig. 1. average success rate of DPA (upper) and CPA (lower), without
preprocessing (dark solid line), with method 1 preprocessing (cyan solid line),
with method 2 preprocessing (dashed line)

• apply algorithms 1 and 2 on the random order

to generate two statistically optimized orders,

• apply DPA and CPA on the two new orders,

By this way we have computed the average success rate

of each attack (DPA and CPA) and for each method (without

preprocessing, applying method 1 before attacking and using

method 2 before attacking). Results are drawn on figure 1,

the upper graph is the evolution of the average success rate

for a DPA attacks, whereas CPA attacks success rates are

drawn in the lower graph. On the two graphs the dark and

solid line corresponds to the results obtained with classical

DPA and CPA (without preprocessing), the cyan and solid

line is the evolution of the method 1, whereas the dashed line

corresponds to the results of the method 2.

A classical DPA or CPA discloses the full round-key 16 in a

bit less than 400 PCCs in average, whereas our preprocessing

techniques allow to reach an average success rate of 1 with

about 250 PCCs. Note that success rates of DPA an CPA are

closed, without and with preprocessing.

B. Efficiency functions on number of PCCs

We would also know, functions on N, the evolution of the

effectiveness of our two ranking algorithms. Then we have

led DPA and CPA on the naive order, corresponding to the

database order as PCCs are provided on the website of the

dpacontest. The multi-bit DPA discloses the round-key 16 with

260 PCCs, whereas the CPA needs 213 PCCs to guess the

key.

Then, we have selected the 200 first PCCs of the database

order, and we have applied the two algorithms. With the



Fig. 2. evolution of the number of PCCs necessary to disclose the key
functions on the number of PCCs used to generate the statistically optimized

orders. DPA (upper) and CPA (lower). Solid lines correspond to method 1
whereas dashed lines to method 2

obtained two new orders, we have performed DPA and CPA.

Then we have done the same experiment, but using the 300

first PCCs of the database order, etc ... Figure 2 draws the

evolution of the effectiveness of the two techniques functions

on the number of PCCs used to compute the statistically

optimized order.

More precisely, figure 2 summarizes results, the abscissa

axis represents the number of PCCs used to generate the

two statistically optimized orders, whereas the ordonnate axis

represents the number of PCCs necessary to disclose the

round-key 16. The upper figure represents results for DPA,

where the solid line correpsonds to method 1 and dashed line

to method 2, whereas the lower figure draws results for CPA.

This experiment shows that the efficiency of our two pre-

processing methods increases with the number of PCCs used

to generate the statistically optimized orders. For instance,

whereas the DPA without preprocessing requires 260 PCCs
to disclose the key, method 1 applied on 30000 PCCs allows

to guess the key with only 12 PCCs applying the same DPA.

IV. CONCLUSION

We have proposed a preprocessing technique for DPA

attacks which ranks PCCs in a statistically optimized order,

and which allows to disclose key of a cryptosystem with less

PCCs than using a random order (or the acquisition order).

From this idea we have given two methods, one focusing

on the maximum of the attacked spike and another focusing

on the integral of the parabola drawn by the spike. These

techniques are straightforward to implement and need a small

computational time. Experiments made on a hardware DES co-

processor show that we reduce greatly the number of PCCs
necessary to guess the key, and show also that the efficiency

of this preprocessing technique increases with the number

of PCCs preprocessed. This technique could also enhance

attacks on protected implementations trying to balance the

leakage, like Dual-Rail Precharge logic styles.

ACKNOWLEDGMENT

This work was partially supported by the CALISSON

Project and the International ”Secure Communicating Solu-

tions” Cluster. We would also thank Zeqin Wu for their

valuable comments.

REFERENCES

[1] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems,” in CRYPTO, 1996, pp. 104–113.

[2] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Proc.

19th International Conference on Cryptology (CRYPTO), 1999, pp. 388–
397.

[3] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in Proc. 3rd Workshop on Cryptographic Hardware

and Embedded Systems (CHES), 2001, pp. 251–261.
[4] T. Messerges, E. Dabbish, and R. Sloan, “Investigations of power

analysis attacks on smartcards,” in Proc. of the USENIX Workshop on

Smartcard Technology on USENIX Workshop on Smartcard Technology

(WOST), 1999, pp. 17–17.
[5] R. Bevan and E. Knudsen, “Ways to enhance differential power analy-

sis,” in Proc. 5th International Conference on Information Security and

Cryptology (ICISC), 2002, pp. 327–342.
[6] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with

a leakage model,” in Proc. 7th Workshop on Cryptographic Hardware

and Embedded Systems (CHES), 2004, pp. 16–29.
[7] T. Le, C. Canovas, and J. Clédière, “An overview of side channel analysis

attacks,” in Proc. of the 2008 ACM symposium on Information, computer

and communications security (ASIACCS), 2008, pp. 33–43.
[8] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, “Mutual information

analysis,” in Proc. of the 10th international workshop on Cryptographic

Hardware and Embedded Systems (CHES), 2008, pp. 426–442.
[9] “dpacontest 2008/2009, http://www.dpacontest.org.”
[10] C. Clavier, J. Coron, and N. Dabbous, “Differential power analysis in

the presence of hardware countermeasures,” in Proc. of the Second

International Workshop on Cryptographic Hardware and Embedded

Systems (CHES), 2000, pp. 252–263.
[11] F. Standaert, T. Malkin, and M. Yung, “A unified framework for the anal-

ysis of side-channel key recovery attacks,” in Proc. of the 28th Annual

International Conference on Advances in Cryptology (EUROCRYPT),
2009, pp. 443–461.


	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index




