V. G. Adlakha and V. G. Kulkarni, A Classified Bibliography Of Research On Stochastic Pert Networks: 1966-1987, INFOR: Information Systems and Operational Research, vol.27, issue.3, pp.272-296, 1989.
DOI : 10.1080/03155986.1989.11732098

I. Averbakh and V. Lebedev, Interval data minmax regret network optimization problems, Discrete Applied Mathematics, vol.138, issue.3, pp.289-301, 2004.
DOI : 10.1016/S0166-218X(03)00462-1

S. Chanas, D. Dubois, and P. Zieli´nskizieli´nski, On the sure criticality of tasks in activity networks with imprecise durations, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.32, issue.4, pp.393-407, 2002.
DOI : 10.1109/TSMCB.2002.1018760

S. Chanas and J. Kamburowski, The use of fuzzy variables in pert, Fuzzy Sets and Systems, vol.5, issue.1, pp.1-19, 1981.
DOI : 10.1016/0165-0114(81)90030-0

S. Chanas and P. Zieli´nskizieli´nski, The computational complexity of the criticality problems in a network with interval activity times, European Journal of Operational Research, vol.136, issue.3, pp.541-550, 2002.
DOI : 10.1016/S0377-2217(01)00048-0

S. Chanas and P. Zieli´nskizieli´nski, On the hardness of evaluating criticality of activities in planar network with duration intervals. Operation Research Letters, pp.53-59, 2003.

E. Conde, A minmax regret approach to the critical path method with task interval times, European Journal of Operational Research, vol.197, issue.1, pp.235-242, 2009.
DOI : 10.1016/j.ejor.2008.06.022

E. Demeulemeester, M. Vanhoucke, and W. Herroelen, A random network generator for activity-on-the-node networks, Journal of Scheduling, vol.6, pp.13-34, 2003.

D. Dubois, Modèles mathématiques de l'imprécis et de l'incertain en vue d'applications aux techniques d'aidè a la décision, Thèse d'´ etat de l, 1983.

D. Dubois, H. Fargier, and J. Fortin, Computational methods for determining the latest starting times and floats of tasks in interval-valued activity networks, Journal of Intelligent Manufacturing, vol.150, issue.6, pp.407-422, 2005.
DOI : 10.1007/s10845-005-1654-5

D. Dubois, H. Fargier, and V. Galvagnon, On latest starting times and floats in activity networks with ill-known durations, European Journal of Operational Research, vol.147, issue.2, pp.266-280, 2003.
DOI : 10.1016/S0377-2217(02)00560-X

D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, 1980.

D. Dubois, H. Prade, and P. Smets, Representing partial ignorance, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.26, issue.3, pp.361-377, 1996.
DOI : 10.1109/3468.487961

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Dubois, H. Prade, and P. Smets, A definition of subjective possibility, International Journal of Approximate Reasoning, vol.48, issue.2, pp.352-364, 2008.
DOI : 10.1016/j.ijar.2007.01.005

S. E. Elmaghraby, Activity Networks: Project Planning and Control by Network Models, 1977.

S. E. Elmaghraby, On criticality and sensitivity in activity networks, European Journal of Operational Research, vol.127, issue.2, pp.220-238, 2000.
DOI : 10.1016/S0377-2217(99)00483-X

H. Fargier, V. Galvagnon, and D. Dubois, Fuzzy PERT in series-parallel graphs, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063), pp.717-722, 2000.
DOI : 10.1109/FUZZY.2000.839120

S. Ferson and L. Ginzburg, Different methods are needed to propagate ignorance and variability . Reliability Engineering and Systems Safety, pp.133-144, 1996.
DOI : 10.1016/s0951-8320(96)00071-3

J. Fortin and D. Dubois, Solving Fuzzy PERT using gradual real numbers, Starting AI Researcher's Symposium (STAIRS), Riva del Garda, Italy, pp.196-207, 2006.

J. Fortin, D. Dubois, and H. Fargier, Gradual Numbers and Their Application to Fuzzy Interval Analysis, IEEE Transactions on Fuzzy Systems, vol.16, issue.2, pp.388-402, 2008.
DOI : 10.1109/TFUZZ.2006.890680

J. Fortin, P. Zieli´nskizieli´nski, D. Dubois, and H. Fargier, Interval Analysis in Scheduling, Principles and Practice of Constraint Programming -CP 2005, pp.226-240, 2005.
DOI : 10.1007/11564751_19

I. Gazdik, Fuzzy network planning, IEEE Transactions on Reliability, vol.32, pp.304-313, 1983.

J. N. Hagstrom, Computational complexity of PERT problems, Networks, vol.8, issue.2, pp.139-147, 1988.
DOI : 10.1002/net.3230180206

M. Hapke, A. Jaszkiewicz, and R. S. Lowi´nskilowi´nski, Fuzzy project scheduling system for software development. Fuzzy Sets and Systems, pp.101-107, 1994.

M. Hapke and R. S. Lowi´nskilowi´nski, Fuzzy priority heuristics for project scheduling. Fuzzy Sets and Systems, pp.291-299, 1996.

O. E. Karasan, M. C. Pinar, and H. Yaman, The robust shortest path problem with interval data. Optimization Online, 2001.

A. Kasperski and P. Zieli´nskizieli´nski, The robust shortest path problem in series???parallel multidigraphs with interval data, Operations Research Letters, vol.34, issue.1, pp.69-76, 2006.
DOI : 10.1016/j.orl.2005.01.008

A. Kasperski and P. Zieli´nskizieli´nski, Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights, European Journal of Operational Research, vol.200, issue.3, pp.680-687, 2010.
DOI : 10.1016/j.ejor.2009.01.044

A. Kaufmann and M. M. Gupta, Fuzzy Mathematical Models in Engineering and Management Science, 1991.

J. E. Kelley, Critical-Path Planning and Scheduling: Mathematical Basis, Operations Research, vol.9, issue.3, pp.296-320, 1961.
DOI : 10.1287/opre.9.3.296

G. B. Kleindorfer, Bounding Distributions for a Stochastic Acyclic Network, Operations Research, vol.19, issue.7, pp.1586-1601, 1971.
DOI : 10.1287/opre.19.7.1586

R. Kolisch and A. Sprecher, PSPLIB - A project scheduling problem library, European Journal of Operational Research, vol.96, issue.1, pp.205-216, 1996.
DOI : 10.1016/S0377-2217(96)00170-1

P. Kouvelis and G. Yu, Robust Discrete Optimization and its applications, 1997.
DOI : 10.1007/978-1-4757-2620-6

F. A. Loostma, Fuzzy logic for planning and decision-making, 1997.

A. Ludwig, R. H. Möhring, and F. Stork, A Computational Study on Bounding the Makespan Distribution in Stochastic Project Networks, Annals of Operations Research, vol.102, issue.1/4, pp.49-64, 2001.
DOI : 10.1023/A:1010945830113

D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar, Application of a Technique for Research and Development Program Evaluation, Operations Research, vol.7, issue.5, pp.646-669, 1959.
DOI : 10.1287/opre.7.5.646

C. S. Mccahon, Using PERT as an approximation of fuzzy project-network analysis, IEEE Transactions on Engineering Management, vol.40, issue.2, pp.146-153, 1993.
DOI : 10.1109/17.277406

C. S. Mccahon and L. S. , Project network analysis with fuzzy activity times, Computers & Mathematics with Applications, vol.15, issue.10, pp.829-838, 1988.
DOI : 10.1016/0898-1221(88)90120-4

I. Meilijson and A. Nadas, Convex majorization with an application to the length of critical paths, Journal of Applied Probability, vol.68, issue.03, pp.671-677, 1979.
DOI : 10.1214/aop/1176996706

S. H. Nasution, Fuzzy critical path method, IEEE Transactions on Systems, Man, and Cybernetics, vol.24, issue.1, pp.48-57, 1994.
DOI : 10.1109/21.259685

H. Prade, Using fuzzy sets theory in a scheduling problem: a case study. Fuzzy Sets and Systems, pp.153-165, 1979.

H. Rommelfanger, Network analysis and information flow in fuzzy environment. Fuzzy Sets and Systems, pp.119-128, 1994.

A. W. Shogan, Bounding distributions for a stochastic pert network, Networks, vol.24, issue.4, pp.359-381, 1977.
DOI : 10.1002/net.3230070407

J. Valdes, R. E. Tarjan, and E. L. Lawler, The Recognition of Series Parallel Digraphs, SIAM Journal on Computing, vol.11, issue.2, pp.298-313, 1982.
DOI : 10.1137/0211023

P. Zieli´nskizieli´nski, On computing the latest starting times and floats of activities in a network with imprecise durations. Fuzzy Sets and Systems, pp.53-76, 2005.

P. Zieli´nskizieli´nski, Efficient Computation of Project Characteristics in a Series-Parallel Activity Network with Interval Durations, Decision Theory and Multi-Agent Planning, number 482 in CISM Courses and Lectures, pp.111-130, 2006.