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Université Montpellier 2 and CNRS,

161 rue Ada, 34392 Montpellier

Cedex 5 France

fortin@lirmm.fr

Pawe l Zieliński
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Abstract

This paper reconsiders the PERT scheduling problem when information about task dura-
tion is incomplete. We model uncertainty on task durations by intervals. With this problem
formulation, our goal is to assert possible and necessary criticality of the different tasks and
to compute their possible earliest starting dates, latest starting dates and floats. This paper
puts together various results and provides a complete solution to the problem. We present
the complexity results of all considered subproblems and efficient algorithms to solve them.

Keywords: Project scheduling; Interval PERT; Criticality; Interval uncertainty

1 Introduction

An activity network is a partially ordered set of activities with given duration times, forming a
directed acyclic graph. One basic problem when scheduling an activity network representing a
project, is that of finding critical activities, and determining optimal starting times of activities,
so as to minimize the makespan. The first step is to determine the earliest ending time of the
project. This problem was posed in the fifties, in the framework of project management, by
Malcolm et al. [37] and the basic underlying graph-theoretic approach, called Project Evaluation
and Review Technique, is now popularized under the acronym PERT. The determination of critical
activities is carried out via the so-called critical path method (Kelley [31]). The usual assumption
in scheduling is that the duration of each task is precisely known, so that solving the PERT
problem is rather simple. However, in project management, the durations of tasks are seldom
precisely known in advance, at the time when the plan of the project is designed. Detailed
specifications of the methods and resources involved for the realization of activities are often not
available when the tentative plan is made up. This difficulty has been noticed very early by the
authors that introduced the PERT approach. They proposed to model the duration of tasks by
probability distributions, and tried to estimate the mean value and standard deviation of earliest
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starting times of activities. Since then, there is an extensive literature on probabilistic PERT
(see Elmaghraby [16], and Adlakha and Kulkarni [1] and Elmaghraby [17] for a bibliography and
recent views). Even if the task duration times are independent random variables, it is admitted
that the problem of finding the distribution of the ending time of a project is intractable, due to the
dependencies induced by the topology of the network [24, 32, 36, 40, 45]. Another difficulty, not
always pointed out, is the possible lack of statistical data validating the choice of activity duration
distributions. In fact probability distributions permit to model the variability of repetitive tasks,
but not uncertainty due to a lack of information [14, 19]. Even if statistical data are available,
they may be partially inadequate because each project takes place in a specific environment, and
is not the exact replica of past projects.

The simplest form of non-committal uncertainty representation for activity duration is the
interval. Assigning some time interval I to an activity duration means that the actual duration of
this activity will take some value within I, but it is not possible at present to predict which one.
In this paper, every precise instantiation of duration times will be called a configuration (it is also
called a scenario in the optimisation literature [34] and a possible world in formal logic). Using
intervals for representing uncertainty in scheduling means that the part of uncertainty about task
duration due to partial ignorance prevails because the available statistical information is considered
too scarce or irrelevant. So our model is more adapted to unique projects involving non-repetitive
tasks. The managerial value of intervals can be questioned. Indeed, experts may find it difficult
to provide narrow intervals (because they may be wrong). Moreover using too wide intervals may
make further analysis useless because non-informative. So, we do not propose the use of intervals
as the definite answer to scheduling uncertainty. However the importance of studying interval
PERT is motivated by several considerations:

• Interval uncertainty is present as soon as information is incomplete. So, solving the extreme
case of pure intervals is a first step before considering more elaborate representations of
uncertainty where both probability and intervals are combined.

• By and large, an expert working on a project may be reluctant to provide point values for
the expected duration for each task. Allowing the collection of a minimal and a maximal
duration may be felt more realistic, even if the elicitation process should force the expert to
provide as narrow intervals as possible.

• A more elaborate approach could be to collect both intervals and plausible values from
experts. Then the interval PERT results could be seen as providing safeguards on the
expected behaviour of the project while a precise reference plan based on plausible estimates
could still be used.

Note that resorting to subjective probability for eliciting duration times of non-repetitive tasks
is not very convincing. Eliciting subjective probabilities would be burdensome to experts, and
it is well-known that subjective probability is neither a faithful nor a stable representation of
partial ignorance [14]. More precisely, if all that is known of an activity duration time d is that
it lies between two bounds a < b, some may consider it natural to model this lack of knowledge
by a uniform probability on [a, b]. However, if the scale were distorted by a monotonic function,
say f , whereby f(a) < f(d) < f(b), then it is clear that the resulting probability distribution on
[f(a), f(b)] would not be uniform. If one describes ignorance by uniform probabilities, then the
rescaling function seems to generate information out of the blue. Moreover, it seems paradoxical to
know the probability distribution precisely, while claiming ignorance. The interval representation
stands for all probability distributions with support inside [a, b], which can hardly be challenged as
representing ignorance. Of course, following the betting procedure of Bayesians, ignorance forces
the expert to bet using a uniform probability. The same betting rates would be produced if the
expert knew that the values of d are indeed uniformly distributed. So, the subjective probabilities
produced have an ambiguous meaning, and, under a cautious approach one should perhaps on the
contrary interpret a subjective uniform probability as a mere interval, unless the expert knows that
there is a genuine underlying random phenomenon. See [15] for a general approach to re-interpret
subjective probabilities as expressing partial ignorance.
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Strangely enough, the PERT analysis with ill-known processing times modeled by simple in-
tervals does not seem to have received much attention in the literature. Yet, the computation
of the minimal completion time of a project, the determination of critical paths and activities,
the determination of activity floats have been considered as important problems and have been
widely acknowledged to be pervaded with uncertainty. However the overwhelming part of the
literature devoted to this topic adopts an orthodox stochastic approach, thus leading to a very
complex problem that is still partially unsolved to-date [24]. To the best of the authors’ knowl-
edge, interval-valued PERT analysis seems to have existed only as a special case of fuzzy PERT
studies that have been proposed since the late seventies [5, 10, 25, 26, 35, 39, 38, 42, 43, 44].
Recently, Conde [8] has used the min-max regret criterion to find a robust set of critical tasks in a
project with interval task durations. This criterion is discussed in the book [34], which is entirely
devoted to robust discrete optimization. In [8], exact and approximation algorithms are proposed
to solve the min-max regret version of the longest path problem with interval weights in acyclic
graphs (see [2, 27, 28] for a formulation and complexity results). A determined optimal min-max
regret path, that minimizes the maximal deviation (regret) from optimum over all configurations,
represents a robust set of critical tasks.

A basic result in standard (deterministic) activity network analysis states that a task is critical
if and only if its earliest and latest starting dates are equal, and that critical tasks form critical
paths, that is, longest paths from the initial node (event) to the final one. So finding the critical
paths yields the critical tasks. When the tasks have ill-known durations, modeled by intervals,
these results are no longer valid. Namely, floats can no longer be recovered from the intervals
containing earliest and latest starting dates, and critical paths may no longer exist, even when
critical tasks are present. Instead of being critical or not, as in the deterministic activity network
analysis, three cases may be now observed for every task or path: it is either surely not critical
(necessarily not critical) or surely critical (necessarily critical) or possibly critical. A task (a path)
is necessarily critical if it is critical whatever the actual values of task durations turn out to be.
A task (a path) is possibly critical if there are values of task durations leading to a configuration,
in which it is critical. Necessarily critical paths may fail to exist while necessarily critical tasks
may be isolated.

The notions of possible and necessary criticality of tasks and paths are closely related to
the min-max regret version of the longest path problem in acyclic directed graphs with interval
weights [27, 28]. Namely, every optimal min-max regret path is possibly critical and every necessary
critical path is optimal min-max regret with zero maximal regret. Hence, an optimal min-max
regret path can be viewed as a possibly critical one, which minimizes a “distance” to the necessary
criticality. Furthermore, necessarily non-critical tasks can be removed from an instance of the min-
max regret longest path without violating optimal min-max regret paths and necessarily critical
tasks can be automatically added to a constructed optimal min-max regret path (see [29] for a
deep discussion concerning the above relations).

This paper puts together various existing partial results about the complexity of finding inter-
vals containing earliest and latest starting times and floats of tasks [6, 7, 11, 12, 47] and proposes
new results, especially about evaluating necessary criticality, computing the maximal float of a
task and computing the minimal latest starting times for all tasks, thus providing a complete so-
lution to the PERT scheduling problem under the representation of interval-based uncertainty. A
set of efficient algorithms for determining the criticality of tasks, the optimal intervals containing
their earliest starting dates, latest starting dates, and their floats is provided. It is shown that
the only strongly NP-hard problem is the one of finding minimal floats [7], which is closely related
to asserting the possible criticality of a task that turned out to be strongly NP-complete [6]. All
other problems turn out to be polynomial.

The paper is organized as follows. Section 2 motivates the work by showing the collapse of
the usual criticality analysis concepts and techniques when duration times of tasks are imprecisely
known. Section 3 proposes an exponential but practically efficient algorithm for achieving the
complete criticality analysis under incomplete knowledge and a polynomial algorithm for comput-
ing the minima of latest starting dates for all task in a in network, based on an enumeration of
paths. Section 4 presents polynomial algorithms for asserting necessary criticality of tasks, and
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computing the optimal intervals containing their latest starting dates, as well as the maximum of
float values. These algorithms are constructive in the sense that they select appropriate values of
task duration times in a step by step manner, such that the computation of some bound comes
down to computing a standard PERT problem. An illustrative example is provided in Section 5.
Section 6 contains exhaustive complexity results and experimental evidence of the efficiency of
algorithms.

2 Definition and challenge of the interval valued model

In this section, we briefly recall how to solve the classical PERT model. Then we formally introduce
the interval-valued PERT model, and explain why the classical approach no longer works.

2.1 Solving standard PERT problem

An activity network is classically defined as a set of activities (or tasks) with given duration times,
related to each other by means of precedence constraints. When there are no resource constraints,
it can be represented by a directed, connected and acyclic graph G =< V, A >, where V is the
set of nodes (events), |V | = n, and A ⊆ V × V is the set of arcs (activities), |A| = m. We use the
activity-on-arc convention. The set V = {1, 2, . . . , n} is labeled in such a way that i < j for each
activity (i, j) ∈ A. Activity duration times dij (the weights of the arcs) (i, j) ∈ A are known. Two
nodes 1 and n are distinguished as the initial node (source) and final node (sink), respectively,
(no activity enters 1 and no activity leaves n). Of major concern, is to minimize the ending time
of the last task, also called the makespan of the network. Of interest to the project manager are
earliest starting dates, latest starting dates and floats of activities. The critical activities have
zero float. The essence of the PERT method are two recurrence formulae, forward and backward
recursions. The earliest starting dates of events k ∈ V and tasks (k, l) ∈ A, denoted by estk and
estkl respectively, are determined by means of the forward recursion:

estk =

{

0 if k = 1,
max

j∈Pred(k)
(estj + djk) otherwise, (1)

estkl = estk, (2)

where Pred(i) refers to the set of nodes that immediately precede node i ∈ V . The earliest starting
date estk of event k is the length of a longest path from the beginning of the project, represented
by node 1, to node k. We arbitrarily fix the starting time of project to est1 = 0. Of course the
earliest starting date of a task (k, l) is equal to the earliest starting date of event k. The earliest
ending time of the project is the earliest starting date of the last event n. In order to ensure
minimal duration of the project, the latest date of event n, denoted by lstn, is equal to its earliest
starting date, lstn = estn. The latest starting date lstk of event k is the latest time to complete
tasks that are ended at k without delaying the end of the project and thus it is the latest finishing
date of tasks ending at k. Difference lstn − lstk is the length of a longest path from node k to
node n. Hence, the latest starting date of task (k, l), denoted by lstkl, is equal to lstl − dkl. The
latest starting dates of events and tasks can be found by the use of the backward recursion:

lstk =

{

estn if k = n,
min

l∈Succ(k)
(lstl − dkl) otherwise, (3)

lstkl = lstl − dkl, (4)

where Succ(i) refers to the set of nodes that immediately follow node i ∈ V . The float of task (k, l),
which represents the length of the time window for the beginning of the execution of the task, is
the difference between the latest starting date and the earliest starting date:

fkl = lstkl − estkl. (5)
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The PERT method computes the earliest starting dates, latest starting dates and floats of tasks
in O(m + n) time. One can also determine, simultaneously, critical tasks and critical paths and
thus a subgraph consisting of all critical tasks and paths.

In the next section, we will see that some obvious properties of this scheduling model such as:
“there exists at least one critical path, which is a longest path in the network”, or, “one can form
a critical path with critical activities”, or yet “each critical activity belongs to a critical path”, do
not hold anymore under incomplete information.

2.2 Interval valued problem definition

In practice, duration times of tasks are not well known for several reasons: Some design choices
are not fixed because we design a predictive plan. We can also suppose that there can be some
uncertainty about the duration times of tasks. It is clearly the case for subcontracted tasks. To
take into account this uncertainty, we now model each task duration by an interval. It is easy
for an expert working on a project to give a minimal and a maximal expected duration for each
task. So activity duration times dij (weights of the arcs) (i, j) ∈ A are only known to belong to
time intervals Dij = [d−ij , d

+
ij ], d−ij ≥ 0. This means that we neither know the exact duration times

of tasks, nor can we set them precisely. Now, depending on the effective duration of each task
(that we do not precisely know), several earliest starting dates, latest starting dates and floats
can be considered. We assume that the task durations are unrelated to one another. A vector
Ω = (dij)(i,j)∈A, dij ∈ Dij , that represents an assignment of duration times dij to task (i, j) ∈ A is
called a configuration [3]. Thus every configuration expresses a realization of the duration times.
We denote by C the set of all the configurations, i.e. C = ×(i,j)∈A[d−ij , d

+
ij ]. The duration of

task (i, j) in configuration Ω is denoted by dij(Ω), dij(Ω) ∈ Dij . Among the configurations of C

a crucial role is played by the extreme ones, which belong to ×(i,j)∈A{d
−
ij , d

+
ij}. Let B ⊆ A be

a given subset of activities. We define the extreme configuration Ω+
B as the configuration where

all activities (i, j) ∈ B have duration times d+
ij and all the remaining activities have duration

times d−ij . Similarly, in configuration Ω−
B all activities (i, j) ∈ B have duration times d−ij and all

the remaining activities have duration times d+
ij .

Using configurations, the possible values ESTkl = [est−kl, est
+
kl] for the earliest starting date

estkl, the possible values LSTkl = [lst−kl, lst
+
kl] for the latest starting date lstkl and the possible

values Fkl = [f−
kl , f

+
kl ] for the float fkl can be rigorously defined as follows [12, 18]:

est−kl = min
Ω∈C

estkl(Ω), est+kl = max
Ω∈C

estkl(Ω), (6)

lst−kl = min
Ω∈C

lstkl(Ω), lst+kl = max
Ω∈C

lstkl(Ω), (7)

f−
kl = min

Ω∈C

fkl(Ω), f+
kl = max

Ω∈C

fkl(Ω), (8)

where estkl(Ω), lstkl(Ω) and fkl(Ω) denote the earliest and the latest starting date and the float
of activity (k, l) in configuration Ω, respectively.

Criticality in interval-valued problems is defined as follows [4] : a task (k, l) ∈ A (resp. a path p
in network G from node 1 to node n) is possibly critical if there exists a configuration Ω ∈ C in
which (k, l) (resp. path p) is critical in the usual sense. A task (k, l) ∈ A (resp. a path p in
network G from 1 to n) is necessarily critical if (k, l) (resp. path p) is critical in the usual sense
in all configurations Ω ∈ C .

In order to compute the intervals of possible values of earliest starting dates, latest starting
dates and floats (see (6)-(8)), the same PERT algorithm has been traditionally used (see formu-
lae (1)-(5)), the only difference being the use of the interval arithmetic instead of the classical
arithmetic. For such a straightforward extension of the PERT algorithm, it turns out the forward
recursion correctly computes the interval of possible earliest starting dates [5, 13, 23]. Indeed, one
can obtain all the optimal lower and upper bounds of earliest starting dates of tasks by applying
the forward recursion (formulae: (1), (2)) for configurations Ω−

A and Ω+
A, respectively. But the

backward recursion fails to compute the set of possible latest starting dates [38, 39, 43] and in
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Figure 1: (a) A network in which the necessary criticality of (3, 4) cannot be deduced from
EST34 = LST34 (b) A network in which possibly critical activities do not form a possibly critical
path (c) Dashed tasks form possibly critical paths, and the bold task is necessarily critical

consequence floats can no longer be recovered from this procedure. Let us illustrate the point that
the backward recursion can not be used to compute the latest starting dates and the floats. We
first recall definitions of arithmetical operations on intervals (see [41]). Let ∗ ∈ {+,−, min, max}
and let U = [u−, u+] and W = [w−, w+] be two intervals such that u− ≤ u+ and w− ≤ w+. Then
the following expression

Z = U ∗I W = {u ∗ w | u ∈ U, w ∈ W}

defines operation ∗I ∈ {+I ,−I , minI , maxI} on intervals and Z = [z−, z+] is a resulting interval
such z− ≤ z+. The following formulae are instrumental when performing interval operations as
defined above: U +I W = [u− + w−, u+ + w+], U −I W = [u− − w+, u+ − w−], minI{U, W} =
[min{u−, w−}, min{u+, w+}] and maxI{U, W} = [max{u−, w−}, max{u+, w+}].

Consider the one activity network with duration time d12 ∈ D12 = [0, 1]. Its earliest starting
date is EST1 = EST12 = [0, 0]. The earliest ending time of the project is ill-known: EST2 =
EST1 +I D12 = [0, 1]. And thus the backward recursion yields the following information EST2 −I

D12 = [0, 1]−I [0, 1] = [−1, 1] on latest starting dates LST1 and LST12, which is of course false since
the latest starting dates of event 1 and activity (1, 2) are always null in order to ensure a minimal
project duration, LST1 = LST12 = [0, 0] ⊂ EST2 −I D12 = [−1, 1]. This error comes from the
fact that the variable which represents the duration appears two times in the computations: once
in the forward recursion, and once in the backward one. Thus, applying interval arithmetic with
linked variables always results in an over-imprecise bracketing of the exact result. For example,
for all x ∈ [0, 1] x − x = 0, but [0, 1] −I [0, 1] = [−1, 1]. Some authors tried to repair this
propagation error in several ways: one classical approach is the use of a non-standard interval
arithmetic [26, 30, 44]. For example, some authors use for subtraction an “inverse” of the interval
addition [26]. These operations are defined for fuzzy intervals, but their interval counterparts can
be expressed as follows: [u−, u+] − [w−, w+] = [u− − w−, u+ − w+]. The use of this particular
arithmetic does not lead to correct results for computing neither latest starting dates nor floats
of tasks. In particular, the results may not be well formed intervals. For example, the difference
between the intervals [0, 1] and [0, 2] would lead to [0,−1] which is not an interval, 0 6≤ −1. Thus,
techniques using non-standard interval arithmetic will generally fail to produce the correct values.
In [42], symbolic computations on variable duration times were suggested. However, this technique
is unwieldy and highly combinatorial. Accordingly, no complete, correct and efficient solution to
the problem of scheduling under interval uncertainty has been reached up until now.

There are obvious relations between the criticality of a task and the possible values of its
floats and its earliest and latest starting dates, namely, task (k, l) is possibly (resp. necessarily)
critical if and only if f−

kl = 0 (resp. f+
kl = 0). Moreover, if task (k, l) is necessarily critical

then ESTkl = LSTkl. As shown in Figure 1a, the converse statement is false: task (3, 4) has
EST34 = LST34 = [3, 4] for intervals of possible values of earliest and latest starting dates, but
its interval of possible values of floats is F34 = [0, 1]. It can be also noted that the float is no
longer the difference between the latest starting date and the earliest starting date, for instance
LST34 −I EST34 = [−1, 1] 6= F34. In fact, when ESTkl = LSTkl, task (k, l) is only possibly
critical. The last example makes it clear that the interval containing the floats of a task cannot be
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calculated by means of the intervals containing the earliest and latest starting dates of this task.
The float, from which the criticality of the task can be assessed, must be computed separately.

Many intuitions learned on the deterministic problem fail in the interval version. For example,
when duration times are precisely set, critical activities always form a critical path. But in the
interval case, possibly critical activities do not always form a possibly critical path. In Figure 1b,
task (1, 3) is critical in the configuration where d12 = d23 = 0 and d34 = d45 = 2, and task (3, 5) is
critical in the configuration where d12 = d23 = 2 and d34 = d45 = 0, but the path (1, 3, 5) is never
critical. In Figure 1c, dashed arcs represent possibly critical tasks and the bold task (1, 2) is the
only necessarily critical task. So, it can be seen that some necessarily critical tasks can be isolated.
There is no necessarily critical path, but several paths are possibly critical (paths consisting of
dashed arcs in Figure 1c). However, it is easy to check that if there exists a necessarily critical
path, then it is unique (under the assumption that all duration times are intervals) and it is then
easy to identify [4]. But this case seems to appear rarely in practice. Therefore, the classical
PERT results and algorithms cannot be directly adapted to the interval-valued problem.

The first important step for the resolution of the problems of computing the optimal bounds
on the intervals of earliest starting dates, latest starting dates and floats (see (6)-(8)) was taken
by Dubois et al. [12]. They showed that these bounds are attained on extreme configurations due
to the monotonicity of functions that compute the quantities under concern. So a naive algorithm
is to perform one PERT analysis on each extreme configuration which implies an O((m + n)2m)
algorithm.

Other approaches have been developed to compute latest starting dates and floats. The first
idea is to find a small subset of extreme configurations on which the bounds of the quantities of
interest are attained. One such subset is defined by all extreme configurations in which all tasks
have minimal duration times, but on a path from the initial node to the final one. On this path,
task duration times are set to their upper bounds. The optimal upper bound on latest starting
dates, the optimal lower and upper bounds on floats are reached on a configuration of this form.
This idea will be presented in Section 3.

Another idea, called constructive approach, consists in a direct construction of one configuration
(and just one) for which the extrema of the quantity of interest (for instance the optimal upper
bound on latest starting dates of a task), is attained. In practice, we have to consecutively
instantiate duration times of all tasks in a network without changing the result of the quantity of
concern. The way of instantiation of a task duration to its least or greatest value is not simple. If
we can assign precise duration times task by task in order to construct an extreme configuration,
of course without changing the result of the quantity of concern, then this approach will lead to
polynomial algorithms (see Section 4). Unfortunately, such approach cannot be applied to compute
the optimal lower bound on floats of a task – this problem is known to be strongly NP-hard in a
general acyclic network [6] and NP-hard in a planar acyclic network [7]. These results follow from
the fact that the problem of deciding possible criticality of a given task is strongly NP-complete
in a general acyclic network and remains NP-complete even in acyclic planar network of node
degree 3 [6, 7]. Moreover, if P 6=NP, then the problem of computing the minimal float value of a
task is not at all approximable even in acyclic planar networks of node degree 3 [47].

It is worth pointing out that all considered interval problems have been completely solved when
a network is series-parallel [12, 18, 48]. A graph is said to be series-parallel if it is recursively
defined as follows [46]. A graph consisting of two nodes joined by a single arc is series-parallel.
If G1 and G2 are series-parallel, so are the graphs constructed by each of the operations: parallel
composition – identify the source of G1 with the source of G2 and the sink of G1 with the sink
of G2; series composition – identify the sink of G1 with the source of G2. It results from this
definition that each series-parallel graph is acyclic, planar and has exactly one source and exactly
one sink. For example, the graph pictured in Figure 1b is series-parallel, but the graph shown in
Figure 1c is not. Fargier et al. [18] proposed an O(n) algorithm for computing bounds on possible
values of latest starting dates and bounds on possible values of floats of a task and O(n) algorithms
for evaluating possible and necessary criticality of a task in a series-parallel network. Therefore,
applying algorithms provided in [18] to each task in a network for computing bounds on floats and
bounds on latest starting dates of all tasks leads to methods that require O(n2) time (note that
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for series-parallel graphs m = O(n)). In [48], the time for computing bounds on floats and bounds
on latest starting dates and for evaluating the possible and necessary criticality for one task in
a series-parallel network has been reduced to O(log n) by applying a more clever data structure.
Therefore, computing bounds on floats and bounds on latest starting dates and evaluating the
possible and necessary criticality of all tasks in a series-parallel network requires O(n log n) time.

In order to deal with the interval PERT problem in the general case, we introduce some
additional notations.

– SUCC(i, j) (resp. PRED(i, j)) denotes the set of all arcs that come after (resp. before)
(i, j) ∈ A, and SUCC(j) (resp. PRED(j)) stands for the set of all nodes that come after
(resp. before) j ∈ V .

– Pu,v is the set of paths p(u, v) in G from node u to node v. We denote by P the set of all
paths in G from node 1 to node n.

– P1,(k,l),n is the set of paths in G from node 1 to node n traversing task (k, l) and P(k,l),n

represents the set of paths in G from node k to node n traversing task (k, l).

– lp(Ω) denotes the length of a path p ∈ Pu,v in Ω, lp(Ω) =
∑

(i,j)∈p dij(Ω).

– G(i, j) is the subgraph of G composed of nodes succeeding i and preceding j.

– G(dij = d) is the graph G in which duration of task (i, j) is replaced by d.

3 Path enumeration approach

In this section, we give two algorithms based on some properties in which paths have particular
interest. The first one, proposed in [11], computes maximal latest starting dates, minimal and
maximal floats of each task of a network in one execution. We call it the path algorithm. The
second algorithm only computes minimal latest starting dates in polynomial time. It is called the
polynomial path algorithm.

3.1 Path algorithm

We first recall that maximal latest starting dates and minimal and maximal floats of tasks are
attained on extreme configurations in which task duration times on a path from node 1 to node n
are set to their maximal values and all the remaining task duration times are set to their minimal
ones.

Proposition 1 ([11]). Let (k, l) ∈ A be a task of G. There exist paths p1, p2, p3 ∈ P such that Ω+
p1

maximizes lstkl(.), Ω+
p2

minimizes fkl(.), Ω+
p3

maximizes fkl(.) over the set C .

The key to construct the path algorithm (Algorithm 1), proposed in [11], is Proposition 1. The
idea of the algorithm consists in performing the classical PERT analysis for each configuration Ω+

p

such that p is a path in network G from 1 to n. Clearly, the number of tested configurations is
potentially exponential, but in practice the algorithm runs fast on realistic problems (see Section 6).

3.2 Polynomial path algorithm

We first recall a result given in [11], that describes the form of configurations where the minimal
latest starting date of a given task (k, l) in a network G is attained.

Proposition 2 ([11]). Let (k, l) ∈ A be a task of network G. There exists a path pkl ∈ P(k,l),n that

induces the extreme configuration such that Ω+
pkl

= arg minΩ∈C lstkl(Ω) and lst−kl = lstkl(Ω
+
pkl

).

8



Algorithm 1: [Path Algorithm] A calculation of the maximal latest starting dates, the
minimal and maximal floats of each task in network G

Input: A network G, interval duration times Duv, (u, v) ∈ A.
Output: The maximal latest starting dates, the minimal and maximal floats of each task in G.
begin

foreach task (k, l) ∈ A do

lst+kl ← 0; f+
kl ← 0; f−

kl ← +∞;

foreach path p ∈ P do

Compute lstkl(Ω
+
p ) and fkl(Ω

+
p ) for each (k, l) ∈ A by the classical PERT;

foreach task (k, l) ∈ A do

if lst+kl < lstkl(Ω
+
p ) then lst+kl ← lstkl(Ω

+
p );

if f+
kl < fkl(Ω

+
p ) then f+

kl ← fkl(Ω
+
p );

if f−
kl > fkl(Ω

+
p ) then f−

kl ← fkl(Ω
+
p );

end

It is easily seen that optimal path pkl ∈ P(k,l),n, which induces configuration Ω+
pkl

, is a
longest path from k to n traversing l in Ω+

pkl
. We will show that this path can be recursively

constructed. Suppose that a path plu ∈ P(l,u),n which induces configuration Ω+
plu

such that
Ω+

plu
= arg minΩ∈C lstlu(Ω) is known for each node u ∈ Succ(l). Then one can construct an

optimal path pkl among paths plu, where u ∈ Succ(l).

Proposition 3. Let (k, l) be a task of network G and let plu ∈ P(l,u),n be a path such that

lst−lu = lstlu(Ω+
plu

), where u ∈ Succ(l). Then lst−kl = minu∈Succ(l) lstkl(Ω
+
{(k,l)}∪plu

).

Proof. From Proposition 2, it follows that there exists a path pkl ∈ P(k,l),n such that Ω+
pkl

=

arg minΩ∈C lstkl(Ω). Assume on the contrary that lst−kl = lstkl(Ω
+
pkl

) < lstkl(Ω
+
{(k,l)}∪plu

), ∀u ∈

Succ(l). Clearly, lst−kl = lstkl(Ω
+
pkl

) = maxp∈P lp(Ω+
pkl

) − lpkl
(Ω+

pkl
) and thus

lstlu(Ω+
pkl

) = max
p∈P

lp(Ω+
pkl

) − max
p∈P(l,u),n

lp(Ω+
pkl

) = max
p∈P

lp(Ω+
pkl

) − lpkl
+ d+

kl = lst−kl + d+
kl

which forces lst−kl = lstlu(Ω+
pkl

) − d+
kl. On the other hand, formula for lstlu(Ω+

{(k,l)}∪plu
) can

be rewritten: lstlu(Ω+
{(k,l)}∪plu

) = maxp∈P lp(Ω+
{(k,l)}∪plu

) − lplu
(Ω+

{(k,l)}∪plu
) − d+

kl. From the

assumption, we have: lst−kl = lstlu(Ω+
pkl

) − d+
kl < lstkl(Ω

+
{(k,l)}∪plu

) which yields lstlu(Ω+
pkl

) <

maxp∈P lp(Ω+
{(k,l)}∪plu

) − lplu
(Ω+

{(k,l)}∪plu
). Let p′ ∈ P be a longest path in G in the config-

uration Ω+
{(k,l)}∪plu

. We consider two cases. (i) if (k, l) /∈ p′ then maxp∈P lp(Ω+
{(k,l)}∪plu

) =

maxp∈P lp(Ω+
plu

) and so lstlu(Ω+
plu

) < lst−lu, which contradicts the definition of lst−lu. (ii) if

(k, l) ∈ p′ then (k, l) is critical in Ω+
{(k,l)}∪plu

and consequently lstkl(Ω
+
{(k,l)}∪plu

) = est−kl and

lstkl(Ω
+
{(k,l)}∪plu

) = lst−kl, which contradicts the fact that lstkl(Ω
+
pkl

) < lstkl(Ω+
{(k,l)}∪plu

). There-

fore, lst−kl = lstkl(Ω
+
pkl

) ≥ lstkl(Ω
+
{(k,l)}∪plu

).

From Proposition 3, we deduce a polynomial algorithm for computing the minimal starting
date of each task. Namely, the algorithm recursively finds a path pkl for which configuration
Ω+

pkl
minimizes lstkl(Ω) making use of paths plu such that lst−lu = lstlu(Ω+

plu
), where u ∈ Succ(l),

starting from nodes in Pred(n). Its overall running time is O(m2(m + n)). Fortunately, it is
possible to reduce the complexity of the algorithm to O(m2). It is enough to store the length of
a longest path p∗ ∈ P in optimal configuration Ω+

plu
for (l, u), denoted by l∗lu, and the length of

path plu in Ω+
plu

denoted by llu, for every u ∈ Succ(l). Obviously, lst−lu = l∗lu − llu. Let (l, v)

be a task such that lst−kl = lstkl(Ω
+
{(k,l)}∪plv

) (such task always exists, see Proposition 3). The

length lkl of path pkl in optimal configuration Ω+
{(k,l)}∪plv

for (k, l) equals d+
kl + llv. Let p∗ ∈ P

be a longest path in Ω+
{(k,l)}∪plv

. We consider two cases: (i) if (k, l) ∈ p∗ then the length l∗kl of
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p∗ equals est−kl + d+
kl + llv (note that est−kl = estkl(Ω

−
A) = estkl(Ω

+
{(k,l)}∪plv

)). Hence lst−kl = est−kl.

(ii) if (k, l) /∈ p∗ then l∗kl = l∗lv and lst−kl = l∗kl − lkl. The above remarks allow us to construct an
O(m2) algorithm (see Algorithm 2).

Algorithm 2: [Polynomial path algorithm] Calculation of the minima of latest starting
dates of all tasks in a network

Input: A network G, interval duration times Duv, (u, v) ∈ A.
Output: The minima of latest starting dates of all the tasks in a network G.
begin

V ← V ∪ {n + 1}; A← A ∪ {(n, n + 1)}; Dnn+1 ← [0, 0];
Use the classical PERT to compute earliest starting date of each task of G in Ω−

A;
lst−nn+1 ← estnn+1(Ω

−
A); l∗nn+1 ← estnn+1(Ω

−
A); lnn+1 ← 0;

foreach (k, l) such that k ← n− 1 downto 1 do
Let (l, v) be a task such that v ∈ Succ(l);
lkl ← d+

kl + llv;
if estkl(Ω

−
A) + lkl > l∗lv then

l∗kl ← estkl(Ω
−
A) + lkl;

lst−kl ← estkl(Ω
−
A);

else
l∗kl ← l∗lv;
lst−kl ← l∗kl − lkl;

foreach (l, u) such that u ∈ Succ(l) \ {v} do

if estkl(Ω
−
A) + d+

kl + llu > l∗lu then

l∗kl ← estkl(Ω
−
A) + d+

kl + llu;
lkl ← d+

kl + llu;
lst−kl ← estkl(Ω

−
A);

else

if l∗lu − d+
kl − llu < lst−kl then

l∗kl ← l∗lu;
lkl ← d+

kl + llu;
lst−kl ← l∗kl − lkl;

end

4 Constructive approach

Zieliński [47] gave polynomial algorithms for computing optimal upper and lower bounds on latest
starting times. We do the same for the optimal upper bound of floats. The basic structure is the
same for the three algorithms. The first step instantiates the duration times of some tasks in a
network without changing the result of the quantity of concern for a distinguished task. The next
step instantiates the duration times of the remaining tasks in the network, while preserving the
global possible or necessary criticality of the task. Once duration times of all tasks are precisely set,
we need to compute the minimal duration ∆ that, added to the duration time of the distinguished
task, makes it possibly or necessarily critical in this particular configuration. Duration ∆ will
easily provide the concerned quantity.

4.1 Evaluating criticality

This section presents methods which can decide in polynomial time if a given task (k, l) is neces-
sarily or possibly critical. First, under the assumption that the duration times of the predecessors
of task (k, l) are precisely known, we recall algorithms, proposed in [47], that decide if (k, l) is
necessarily or possibly critical. They constitute the basis for computing minimal and the maximal
latest starting dates in polynomial time in [47]. We extend some of these results and give a general
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algorithm that asserts if (k, l) is necessarily critical in a network G in polynomial time without any
consideration of the duration times of tasks preceding (k, l). This result will lead in Section 4.3 to
a polynomial algorithm which computes the maximal float of a task.

Let us recall characteristic conditions of the non-necessary criticality of tasks.

Lemma 1 ([11]). A task (k, l) ∈ A is not necessarily critical in G if and only if there exists
a path p ∈ P such that (k, l) 6∈ p, p is critical in configuration Ω+

p and no critical path in Ω+
p

includes (k, l).

Observation 1 ([47]). A task (k, l) ∈ A is not necessarily critical in G if and only if (k, l) is
not critical in an extreme configuration in which the duration of (k, l) is at its lower bound and
all tasks from set A \ (SUCC(k, l)∪PRED(k, l)∪ {(k, l)}) have duration times set to their upper
bounds.

Now under the assumption that tasks preceding (k, l) have precise duration times, we can set
the ones of tasks succeeding (k, l) at precise values while maintaining the status of (k, l) in terms
of necessary criticality. It yields a configuration where (k, l) is critical if and only if it is necessarily
critical in the interval-valued network. These duration times are given by Propositions 4 and 5.

Proposition 4. Let (k, l) ∈ A be a distinguished task, and (i, j) be a task such that (i, j) ∈
SUCC(k, l). Assume that every task (u, v) ∈ PRED(i, j) has precise duration. If (k, l) is critical
in G(1, i), then the following conditions are equivalent:

(i) (k, l) is necessarily critical in G,
(ii) (k, l) is necessarily critical in G(dij = d−ij).

Proof. (i) =⇒ (ii) Obvious.
(i) ⇐= (ii) We use a proof by contraposition. We need to prove that if (k, l) is critical in G(1, i)
and (k, l) is not necessarily critical in G, then (k, l) is not necessarily critical in G(dij = d−ij). By
assumption, (k, l) is not necessarily critical in G. From Lemma 1, it follows that there exists a
path p ∈ P such that (k, l) 6∈ p, p is critical in configuration Ω+

p and no critical path in Ω+
p includes

(k, l). Since (k, l) is critical in G(1, i), (i, j) 6∈ p in Ω+
p . Observe that dij(Ω+

p ) = d−ij . From this

and the fact that (k, l) is not critical in Ω+
p , we conclude that (k, l) is not necessarily critical in

G(dij = d−ij).

Proposition 5. Let (k, l) ∈ A be a distinguished task, and (i, j) be a task such that (i, j) ∈
SUCC(k, l). Assume that every task (u, v) ∈ PRED(i, j) has precise duration. If (k, l) is not
critical in G(1, i), then the following conditions are equivalent:

(i) (k, l) is necessarily critical in G,
(ii) (k, l) is necessarily critical in G(dij = d+

ij).

Proof. A proof follows the definition of necessary criticality.

Propositions 4 and 5, together with Observation 1, lead us to Algorithm 3 for asserting the
necessary criticality of a given task (k, l) in a network in which all tasks that precede (k, l) have
precise durations. The algorithm works as follows: first all duration times of tasks neither suc-
ceeding nor preceding (k, l) are set to their upper bounds and the earliest starting times of events
not succeeding event l are computed by the classical PERT. Then the algorithm tests if (k, l)
is critical in the subnetwork G(1, l). We denote by fkl(u, v) the float of (k, l) computed in the
network G(u, v). Precise duration times are fixed for tasks immediately succeeding node l. This
step is repeated recursively for network G(1, l + 1), . . . , G(1, n− 1). At the end of this process, all
duration times are precisely set, and (k, l) is necessarily critical in the network with the interval
durations if and only if (k, l) is critical in the network with the fixed durations. Computing fkl(1, i)
and testing if (k, l) is critical in G(1, i) can be done in constant time, since we already know estj
for all j ∈ Pred(i), and so Algorithm 3 runs in O(m).

Lemma 1, Propositions 4, 5 and Observation 1 have counterparts for asserting possible crit-
icality. It suffices to swap duration times d−uv and d+

uv. This leads to an O(m) algorithm (see
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Algorithm 3: Asserting whether a task is necessarily critical when duration times of pre-
decessors are precisely known

Input: A network G, task (k, l), interval duration times Duv, (u, v) ∈ A and for every task in
PRED(k, l) the duration is precisely given.

Output: If fkl(1, n) = 0, (k, l) is necessarily critical in G; and if fkl(1, n) > 0, (k, l) is not
necessarily critical in G.

/* Initialization */
foreach (u, v) ∈ A \ (SUCC(k, l) ∪ PRED(k, l) ∪ {(k, l)}) do duv ← d+

uv;
dkl ← d−

kl; /* the partially instantiated configuration */
/* Computation */
Compute esti of events i ∈ V \ (SUCC(l) ∪ {l}) by the classical PERT in the partial configuration;
for i← l to n− 1 such that i ∈ SUCC(l) ∪ {l} do

Compute fkl(1, i);
if fkl(1, i) = 0 /* (k, l) critical in G(1, i)*/ then

foreach j ∈ Succ(i) do dij ← d−
ij

else

foreach j ∈ Succ(i) do dij ← d+
ij

Compute fkl(1, n);
return fkl(1, n);

Algorithm 4: Asserting whether a task is possibly critical when duration times of its pre-
decessors are precisely known

Input: A network G, task (k, l), interval duration times Duv, (u, v) ∈ A and for every task in
PRED(k, l) the duration is precisely given.

Output: If fkl(1, n) = 0, (k, l) is possibly critical in G; and if fkl(1, n) > 0, (k, l) is not possibly
critical in G.

/* Initialization */
foreach (u, v) ∈ A \ (SUCC(k, l) ∪ PRED(k, l) ∪ {(k, l)}) do duv ← d−

uv;
dkl ← d+

kl; /* the partially instantiated configuration */
/* Computation */
Compute esti of events i ∈ V \ (SUCC(l) ∪ {l}) by the classical PERT in the partial configuration;
for i← l to n− 1 such that i ∈ SUCC(l) ∪ {l} do

Compute fkl(1, i);
if fkl(1, i) = 0 /* (k, l) is critical in G(1, i) */ then

foreach j ∈ Succ(i) do dij ← d+
ij

else

foreach j ∈ Succ(i) do dij ← d−
ij

Compute fkl(1, n);
return fkl(1, n)
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Figure 2: (a) Configuration Ω∗ – r̂ on p∗ after r (b) Configuration Ω
′

(tasks with the maximal
duration times are in bold)

Algorithm 4) for asserting the possible criticality of tasks whose predecessors have deterministic
durations [47].

We now present an algorithm for evaluating the necessary criticality of a fixed task (k, l) ∈ A
in network G with interval duration times, without any restriction. The key to the algorithm
lies in Propositions 6 and 7 that enable a network with interval duration times to be replaced by
another network with precise durations for tasks preceding a fixed (k, l), in such a way that (k, l)
is necessarily critical in the former if and only if it is necessarily critical in the latter.

Proposition 6. Let (k, l) ∈ A be a distinguished task, and (i, j) be a task such that (i, j) ∈
PRED(k, l). If (k, l) is necessarily critical in G(j, n), then the following conditions are equivalent:

(i) (k, l) is necessarily critical in G,
(ii) (k, l) is necessarily critical in G(dij = d−ij).

Proof. The proof goes in the similar manner to the one of Proposition 4.

Proposition 7. Let (k, l) ∈ A be a distinguished task, and (i, j) be a task such that (i, j) ∈
PRED(k, l). If (k, l) is not necessarily critical in G(j, n), then the following conditions are equiv-
alent:

(i) (k, l) is necessarily critical in G,
(ii) (k, l) is necessarily critical in G(dij = d+

ij).

Proof. (i) =⇒ (ii) Straightforward.
(i) ⇐= (ii) We need to show that if (k, l) is not necessarily critical in G(j, n) and (k, l) is necessarily
critical in G(dij = d+

ij), then (k, l) is necessarily critical in G. To prove this, assume on the contrary

that (k, l) is not necessarily critical in G and (k, l) is necessarily critical in G(dij = d+
ij). From

Lemma 1, it follows that there exists a path p ∈ P such that (k, l) 6∈ p, p is critical in configuration
Ω+

p and no critical path in Ω+
p includes (k, l) or equivalently (k, l) is not critical in Ω+

p . We will
show that for each such configuration, where (k, l) is not critical, the other assumptions lead to
construct a critical path that traverses (k, l), which results in a contradiction. By assumption,
(k, l) is not necessarily critical in G(j, n). Then there exists a path p̂ ∈ P (j, n) such that (k, l) 6∈ p̂,
p̂ is critical in configuration Ω+

p̂ and no critical path of G(j, n) traverses (k, l) in Ω+
p̂ (see Lemma 1).

Consider the extreme configuration induced by p ∪ p̂ ∪ {(i, j)} and denote it by Ω∗ (Ω∗ =
Ω+

p∪p̂∪{(i,j)}). Note that (k, l) is critical in Ω∗, because (k, l) is necessarily critical in G(dij = d+
ij).

Thus there exists a critical path p∗ ∈ P using (k, l) in Ω∗. We define r to be the last common
node of p∗(1, k) and p (r = max{v | v ∈ V, v ∈ p∗(1, k), v ∈ p}) and define r̂ to be the last common
node of p∗(1, k) and p̂ (r̂ = max{v | v ∈ V, v ∈ p∗(1, k), v ∈ p̂}).

We claim that if node r̂ exists, then r̂ = r or node r̂ lies on p∗ before node r. Suppose,
contrary to our claim, that r̂ lies on p∗ after r (see Figure 2a). Then subpath p∗(r̂, n), p∗(r̂, n) =
p∗(r̂, k) ∪ p∗(k, n), is at least as long as subpath p̂(r̂, n) in configuration Ω∗. Notice that p∗(r̂, k)
is one of the longest paths from r̂ to k in Ω∗. We may now decrease some task duration times to
their lower bounds in configuration Ω∗ in the following way (see Figure 2b): for every (u, v) ∈ A,
duv(Ω

′

) = d+
uv if (u, v) ∈ p̂ or (u, v) = (i, j); d−uv otherwise. Duration dij(Ω

′

) = d+
ij , and, by

assumption, (k, l) is necessarily critical in G(dij = d+
ij). Consequently (k, l) is critical in this new

configuration Ω
′

. Hence, there exists a critical path p
′

∈ P traversing (k, l). Since node r̂ lies on
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Figure 3: (a) Configuration Ω∗ – r̂ on p∗ before r (b) Configuration Ω
′′

p∗ after node r, lp∗(r̂,k)(Ω
∗) = lp∗(r̂,k)(Ω

′

). Therefore path p∗(r̂, k) ∪ p
′

(k, n) is at least as long as

subpath p̂(r̂, n) in configuration Ω
′

. Decreasing dij(Ω
′

) to its lower bound gives configuration Ω+
p̂ .

Observe that the lengths of paths p∗(r̂, k) ∪ p
′

(k, n) and p̂(r̂, n) remain unchanged. Hence, there
exists a path in G(j, n) composed of two subpaths p̂(j, r̂) and p∗(r̂, k)∪ p

′

(k, n) that is at least as
long as p̂, which is impossible because we have assumed that no critical path goes through (k, l)
in G(j, n) in configuration Ω+

p̂ .
We can now return to the main proof. Consider configuration Ω∗. The previous claim shows

that if node r̂ exists, then r̂ = r or node r̂ lies on p∗ before node r (see Figure 3a). In the
case that r̂ does not exist, the proof proceeds in the same manner. From the above and the
criticality of p∗ in Ω∗, it follows that subpath p∗(r, n) = p∗(r, k) ∪ p∗(k, n), is at least as long as
subpath p(r, n) in this configuration. Notice that p∗(r, k) is one of longest paths from r to k in Ω∗.
Decreasing some of duration times in Ω∗ to their lower bounds, we obtain configuration Ω

′′

in the
following form (see Figure 3b): for every (u, v) ∈ A, duv(Ω

′′

) = d+
uv if (u, v) ∈ p or (u, v) = (i, j);

duv(Ω
′′

) = d−uv otherwise. Duration dij(Ω
′′

) = d+
ij , by assumption, (k, l) is necessarily critical in

G(dij = d+
ij), which implies the criticality of (k, l) in this new configuration Ω

′′

. Hence, there

exists a critical path p
′′

∈ P using (k, l). By the claim, lp∗(r,k)(Ω
∗) = lp∗(r,k)(Ω

′′

). It follows that

path p∗(r, k) ∪ p
′′

(k, n) is at least as long as subpath p(r, n) in configuration Ω
′′

. If (i, j) 6∈ p, we
may decrease duration dij(Ω

′′

) to its lower bound. Again by the claim, the lengths of subpaths

p∗(r, k)∪p
′′

(k, n) and p(r, n) remain unchanged in this new configuration and so p∗(r, k)∪p
′′

(k, n)
is still at least as long as p(r, n). It is easily seen that this new configuration is equal to Ω+

p . If

(i, j) ∈ p, configurations Ω
′′

p and Ω+
p are equal. Consequently, path p(1, r) ∪ p∗(r, k) ∪ p

′′

(k, n)

is at least as long as p and moreover p(1, r) ∪ p∗(r, k) ∪ p
′′

(k, n) uses (k, l). This contradicts our
assumption that no critical path in Ω+

p includes (k, l).

We are now in a position to give an algorithm (Algorithm 5) for asserting the necessary
criticality of a prescribed task in a general acyclic network. At each step of the algorithm, tasks
between j and k have precise duration times (so Algorithm 3 can be invoked), and Algorithm 5
assigns precise duration times to tasks preceding j, while preserving the criticality of task (k, l).
Since Algorithm 3 runs in O(m), Algorithm 5 requires O(mn) time.

Unfortunately, Propositions 6 and 7 can not be adapted to the study of possible criticality,
and asserting if a task is possibly critical, in general, is strongly NP-complete [6]. So, while these
results are instrumental for computing maximal floats, the same approach cannot be applied to
compute minimal floats.

4.2 Computing tightest bounds on latest starting dates

Let us present a polynomial algorithm, proposed in [47], that computes maximal latest starting
dates. Let us recall the following simple but important result that allows us to reduce the set of
configurations C .

Proposition 8 ([12]). The minimal upper bound on latest starting dates lst+kl of task (k, l) in G
is attained on an extreme configuration in which the duration of (k, l) is at its lower bound and all
tasks that do not belong to set SUCC(k, l) have duration times at their upper bounds.
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Algorithm 5: Asserting necessary criticality of task (k, l)

Input: A network G =< V, A >, activity (k, l), interval duration times Duv, (u, v) ∈ A.
Output: If fkl(1, n) = 0, (k, l) is necessarily critical in G; and if fkl(1, n) > 0, (k, l) is not

necessarily critical in G.
/* Initialization */
foreach (u, v) ∈ A \ (SUCC(k, l) ∪ PRED(k, l) ∪ {(k, l)}) do duv ← d+

uv;
dkl ← d−

kl;
/* Computation */
for j ← k downto 2 such that j ∈ PRED(k) ∪ {k} do

fkl(j, n) ← Algorithm 3 with G(j, n) and without the initialization phase;
if fkl(j, n) = 0 then

foreach i ∈ Pred(j) do dij ← d−
ij

else

foreach i ∈ Pred(j) do dij ← d+
ij

fkl(j, n) ← Algorithm 3 with G(1, n) and without the initialization phase;
return fkl(j, n);

The main idea of the algorithm for determining lst+kl of a given task (k, l) ∈ A is based on
Lemma 2. It consists in determining the minimal nonnegative real number f∗

kl that, added to the
lower bound of the duration interval of a specified task (k, l), makes it necessarily critical.

Lemma 2 ([47]). Let f∗
kl be the least nonnegative real number such that (k, l) is necessarily critical

with a duration d−kl + f∗
kl. Then lst+kl = est+kl + f∗

kl.

Thus, Proposition 8 and Lemma 2 suggest an algorithm for determining maximal latest starting
dates (Algorithm 6). The algorithm proceeds as follows. First the duration times of tasks not
succeeding (k, l) are set to their maximal values, and the duration of (k, l) is set to d−kl (see
Proposition 8). From this point on, it computes maximal earliest starting dates of (k, l). Then it
tests if (k, l) is necessarily critical in the partially instantiated configuration by calling Algorithm 3.
During this call, the algorithm retains all values fkl(1, i) determined by Algorithm 3. If (k, l) is not
necessarily critical, the smallest fkl(1, i), previously computed, is the least duration δ to be added
to dkl. Then, the algorithm adds this δ to dkl and repeats the previous steps. Since Algorithm 6
makes at most n calls to Algorithm 3, its complexity is O(nm).

Algorithm 6: Computation of maximal latest starting dates of a given task

Input: A network G, task (k, l), interval duration times Duv, (u, v) ∈ A.
Output: The maximal latest starting date lst+kl.
/* Initialization */
foreach (u, v) ∈ A \ (SUCC(k, l) ∪ {(k, l)}) do duv ← d+

uv;
dkl ← d−

kl;
Compute est+kl by the classical PERT;
∆← 0;
/* Computation */
fkl(1, n)← Algorithm 3 without the initialization;
/* we can retain all the values fkl(1, i) computed by Algorithm 3 */
while fkl(1, n) > 0 do

δ ← mini∈SUCC(l){fkl(1, i)|fkl(1, i) 6= 0};
∆← ∆ + δ;
dkl ← d−

kl + ∆;
fkl(1, n)← Algorithm 3 without the initialization;
/* we can retain all the values fkl(1, i) computed by Algorithm 3 */

return est+kl + ∆

There exist counterparts to Proposition 8, Lemma 2 and Algorithm 6 for minimal latest starting
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dates. They are exactly symmetrical. Hence, the sketch of the algorithm for computing minimal
latest starting dates (Algorithm 7), proposed in [47], is the same as Algorithm 6 and it also runs
in O(nm) time.

Algorithm 7: Computation of the minimal latest starting date of a given task

Input: A network G, activity (k, l), interval duration times Duv, (u, v) ∈ A.
Output: Minimal latest starting date lst−kl.
/* Initialization */
foreach (u, v) ∈ A \ (SUCC(k, l) ∪ {(k, l)}) do duv ← d−

uv;
dkl ← d+

kl;
Compute est−kl by the classical PERT;
∆← 0;
/* Computation */
fkl(1, n)← Algorithm 4;
/* we can retain all the values fkl(1, i) computed by Algorithm 4 */
while fkl(1, n) > 0 do

δ ← mini∈SUCC(l){fkl(1, i)|fkl(1, i) 6= 0};
∆← ∆ + δ;
dkl ← d+

kl + ∆;
fkl(1, n)← Algorithm 4;
/* we can retain all the values fkl(1, i) computed by Algorithm 4 */

return est−kl + ∆

4.3 Computing maximal floats

In order to compute the maximal float of task (k, l) ∈ A, we first set the duration times of the
tasks neither preceding nor succeeding (k, l) according to the following Lemma 3. The maximal
float of (k, l) after this partial instantiation is the same as in the original network G.

Lemma 3 ([12]). The maximal float f+
kl of task (k, l) in G is attained on an extreme configuration

in which the duration of (k, l) is at its lower bound and all tasks from set A \ (SUCC(k, l) ∪
PRED(k, l) ∪ {(k, l)}) have duration times at their upper bounds.

Then we increase step by step the duration of (k, l) from dkl = d−kl until (k, l) becomes neces-
sarily critical. Testing can be done in O(mn) time (see Algorithm 5). Lemmas 4 and 6 give the
hint to find the increment of dkl at each step of the algorithm. According to Proposition 9, this
incremental technique eventually yields f+

kl.

Lemma 4. Let tasks (i, j) ∈ PRED(k, l) have precise durations in G. Then (k, l) is necessarily
critical in G if and only if there exists a path p ∈ P (1, k) such that for every node j ∈ p, (k, l) is
necessarily critical in G(j, n).

Proof. (=⇒) Let us denote by p a longest path from 1 to k. Note that tasks (i, j) ∈ PRED(k, l)
have precise durations. From the necessary criticality of (k, l) in G, it follows that path p is part
of a longest path from 1 to n and this path uses (k, l) for each configuration. Thus for every node
j ∈ p, the subpath p(j, n) is critical path in G(j, n). Since this holds true for each configuration,
(k, l) is necessarily critical in G(j, n).
(⇐=) Just take j = 1. G(1, n) = G and so (k, l) is necessarily critical in G.

There is a link between the maximal latest starting date lst+kl and the maximal float value f+
kl

of task (k, l) under the assumption that tasks (i, j) ∈ PRED(k, l) have precise duration times.

Lemma 5 ([47]). Let tasks (i, j) ∈ PRED(k, l) have precise durations in G. Then f+
kl = lst+kl −

est+kl.

Thus, the maximal float value f+
kl can be computed by means of the algorithms for determining

lst+kl presented previously.
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Lemma 6. Let ∆ = minj{f
+
kl(j, n) | (k, l) is not necessarily critical in G(j, n)} where f+

kl(j, n) is
the maximal float of (k, l) in G(j, n), j ∈ PRED(k). Then for all ǫ < ∆, task (k, l) is not
necessarily critical in G(j, n), j ∈ PRED(k), with duration dkl = d−kl + ǫ. Moreover there exists
j∗ ∈ PRED(k) such that (k, l) is not necessarily critical in G(j∗, n) with duration dkl = d−kl, and
(k, l) becomes necessarily critical in G(j∗, n) with duration dkl = d−kl + ∆.

Proof. Consider a node j such that (k, l) is not necessarily critical in G(j, n). By Observation 1,
one can assume that task (k, l) has duration time of the form dkl = d−kl. Let Ω be an extreme
configuration where the float of (k, l) attains its maximal value f+

kl(j, n) > 0 in G(j, n), and
ǫ < ∆ ≤ f+

kl(j, n) (dkl(Ω) = d−kl). p′ denotes a longest path in G(j, n) in Ω, while p′′ stands for a
longest path in G(j, n) in Ω using (k, l). Therefore, f+

kl(j, n) = lp′(Ω) − lp′′(Ω) > ǫ. Let us define
the configuration Ω′ such that duv(Ω′) = d−kl + ǫ if (u, v) = (k, l); duv(Ω′) = duv(Ω) otherwise.
Path p′ remains a longest path in Ω′ with same length, and p′′ is still a longest path traversing
(k, l) with length lp′′(Ω′) = lp′′(Ω) + ǫ. Since the float of (k, l) in Ω′ is lp′(Ω′) − lp′′(Ω′) > 0, (k, l)
is not necessarily critical in G(j, n), j ∈ PRED(k), with duration dkl = d−kl + ǫ.

Consider a node j∗ such that (k, l) is not necessarily critical in G(j∗, n), and set ∆ = f+
kl(j

∗, n).
Then for all configurations, the difference between a longest path in G(j∗, n) and a longest path
using (k, l) is less or equal than ∆. If we increase the duration of (k, l) to d−kl + ∆, a longest path,
in this new configuration, will traverse (k, l) and thus (k, l) will be necessarily critical in G(j∗, n)
with duration dkl = d−kl + ∆.

Proposition 9. Let f∗
kl be the least nonnegative real number such that (k, l) is necessarily critical

in G(dkl = d−kl + f∗
kl). Then f+

kl = f∗
kl.

Proof. Consider any configuration Ω. Let p
′

be a longest path in Ω and p′′ be a longest path
including (k, l) in Ω. Note that fkl(Ω) = lp′ (Ω) − lp′′ (Ω). Let us now modify configuration Ω and
denote it by Ωx. Configuration Ωx is defined as follows: for every (u, v) ∈ A duv(Ωx) = duv(Ω)+x
if (u, v) = (k, l); duv(Ωx) = duv(Ω) otherwise, where x is a nonnegative real number. It is clear
that lp′′ (Ωx) = lp′′ (Ω) + x and p

′′

remains a longest path including (k, l) in new configuration Ωx.

Consider the following two cases: (x < fkl(Ω)). Then lp′′ (Ωx) ≤ lp′ (Ω), and so p
′

is still a critical
path in Ωx and has the same length as in Ω. This gives fkl(Ω

x) = fkl(Ω) − x. (x ≥ fkl(Ω)).
Then p

′′

becomes a critical path and so fkl(Ω
x) = 0. Thus, for all Ω and x, equation fkl(Ω

x) =
max(fkl(Ω) − x, 0) holds. In particular, for x = f∗

kl and configuration Ω = Ω∗ such that Ω∗

maximizes the float of task (k, l) in G. From the definition of f∗
kl we get fkl(Ω

f∗

kl) = 0, hence
fkl(Ω

∗) − f∗
kl ≤ 0, and finally f+

kl ≤ f∗
kl.

Suppose that f+
kl < f∗

kl. Set y = (f∗
kl+f+

kl)/2. Then, for every Ω, fkl(Ω
y) = max(fkl(Ω)−y, 0) =

0. Note that y is a nonnegative real number, smaller than f∗
kl, such that (k, l) is necessarily critical

in G(dkl = d−kl +y), which contradicts the definition of f∗
kl. Hence, we conclude that f+

kl = f∗
kl.

From the above results, it follows an algorithm that computes the maximal float of task (k, l)
in polynomial time (Algorithm 8). The algorithm first tests the necessary criticality of (k, l) in G
by calling Algorithm 5. If so, then its float is null. Otherwise, it determines the minimal duration
δ that must be added to the duration of (k, l) to change the instantiation made by Algorithm 5 for
at least one task preceding (k, l). Moreover, the instantiation made by Algorithm 5 will change if
and only if (k, l) becomes necessarily critical for at least one new subnetwork G(i, n). This δ is the
least positive value of the maximal float of (k, l) in networks G(i, n), where i ∈ PRED(k). Since
the duration times of predecessors were previously fixed, these values of the maxima of floats are
differences between the maxima of latest starting dates and the minima of earliest starting dates
(see Lemma 5). Algorithm 8 executes at most n times the while loop. At each iteration of while
loop, (k, l) becomes necessarily critical in at least one new subnetwork G(j, n). Thus the loop is
executed at most n times, and thus Algorithm 8 requires O(n3m) time.
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Algorithm 8: Computation of the maximal float of a given task

Input: A network G, task (k, l), interval duration times Duv, (u, v) ∈ A.
Output: The maximal float f+

kl.
∆← 0;
fkl(1, n)← Algorithm 5;
while fkl(1, n) > 0 do

δ ←∞;
foreach i ∈ PRED(k) do

[est∗kl, lst
∗
kl]← Algorithm 6 in G(i, n);/*Algorithm 6 returns additionally est+kl*/

f∗
kl ← lst∗kl − est∗kl;

if f∗
kl > 0 then δ ← min{δ, f∗

kl};

∆← ∆ + δ;
dkl ← d−

kl + ∆;
fkl(1, n)← Algorithm 5 without the initialization;

return ∆

5 Illustrative example

In order to illustrate the presented algorithms, let us consider the execution of the algorithms on
the project network given in Figure 4.
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Figure 4: A project network

We wish to compute the maximal float of task (2, 3) by means of Algorithm 8. In this section,
Ωpar represents a partial configuration, that is, the precise duration times of instantiated tasks and
the interval duration times of the non-instantiated tasks. In our example, the knowledge about
duration times is represented by the partial configuration Ωpar (initially the duration times are
ill-known): D12 = [1, 2], D23 = [0, 3], D34 = [1, 3], D24 = [0, 2], D14 = [0, 1]. We now analyze a
complete execution of Algorithm 8 in order to compute the maximal float of task (2, 3).

Algorithm 8 After initializing ∆ to 0, Algorithm 8 calls Algorithm 5.

Algorithm 5 The initialization of Algorithm 5 assigns precise duration times to tasks
(2, 3), (2, 4) and (1, 4) obtaining the partial configuration Ωpar: D12 = [1, 2], D23 = 0,
D34 = [1, 3], D24 = 2, D14 = 1. Then the for loop is executed. At the first iteration,
Algorithm 3 is called for the subnetwork G(2, 4) without the initialization. It means that
Algorithm 3 only considers the network composed of tasks: (2, 3) with duration 0, (3, 4)
with duration [1, 3] and task (2, 4) with duration 2 (see the next network).
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Algorithm 3 The classical PERT is first performed for determining the earliest
starting time of event 2, which is equal to null. Then the for loop of Algorithm 3
is executed and the float of (2, 3) is computed in the network constituted only by
this task (2, 3). Its float is obviously null and then Algorithm 3 assigns the minimal
duration to task (3, 4). The partial configuration Ωpar is then D12 = [1, 2], D23 = 0,
D34 = 1, D24 = 2, D14 = 1.
At the second iteration of the for loop of Algorithm 3, the float of (2, 3) is computed
in the subnetwork G(2, 4) with durations: D23 = 0, D34 = 1, D24 = 2. The float
is 1 in this subnetwork. Thus, Algorithm 3 returns 1 to Algorithm 5.

Task (2, 4) is not critical in G(2, 4), in consequence Algorithm 5 sets the duration
times of the tasks preceding node 2 to their upper bounds. This leads to the partial
configuration Ωpar: D12 = 2, D23 = 0, D34 = [1, 3], D24 = 2, D14 = 1. The for loop
terminates. Before the end of Algorithm 5, Algorithm 3 is invoked for G(1, 4). This call
is the same as an execution of the for loop with j = 1.

Algorithm 3 The classical PERT is first called for determining the earliest starting
times of events 1 and 2, which are equal to 0 and 2, respectively. Then the for

loop of Algorithm 3 is executed and the float of task (2, 3) is computed in G(1, 3)
(the network is constituted by only tasks (1, 2) and (2, 3)). Its float is obviously
null and then Algorithm 3 assigns the minimal duration to task (3, 4). The partial
configuration Ωpar is then D12 = 2, D23 = 0, D34 = 1, D24 = 2, D14 = 1.
At the second iteration of the for loop of Algorithm 3, the float of (2, 3) is computed
in the subnetwork G(1, 4) with the partial configuration. The float of (2, 3) is 1 in
this subnetwork and Algorithm 3 returns 1 to Algorithm 5.

Algorithm 5 returns 1 to Algorithm 8.

(2, 3) is not necessarily critical in G so Algorithm 8 runs the while loop. In this loop,
maximal latest starting dates are computed in all subnetworks G(i, 4), i ∈ PRED(2) (for
loop). Algorithm 6 is first called in G(2, 4).

Algorithm 6 lst+23 is determined in G(2, 4) as follows : the duration times of tasks not
succeeding (2, 3) are set to their upper bounds and duration of (2, 3) is set to its lower
bound. Thus, the partial configuration Ωpar is D23 = 0, D34 = [1, 3], D24 = 2 (see the
network below).
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In the considered network, the maximal earliest starting date of (2, 3) is 0. Then, Algo-
rithm 6 calls Algorithm 3 without the initialization.

Algorithm 3 f23 is null in G(2, 3), since there is only task (2, 3) in the network
(this float is retained by Algorithm 6). Then the duration of task (3, 4) is set to
d−23 = 1, and finally f23 in G(2, 4) is computed in configuration Ωpar: D23 = 0,
D34 = 1, D24 = 2. This float is equal to 1 and is returned to Algorithm 6.
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Table 1: The intervals of values of earliest and latest starting times and of floats and criticality
evaluations for all tasks of the network given in Figure 4

task (i, j) ESTij LSTij Fij possibly critical. necessarily critical

(1, 2) [0, 0] [0, 0] [0, 0] yes yes

(1, 4) [0, 0] [1, 8] [1, 8] no no

(2, 3) [1, 2] [1, 3] [0, 1] yes no

(2, 4) [1, 2] [1, 8] [0, 6] yes no

(3, 4) [1, 5] [1, 6] [0, 1] yes no

The minimal float computed by the previous algorithm is ∆ = 1, and thus the duration
of (2, 3) is increased by 1. Then Algorithm 3 is called one more time in G(2, 4), with
duration times Ωpar: D23 = 1, D34 = [1, 3], D24 = 2 (see the network below).
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Algorithm 3 During the execution of the algorithm, the partial configuration
Ωpar: D23 = 1, D34 = 1, D24 = 2 is constructed. This allows to deduce that (2, 3)
is necessarily critical in the network G(2, 4) (with the possible duration times set
before the call of the algorithm).

(2, 3) is necessarily critical in G(2, 4), for a duration of (2, 4) of d23 = d−23 + 1, so the
latest starting date of (2, 3) is 1 in G(2, 4).

In the configuration constructed by the previous Algorithm 6, the earliest starting date of
(2, 3) is null. Thus, the value f∗

kl is equal to 1, and δ is set to 1.
In the second iteration of the for loop, Algorithm 8 calls Algorithm 6 in G(1, 4) to compute
the upper bound on the latest starting dates of (2, 3) when its duration is d23 = 0.

Algorithm 6 After the initialization, the partial configuration Ωpar is D12 = 2, D23 = 0,
D34 = [1, 3], D24 = 2, D14 = 1. The Algorithm is executed as previously and returns 3
for the latest starting date of (2, 3) in G(1, 4).

In the constructed configuration, the earliest starting date of (2, 3) is 2, f∗
kl = 1 and δ still

equals 1. Now Algorithm 8 sets the duration of (2, 3) to d−23 + δ. Algorithm 5 is called with
the possible durations Ωpar: D12 = [1, 2], D23 = 1, D34 = [1, 3], D24 = [0, 2], D14 = [0, 1].

Algorithm 5 The algorithm works as previously. This time task (2, 3) is necessarily
critical and Algorithm 5 returns 0.

Task (2, 3) is necessarily critical in the constructed network, so the while loop terminates.
Algorithm 8 returns 1. This value is the total duration added to the lower bound of (2, 3)
to make it necessarily critical. Therefore, the maximal float of (2, 3) is 1. Task (2, 3) is not
necessarily critical.

Table 1 reports all the computational results on the intervals of possible values of earliest and
latest starting times and floats and on criticality evaluations for all tasks of the project network
given in Figure 4.
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Table 2: The complexity of the interval problems and the running times of the algorithms

Earliest starting date (all tasks) MinEST P O(n + m) [5]

MaxEST P O(n + m) [5]

Latest starting date (one task) MinLST P O(mn) Algorithm 6 [47]

MaxLST P O(mn) Algorithm 7 [47]

Latest starting date (all tasks) MinLST P O(m2) Algorithm 2

Float (all tasks) MinF NP-hard O((m + n)|P |) Algorithm 1 [11]

Float (one task) MaxF P O(n3m) Algorithm 8

Table 3: The running times of the algorithms for computing quantities for all tasks in a network

Algorithm 1 (Path Algorithm MaxLST, MinF, MaxF) O((m + n)|P |)

Algorithm 2 (Polynomial Path Algorithm MinLST) O(m2)

Algorithm 6 (MaxLST) O(m2n)

Algorithm 7 (MinLST) O(m2n)

Algorithm 8 (MaxF) O(n3m2)

6 Complexity and experimental results

Table 2 summarizes the complexity of the different problems of the PERT on intervals. Moreover,
Table 2 gives the running times of the best known algorithms that compute the quantities of
interest. In particular, the path algorithm that computes minimal and maximal floats and maximal
latest starting dates requires O((n + m)|P |) time, where |P | is the number of paths of a network.
This running time depends on the topology of a network. Note that, some algorithms need only
one execution to compute a quantity (for example, minimal starting dates) for all tasks of a
network. Other ones need to be executed for each task. This means that the comparison of their
running times can be difficult. Table 3 gives the running time of each of the proposed algorithm for
computing the quantity of interest for all tasks in a network and recalls the quantities computed
by the algorithms. MaxLST, MinLST, MaxF and MinF denote maximal latest starting dates,
minimal latest starting dates, maximal floats and minimal floats, respectively.

We now present some computational results in order to evaluate the performance of all the
considered algorithms on a scheduling problem library of 600 networks having 120 tasks. Those
instances of problems can be found in the PSPLIB library. They have been generated by ProGen,
the program for activity network generation [33], which can be downloaded from the PSPLIB
web site1. We have added a range of 20% to task duration times to obtain intervals. Table 4
reports minimal, maximal and average execution times (in milliseconds) of five algorithms tested
on those 600 problems. All the algorithms were written in C language and ran on a PC computer
equipped with 2.5GHz CPU. As seen from the experimental results, the path algorithm (potentially
exponential) for simultaneously computing the maxima of latest starting dates and the minima
and maxima of floats is very efficient in practice. This comes from the fact that the number of
paths in these networks is not so huge, i.e. between 408 and 6559 different paths. Of course, one
can construct more complex networks, but PSPLIB is known to be relevant to realistic scheduling
problems. On the other hand, the polynomial algorithm that computes maximal floats is not so
efficient for these scheduling problems. These results show that the proposed algorithms are very
efficient for problems involving about one hundred tasks.

1http://129.187.106.231/psplib/
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Table 4: Minimal, maximal and average execution times (in milliseconds) of five algorithms tested
on 600 problems from PSPLIB

Min Max Avg.

Algorithm 1 (Path Algorithm MaxLST, MinF, MaxF) 6 138 36

Algorithm 2 (Polynomial Path Algorithm MinLST) 1.4 2.2 1.6

Algorithm 6 (MaxLST) 4 16 8.1

Algorithm 7 (MinLST) 41 9 19

Algorithm 8 (MaxF) 210 2 860 1 090

Table 5: Average execution times (in milliseconds) of the algorithms tested on problems from
RANGEN

Order Strength OS
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Algorithm 1 4 35 111 249 583 1 534 5 161 27 000 303 117 2

Algorithm 2 1 5 6 6 6 6 5 4 3 2 1

Algorithm 6 4 28 57 76 87 89 79 58 30 12 2

Algorithm 7 5 44 96 138 174 195 181 142 80 21 2

Algorithm 8 16 600 2 280 4 926 9 520 16 321 22 100 23 712 16 625 5 562 78

We have made a second batch of experiments in order to evaluate the algorithms on networks
with different complexities. For this purpose we have used the RANGEN 1 project generator which
can be downloaded from the RANGEN web page2. RANGEN 1 is particularly useful because it
can generate networks with various order strengths, denoted by OS. This coefficient measures
the hardness of a problem instance. The order strength is the number of precedence relations
divided by the theoretical maximal number of precedence relations in a network. More details on
RANGEN can be found in [9]. We have generated by RANGEN nine sets of 100 networks with
100 tasks in which the values of OS are equal to i · 0.1, i = 1, . . . , 9, one network with OS equals 0
(all tasks of this network can be executed in parallel) and one network in which OS equals 1
(all tasks are series). Again, we have ignored resource constraints of these problems and added a
range of 20% to task duration times to obtain intervals. Table 5 reports execution times of the
algorithms on the generated problems by RANGEN. It is easy to observe that the computational
time of most of the algorithms depends on values of OS. Figure 5 presents execution times of the
algorithms. The computational time of the path algorithm drastically increases when the value of
OS increases. This is due to the fact that the number of potential paths in the networks increases
when OS is increased (if OS is very close to 1 then networks become parallel ones). The other
algorithms are quite efficient. In particular, the polynomial algorithm for computing maximal
floats is more efficient than the path algorithm when OS is greater than 0.7. Each polynomial
algorithm achieves its maximal execution time on networks with OS parameter between 0.5 and
0.7.

7 Conclusion

This paper provides a complete solution to the criticality analysis of activity networks when the
duration times of tasks are modeled by means of intervals. It is shown that moving from precise
to imprecise durations radically changes the nature and complexity of the problem, ruining the

2http://www.projectmanagement.ugent.be/rangen.php
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Figure 5: Execution times of of the algorithms on RANGEN benchmark

classical critical path method. The part of the problem pertaining to computing minimal float
values, becomes strongly NP-hard [6] and remains NP-hard even if in acyclic planar network of
node degree 3 [7]. Moreover, it is not at all approximable, unless P=NP [47]. The other questions
remain polynomially solvable, although not straightforwardly so.

An interesting question is how to exploit the results of an interval criticality analysis. The
end-user may not be accustomed to obtaining imprecise floats or latest starting times. A task that
has a large maximal float is less likely to become critical in practice on a real configuration, than a
task that has a small maximal float . On the other hand, all tasks having positive minimal float are
ensured not to be critical whatever the actual configuration turns out to be. So any interval PERT
software would present results to the user by eliminating tasks with positive minimal floats first,
and drawing the user’s attention on necessary critical tasks first and then on tasks having small
maximal floats. It is clear that, insofar as obtained results are sufficiently precise, the information
derived from an interval criticality analysis is richer than the one provided by a standard criticality
analysis, because it is supposed to cover many possible scenarios at the same time.

The presented results can be also applied to the criticality analysis of activity networks with
imprecise duration times of tasks modeled by fuzzy intervals, whose membership functions are
regarded as possibility distributions for the values of the unknown duration times called fuzzy-
valued PERT. Fuzzy intervals are more informative than crisp ones as they also account for
plausible values of task duration times. They address the dilemma between safe but uniformative
intervals and narrow but possibly wrong ones. This gradual extension of interval PERT can be
computed via the standard decomposition in α-cuts that consists in decomposing the fuzzy-valued
PERT into a family of the interval-valued PERT problems, which can be solved by algorithms
presented here (see for details [12, 47]). Another method for addressing fuzzy interval PERT
exploits a notion of gradual number [21]. Gradual numbers provide a new outlook on fuzzy intervals
that can be viewed as classical intervals of gradual numbers. This allows us to directly apply the
interval algorithms, proposed in this paper to the fuzzy-valued PERT problems (see [20] for an
example of algorithms for computing upper bounds on floats).

It is worth pointing out that the presented results can be useful tools for min-max regret version
of the longest (shortest) path problem with interval weights in acyclic graphs (see [2, 27, 28]). In
particular, the algorithms for evaluating the necessary criticality and for computing the maximal
float of an activity (arc) are useful in a preprocessing of an instance of the problem, since a
necessarily critical activity (arc) can be automatically added to a constructed min-max regret
path. In consequence, one can decompose an instance with a necessarily critical arc into two
separate instances in smaller subgraphs [29]. An activity (arc) with a small maximal float can be
considered as a candidate for belonging to a min-max regret path.
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