
HAL Id: lirmm-00548783
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00548783

Submitted on 21 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating the Impact of Task Migration in
Multi-Processor Systems-on-Chip

Gabriel Marchesan Almeida, Sameer Varyani, Remi Busseuil, Gilles Sassatelli,
Pascal Benoit, Lionel Torres, Everton Alceu Carara, Fernando Gehm Moraes

To cite this version:
Gabriel Marchesan Almeida, Sameer Varyani, Remi Busseuil, Gilles Sassatelli, Pascal Benoit, et
al.. Evaluating the Impact of Task Migration in Multi-Processor Systems-on-Chip. SBCCI 2010 -
23rd Symposium on Integrated Circuits and Systems Design, Sep 2010, Sao Paulo, Brazil. pp.73-78,
�10.1145/1854153.1854174�. �lirmm-00548783�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00548783
https://hal.archives-ouvertes.fr

Evaluating the Impact of Task Migration in Multi-Processor
Systems-on-Chip

Gabriel Marchesan Almeida, Sameer Varyani, Rémi Busseuil,
Gilles Sassatelli, Pascal Benoit, Lionel Torres

Laboratory of Informatics, Robotics and Microelectronics of Montpellier (LIRMM)
Department of Microelectronics
161 Rue Ada, Cedex 5, 34095

Montpellier, France
{marchesan, varyani, busseuil, sassatelli, benoit, torres}@lirmm.fr

Everton Alceu Carara, Fernando Gehm Moraes
Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Faculty of Informatics
Av. Ipiranga, 6681 - Partenon - CEP: 90619-900

Porto Alegre, RS, Brazil
{carara, moraes}@pucrs.br

ABSTRACT
This paper presents a Multi-Processor System-on-Chip plat-
form which is capable of load balancing at run-time. The
system is purely distributed in the sense that each processor
is capable of making decisions on its own, without having
relying by any central unit. All the management is ensured
by a very tiny preemptive RTOS (run-time operating sys-
tem) running on every processor which is mainly responsible
for running and distributing tasks among the processing el-
ements (PEs). The goal of such strategy is to improve the
performance of the system while ensuring scalability of the
design. In order to validate the concepts, we have conducted
some experiments with a widely used multimedia applica-
tion: the MJPEG (Motion JPEG) decoder. Obtained re-
sults show that the overhead caused by the task migration
mechanism is amortized by the gain in term of performance.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real- time and embedded systems; C.2.4 [Computer-Com-
munication Networks]: Distributed Systems—Network
operating system; C.1.2 [Processor Architectures]: Mul-
tiple Data Stream Architectures (Multiprocessors)—Inter-
connection architectures

General Terms
Design, Experimentation, Performance

Keywords
MPSoC, task migration, homogeneous, adaptive, NoC, dis-
tributed memory, RTOS

1. INTRODUCTION
Multi-Processor Systems-on-Chip (MPSoC) are attrac-

tive candidate architectures for multimedia processing as
multimedia schemes generally can be partitioned in data-
dominated functions, which can be processed in parallel on
different cores. MPSoCs may be classified into two differ-
ent categories: heterogeneous and homogeneous architec-
tures. Heterogeneous architectures achieve a better perfor-
mance/power consumption trade-off at the cost of reduced
flexibility. Homogeneous architectures on their side open in-
teresting perspective in the area of on-line adaptation such
as workload balancing [1] or fault tolerance thanks to their
intrinsic functional redundancy.

Since this work targets massively parallel on-chip multi-
processor systems, scalability is a major concern in the ap-
proach. In the direction of scalable systems we have develo-
ped a homogeneous MPSoC architecture with distributed
memory making use of a message passing programming
model.

Given the large variety of possible use cases that these
platforms must support and the resulting workload variabil-
ity, offline approaches are no longer sufficient as application
mapping paradigms, because they do not allow coping with
time changing workloads. Furthermore, the large number
of parameters that play a role on the platform performance
makes it difficult to estimate the best system response at
design time.

In [2] we have proposed an adaptive strategy which is
responsible for making decisions at run-time. Decisions are
taken by processors in a distributed fashion and relate mostly
to application performance. This present paper puts focus
on the task migration strategy, and mostly addresses both
the benefits brought by this technique as well as the associa-
ted performance penalty. The new architecture relies on a

SBCCI’10, September 6–9, 2010, São Paulo, Brazil.

RTOS with support for semaphores, mutexes and task prior-
ity based scheduling algorithm. Moreover, a tiny implemen-
tation of a communication stack comprising UDP TCP/IP
protocols is available.

The remainder of the paper is organized as follows: Sec-
tion 2 presents some of the existing software/hardware ar-
chitectures that enable task migration in the context of MP-
SoC. Section 3 explains the task migration support which is
the basis of this work. In Section 4 experimental results are
presented while conclusions are drawn in Section 5.

2. RELATED WORKS
In recent years due to the growing interest for MPSoCs,

task migration mechanisms have been explored in order to
deal with problems related to load balancing among PEs.
Some works have adopted the benefits of such strategies for
thermal balancing [3][4][5].

2.1 Task migration using shared memory
For shared memory systems such as today’s multicore

computers, task migration is facilitated by the fact that no
data or code has to be moved across physical memories:
since all processors are entitled to access any location in the
shared memory, migrating a task comes down to electing a
different processor for execution. There exist several efficient
implementations on general purposes OS such as Windows
or Linux.

Task migration has been explored for MPSoCs, notably
based on locality considerations [6] for decreasing commu-
nication overhead or power consumption. In [7], authors
present a migration case study for MPSoCs that relies on
the µClinux operating system and a check pointing mecha-
nism. The system uses the MPARM framework [8], and
although several memories are used, the whole system sup-
ports data coherency through a shared memory view of the
system.

In [9] authors propose to implement a scalable shared me-
mory many-cores architecture with global cache coherence.
The architecture is built around 4096 cores which makes use
of a logically shared memory but physically distributed, with
cache coherence enforced by hardware, using a directory-
based protocol.

2.2 Task migration using distributed memory
In the case of distributed memory MPSoCs, both pro-

cess code and state have to be migrated from a processor
private memory to another, and synchronizations must be
performed using exchanged messages. While this proves
straightforward in typical general purpose computers thanks
to the presence of a memory management unit (MMU), im-
plementing task migration on tiny MMU-less embedded pro-
cessors is challenging.

In [10] authors propose a policy which exploits run-time
temperature as well as workload information of streaming
applications to define suitable run-time thermal migration
patterns. In their approach each processor relies on having
a replica of the task in memory. When the migration occurs,
the processor stops the execution of the task and the proces-
sor in the destination starts running its own replica. Their
architecture is based on distributed memory and the pro-
cessors explicitly communicate with each others by means
of the shared memory.

This mechanism works well but is very limited in terms of
memory overhead once every processor has to have a copy
of the task in its memory.

The question which may arise when using shared memory
for enabling task migration is concerning the scalability of
the system. There is a strong tendency for the next gene-
ration of homogeneous MPSoC in using systems with dis-
tributed memory targeting scalable and massively parallel
architectures.

A number of work in the literature based on distributed
memory systems has been using shared memory as a mean
for enabling task migration [7][11][12]. In [11] each core runs
a single operating system instance in its logical private me-
mory. Processor cores execute tasks from their private me-
mory and explicitly communicate with each others by means
of shared memory. The target platform uses a shared bus
as interconnect.

In [13] a dynamic task allocation strategy is proposed.
The work evaluates task allocation strategies based on bin-
packing algorithms in the context of MPSoCs. The mecha-
nism adopted is based on a copy model. The whole context
(code, data, stack, and contents of internal registers) is mi-
grated and there is no task execution during the transfer.
The interprocessor communication is based on send/receive
primitives. However, in this work neither explanation about
the task migration protocol nor the impact in term of per-
formance of such mechanism is given.

Taking into account the future homogeneous MPSoC sys-
tems tendency, scalable architectures with purely distributed
memory system are suitable. To the best of our knowledge,
our architecture is the only one with a purely distributed
memory system in which does not rely on using shared me-
mory for enabling task migration. Instead, it uses the NoC
as a communication link where tasks are transmitted during
the migration process.

3. TASK MIGRATION SUPPORT
To handle dynamic conditions where processors may be-

come overloaded very rapidly, we implemented a task mi-
gration mechanism which enables this feature. Migration
policies can exploit this mechanism to perform load balan-
cing for achieving better performance or for saving energy.

3.1 Architectural description
The architecture is made of a homogeneous array of Pro-

cessing Elements (PEs) communicating through a packet-
switching network. For this reason, the PE is called NPU
(Network Processing Unit). Each NPU has multitasking
capabilities which enable time-sliced execution of multiple
tasks. This is supported by a tiny preemptive multitask-
ing Operating System which runs on each NPU. This sys-
tem further provides usual services such as queues, threads,
semaphores and mutexes. The entire operating system has
a memory footprint of 55KB, which comprises the dynamic
task loader we developed to the purpose of enabling task
migration strategies described in this paper. The structural
view of the platform is depicted in Figure 1.

The NPU is built of two main layers, the network layer
and the processing layer. The network layer is essentially a
compact routing engine based on the Hamiltonian Routing
Algorithm. The Network-on-Chip (NoC) used in this work
was proposed in [14].

The purpose of this paper being to study and analyze

Network Layer

Processing Layer

CPU RAM

UART Timer NI

T2

T3

T1

...

Task 2

Task 3

µKernel

Figure 1: Structural View of the Platform

the performance penalty induced by task migration and not
inter-processor communication, we use in all experiments a
NoC which features a bandwidth largely over dimensioned
with respect to the processor performance. In the validation
scenarios we use a 2× 2 mesh-topology network.

Packets are read from incoming physical ports, then for-
warded to either outgoing ports or the processing layer.
Whenever a packet header specifies the current NPU ad-
dress, the packet is forwarded to the network interface (NI
in Figure 1). The network interface buffers incoming data in
a small hardware FIFO and simultaneously triggers an in-
terrupt to the processing layer. The interrupt then activates
data demultiplexing from the single hardware FIFO to the
appropriate software FIFO as illustrated in Figure 2.

Figure 2: Functional View of a NPU

The processing layer is based on a simple and compact
RISC microprocessor, its static memory, and a few peri-
pherals (one timer, one interrupt controller, one UART) as
shown in Figure 1. The processor used has a compact ins-
truction set comparable to a MIPS-1. It has 3 pipelines
stages, no cache, no Memory Management Unit (MMU), and
no memory protection support in order to keep it as small as
possible. A multitasking tiny Real-Time Operating System
(RTOS) implements the support for time-multiplexed exe-
cution of multiple tasks. The original version of the RTOS
as well the RTL description of the processor used as part of
this work are available at [15].

3.2 Memory management strategy
As described in Section 2.2 implementing task migration

mechanisms in architectures without MMU is a complex
task. To provide task migration support in such architec-
tures without having to rely on using task replication ap-
proach, the system has to be capable of loading task dynami-
cally while ensuring memory protection in order to prevent
task access memory that has not been allocated to it. Basi-
cally there are two main ways to define the system memory
space for storing tasks.

3.2.1 Paging
The first one is called paging and consists on dividing

the memory into equal, small pieces, called pages. Virtual
memory makes it possible to have a linear virtual memory
address space and to use it to access blocks fragmented over
physical memory address space. The first problem when
using this approach is the fact that for every application it
is necessary to tune the page size in order to be big enough
for storing tasks. Due the fact the applications may vary a
lot in terms of size, this approach becomes not scalable since
a huge amount of memory can be wasted.

3.2.2 Dynamic memory allocation
The second way is to use mechanisms that allow to dyna-

mically allocate/deallocate memory. This approach is more
convenient when scalability is targeted. Therefore it is more
difficult to manage once the RTOS has to resolve memory
address references. By means of using a mechanism which
has a linked list of occupied memory address the RTOS can
avoid memory conflicts. The problem by using such ap-
proach is the fact that as soon as we have tasks migrating
very often, the system memory becomes fragmented. There-
fore this approach still looks more flexible and scalable when
comparing to the paging mechanism.

Since we target many-cores architectures and then scala-
ble systems, we have chosen the second approach. As the
MMU is not present in the system we had to use a feature
supported by the GCC compiler that enables to emit relo-
catable code named Position Independent Code (PIC). This
feature is generally used for shared libraries and generates
only relative jumps and accesses data locations and func-
tions using a Global Offset Table (GOT).

3.3 Task migration protocol
The task migration protocol is depicted in Figure 3. In

this scenario the considered application is split into 3 tasks
(T1, T2, T3). At the beginning of the processing tasks are
running in different NPUs(0...3). At a given moment NPU1

decides migrating T2 to NPU0 (Step 1). The NPU1 sends a
control packet to the master of the cluster (NPU1) asking
authorization for performing task migration (Step 2). It is
important to highlight that NPU0 is master in the sense that
there is a global routing table1 in this node, but each NPU
takes its own decisions, characterizing a purely distributed
system. The master of the cluster checks in its routing table
if there is one or more tasks sending data to the task which is
supposed to be migrated. In this case, T1 and T3. Then, the
master sends a control packet to these tasks asking the tasks
to stop sending packet to T2 so that migration can be ini-
tiated. In this paper we have performed all the experiments
in a single cluster built of 4 nodes. For future experiments
where larger MPSoCs architectures will be used the model
based on multi-clusters will be adopted.

Immediately after receiving the control packet from the
Master, T1 and T3 stop sending data to T2 (Step 4). Then,
T2 reads out the content of its FIFOs and then is migrated
to NPU0 (Step 5). During the migration process only the
opcode of the task is sent over the NoC. Further, as the pro-
cessor is not equipped with a MMU that handles virtual to
physical address translation, migrating task context is not
supported in the system. Therefore application tasks that

1Data structure which stores task locations

Figure 3: Overview of the Task Migration Protocol

maintain parameters across processed blocks (such as adap-
tive filters) cannot be migrated. This is rarely limitative as
most streaming applications do not require this. The next
step is registering the task into the memory and inserting
it into the scheduling list. This process is done as soon as
the task reaches the destination. Then, in (Step 6) the mas-
ter node sends a control packet to T1 and T3 informing that
T2 has been migrated and then the data transfer can be
resumed. This control packet carries both the message for
resuming sender tasks and new task location.

Note that compared to other approaches [12], this pro-
tocol implements a non-packet-loss control. The packets
transmitted during the migration process will be received
and processed.

4. EXPERIMENTAL RESULTS
In this section we evaluate the overhead induced by the

proposed task migration mechanism. In order to fairly as-
sess the performance overhead induced by the proposed task
migration strategy, experiments are conducted in best ef-
fort mode, therefore all implementations aim at maximizing
performance rather than ensuring quality of service. This
allows stressing the architecture as much as possible, hence
migration cost become prominent rather than compensated
by transient increase in CPU usage.

For performing the experiments we have used ModelSim
as SystemC/VHDL simulator. The entire architecture is
described in both SystemC and VHDL RTL, except the NoC
which is not available in SystemC. The MIPS processor is
coded based on an ISS (Instruction Set Simulator), built
around of a SystemC wrapper which connects the processor
to the rest of the components in the architecture.

Multimedia applications are characterized by soft real-
time requirements. As a consequence, migration overheads
must be carefully evaluated to prevent deadline misses when
moving processes between nodes [11]. In order to validate
our task migration mechanism and perform our experiments,
we have implemented a MJPEG (Motion JPEG) decoder.

4.1 MJPEG profiling and partitioning
In order to better measure the workload of each function

in the MJPEG application, we have performed an appli-
cation profiling. It is possible to clearly identify the three
main functions in the MJPEG decoder (IVLC, IDCT and
IQUANT) as well the most critical (IVLC). Based on this
information, we have partitioned the MJPEG decoder by

Table 1: Static mappings for the MJPEG decoder
Mapping NPU

0 1 2 3
SM1

Tasks

T2, T3, T4 - - T1

SM2 T3, T4 T2 - T1

SM3 T2 T3 T4 T1

SM4 T2, T4 T3 - T1

SM5 T2, T3 T4 - T1

representing it as a task graph built of four tasks (T1 →
Sender, T2 → IVLC, T3 → IQUANT and T4 → IDCT).

4.2 MJPEG decoder statically mapped
Aiming to compare static mappings against dynamic map-

ping mechanisms we have created five different scenarios
which use static mapping (SM1...5). Table 1 presents the
placement for the tasks. For all the scenarios we have con-
sidered putting T1 in NPU3. This task is not part of the
MJPEG decoder itself and it only responsible for feeding
the decoder with the input streams. In the first mapping
(SM1) all the three tasks are running in the NPU0, in the
second mapping (SM2) the most critical task (IVLC) is run-
ning alone in NPU1, etc.

Figure 4 shows the performance of the MJPEG decoder
when mapped to different NPUs. It is important to observe
that in the worst case (SM5) the communication cost plays
an important role in the performance of the system. In the
scenario which achieves the best performance (SM2), the
most critical task is mapped into a dedicated NPU.

15 20 25 30
2

2.5

3

3.5

4

4.5

5

TIME (ms)

T
H

R
O

U
G

H
P

U
T

 (
M

B
/s

)

MJPEG MULTI−TASK PROCESSOR (600MHz)

STATIC MAPPING (SM1)
STATIC MAPPING (SM2)
STATIC MAPPING (SM3)
STATIC MAPPING (SM4)
STATIC MAPPING (SM5)

Figure 4: Different Static Mappings

It is very clear that whenever critical tasks are mapped
into dedicated NPUs performance is improved, the problem
is to evaluate the performance for every possible mapping
when the number of tasks and the complexity increases. The
number of possible mappings is given by NT , where N re-
presents the number of NPUs and T the number of tasks.
So, for a system with 4 processors and 20 tasks, the number
of possible combinations would be equal to 1.20e+24, which
makes the off-line mapping estimation unfeasible.

4.3 MJPEG decoder dynamically mapped
In order to facilitate the comprehension of our task mi-

gration mechanism we have defined some terms:

• MT : The task candidate to be migrated;

• Pi,j : List of predecessors tasks of task j;

• Si,j : List of successors tasks of task j;

• MTj : Timestamp corresponding to task migration me-
chanism triggered for task j;

• MSj : Timestamp corresponding to task j migration
start;

• MFj : Timestamp corresponding to task j arrival at
destination NPU, comprising operating system task
registration in the ready list;

Aiming to deal with such huge amount of possibilities, the
system has to be capable of adapting at run-time. The basic
mechanism for enabling adaptability in a purely distributed
MPSoC system is through the task migration. Aiming to
evaluate the overhead caused by the system when using such
mechanism we have created a scenario as follows:

At the beginning of the processing all three tasks of the
MJPEG application are mapped to NPU0. Additional to
them, there is a task responsible for feeding the system
with the stream to be decoded. Then the most critical task
(IVLC) is migrated to NPU1. The selection of the NPU
where the task will be migrated is beyond the scope of this
paper. The task migration mechanism is triggered from a
thread defined in the RTOS. Figure 5 shows the throughput
during the task migration process.

At the moment the task migration process is triggered,
the master node asks all predecessor tasks (Pi,2) of M2 to
stop sending packets. At this moment the task which feeds
information to the system stops sending packets to M2.

At MS2 = 16ms NPU0 starts transmitting T2 over the
NoC. From this moment up to MF2, we clearly see the per-
formance decreases. Once received and registered in memory
(MF2), T2 is ready to be scheduled. Our task migration pro-
tocol implements a non-packet-loss control, before migrating
a given task all the data in its incoming FIFO are read out
and processed. After task has been migrated, Pi,2 resumes
sending packets to T2.
After the FIFO of T2 has been fed up the performance

gets increased going from 0.9MB/s to around 4MB/s. In
average the gain in term of performance it is about 25%
when compared to the initial static mapping (3MB/s).

To the purpose of assessing the penalty induced by the
migration in the used best-effort implementations we con-
ducted experiments for finding the break-event point.

Figure 5 shows a plot in which we consider a buffer which
is fed by the MJPEG processing pipeline output data. Data
are read out from that buffer at a rate corresponding to
3MB/s, aligned to the first performance plateau.

During this phase, buffer filling is therefore constant as
data are written and read out at the same rate. At MT2 =
7.5ms migration decision is issued, which translates in an
immediate drop in throughput and therefore buffer filling
that extends until the end of the migration process. As soon
as the migration is completed throughput rapidly reaches a
higher plateau that in turn translates in a rapid increase
in buffer filling. The initial buffer level is reached at time
42ms and at that time the penalty incurred by the migration

0 5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

TIME (ms)

T
hr

ou
gh

pu
t (

M
B

/s
)

MJPEG MULTI−TASK PROCESSOR (600MHz)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

F
IF

O
 F

ill
in

g
(N

um
be

r
of

 P
os

iti
on

s)

DYNAMIC MAPPING
MIGRATION COST

Figure 5: Throughput During Task Migration

is fully compensated. The break-even point is therefore in
the order of 34.5ms in this scenario. Figure 6 presents the
timing jitter for the dynamic mapping.

20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

PACKET INTERVAL (UNITS)

P
R

O
C

E
S

S
 T

IM
E

 (
m

s)

MJPEG MULTI−TASK PROCESSOR (600MHz)

DYNAMIC MAPPING (DM1)

Figure 6: Timing Jitter (Dynamic Mapping)

We can observe that at the beginning of the processing,
before triggering the task migration, the timing jitter oscil-
lates. The reason is that since all the tasks share the same
NPU there is no pipeline and then the packet arrival is not
constant. During the task migration process the jitter is in-
creased due to the fact that the execution flow is stopped.
At the moment of the task migration we can clearly observe
the timing jitter decreasing and then getting stable. This
is explained by the fact that the new mapping provides a
better task mapping.

Figure 7 presents three different mappings for the MJPEG
application previously used. There are two static mappings
without task migration and one dynamic mapping with task
migration. For the two static mappings we have used two
with best/worst performance respectively defined as SM2

and SM5. For the dynamic mapping the initial mapping
place all three MJPEG tasks in NPU0 and T1 in NPU3 and
later the most critical task is migrated to NPU1 (SM2).

Obtained results show that even under heavy load the pro-
posed multiprocessor system is capable of completing a task
migration in a tenth of milliseconds, and that the penalty is
compensated in a few tenths of milliseconds. This result sug-

15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

TIME (ms)

T
H

R
O

U
G

H
P

U
T

 (
M

B
/s

)

MJPEG MULTI−TASK PROCESSOR (600MHz)

STATIC MAPPING (SM2)
STATIC MAPPING (SM5)
DYNAMIC MAPPING (DM1)

Figure 7: Static vs Dynamic Mapping

gests that dynamic load balancing with frequent task remap-
ping may provide significant benefits over traditional design-
time decided mappings. Further, the observed performance
overhead resulted from best-effort application implementa-
tions. In the case of soft or hard real-time implementations
where processors are sized to purpose and therefore rarely
overused, adequate buffering may completely hide perfor-
mance cost therefore resulting in virtually negating task mi-
gration overheads.

5. CONCLUSION
In this paper we have evaluated the impact caused by the

task migration mechanism here proposed. We analyze the
efficiency of our approach when compared to traditional ap-
proaches. The results show that the overhead produced by
the mechanism is amortized by the gain in term of perfor-
mance which is around 25% when compared to static map-
ping for the case of the MJPEG application.

For validating the experiments we have used a 2×2 homo-
geneous MPSoC architecture. It implements a task migra-
tion mechanism in order to provide load balancing capabil-
ities. We have compared our approach against the existing
ones and to the best of our knowledge, our architecture is
the only one with a purely distributed memory system that
does not rely on hared memory for enabling task migration.

As future work we plan to implement more complex sce-
narios with synthetic tasks for better exploiting/tuning all
the parameters aiming to have an efficient task migration
mechanism for MPSoC. Also we aim to use task migration
mechanism in order to deal with power consumption issues
once by using such strategy we can better harmonize the
system and save power consumption.

6. REFERENCES
[1] Rainer L., Andras V., Marco B., Soonhoi H., Rainer

D., and Achim N. Programming mpsoc platforms:
Road works ahead! In DATE’2009 [1], pages
1584–1589.

[2] G. Marchesan Almeida, G. Sassatelli, P. Benoit,
N. Saint-Jean, S. Varyani, L. Torres, and M. Robert.
An adaptive message passing mpsoc framework.

International Journal of Reconfigurable Computing,
Volume October, 2009.

[3] P. Chaparro, J. Gonzalez, G. Magklis, Cai Qiong, and
A. Gonzalez. Understanding the thermal implications
of multi-core architectures. Parallel and Distributed
Systems, IEEE Transactions on, 18(8):1055–1065,
August 2007.

[4] T. Sato, J. Ichimiya, N. Ono, K. Hachiya, and
M. Hashimoto. On-chip thermal gradient analysis and
temperature flattening for soc design. In ASP-DAC
’05: Proceedings of the 2005 Asia and South Pacific
Design Automation Conference, pages 1074–1077, New
York, NY, USA, 2005. ACM.

[5] I. Yeo, C. C. Liu, and E. J. Kim. Predictive dynamic
thermal management for multicore systems. In DAC
’08: Proceedings of the 45th annual Design
Automation Conference, pages 734–739, New York,
NY, USA, 2008. ACM.

[6] A. Barak, O. La’adan, and A. Shiloh. Scalable cluster
computing with mosix for linux. In In Proceedings of
Linux Expo’99, pages 95–100, 1999.

[7] S. Bertozzi, A. Acquaviva, D. Bertozzi, and
A. Poggiali. Supporting task migration in
multi-processor systems-on-chip: A feasibility study.
In Design, Automation and Test in Europe, 2006.
DATE ’06. Proceedings, volume 1, pages 1–6, 2006.

[8] D. Bertozzi L. Benini. Mparm: Exploring the
multi-processor soc design space with systemc. The
Journal of VLSI Signal Processing, 41(2):169–182,
2005.

[9] Alain Greiner. Tsar: a scalable, shared memory,
many-cores architecture with global cache coherence.
In 9th International Forum on Embedded MPSoC and
Multicore (MPSoC’09), Savannah, Georgia, USA,
2009. IEEE Press.

[10] F. Mulas, D. Atienza, A. Acquaviva, S. Carta,
L. Benini, and G. De Micheli. Thermal balancing
policy for multiprocessor stream computing platforms.
Trans. Comp.-Aided Des. Integ. Cir. Sys.,
28(12):1870–1882, 2009.

[11] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau.
Assessing task migration impact on embedded soft
real-time streaming multimedia applications.
EURASIP J. Embedded Syst., 2008:1–15, 2008.

[12] M. Pittau, A. Alimonda, S. Carta, and A. Acquaviva.
Impact of task migration on streaming multimedia for
embedded multiprocessors: A quantitative evaluation.
In Samarjit Chakraborty and Petru Eles, editors,
ESTImedia, pages 59–64. IEEE, 2007.

[13] Daniel Barcelos, Eduardo Wenzel Briao, and
Flávio Rech Wagner. A hybrid memory organization
to enhance task migration and dynamic task
allocation in noc-based mpsocs. In SBCCI ’07:, pages
282–287, New York, NY, USA, 2007. ACM.

[14] F. Moraes, N. Calazans, A. Mello, L. Möller, and
L. Ost. Hermes: an infrastructure for low area
overhead packet-switching networks on chip.
Integration, the VLSI Journal, 38(1):69–93, 2004.

[15] S. Rhoads. Plasma - most mips i(tm)
(http://www.opencores.org/project,plasma).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

