
HAL Id: lirmm-00557258
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00557258v1

Submitted on 18 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Many-Valued Concept Lattices for Backing Composite
Web Services

Zeina Azmeh, Marianne Huchard, Nizar Messai, Chouki Tibermacine,
Christelle Urtado, Sylvain Vauttier

To cite this version:
Zeina Azmeh, Marianne Huchard, Nizar Messai, Chouki Tibermacine, Christelle Urtado, et al.. Many-
Valued Concept Lattices for Backing Composite Web Services. RR-11002, 2010. �lirmm-00557258�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00557258v1
https://hal.archives-ouvertes.fr

Many-Valued Concept Lattices for Backing
Composite Web Services

Zeina Azmeh1, Marianne Huchard1, Nizar Messai2, Chouki Tibermacine1,
Christelle Urtado3, and Sylvain Vauttier3

1 LIRMM - CNRS UMR 5506 - Université de Montpellier II - Montpellier (France)
{azmeh, huchard, tibermacin}@lirmm.fr

2 UMR 7503 LORIA, BP 239, 54506 Vandoeuvre-lès-Nancy, (France)
messai@loria.fr

3 LGI2P - Ecole des Mines d’Alès, Nı̂mes, (France)
{Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

Abstract. A Web service is a software functionality accessible through
the network. Web services are intended to be composed to realize domain-
specific applications. Achieving a required functionality by a service com-
position necessitates the discovery of a collection of Web services out of
the enormous service space. Each service from this service space must
be examined to verify its functionality, which makes the discovery task
neither efficient nor practical. Moreover, when a service in a composition
becomes unavailable or functionally broken, the whole composition may
become broken too. Therefore, a functionally equivalent service must be
discovered, in order to replace the broken service, thus spending more
time and effort. In this paper, we propose an approach that facilitates
the discovery of a web service and the identification of its candidate
substitutes. We use many-valued concept lattices to classify web ser-
vices, depending on the similarity estimated between their operations.
This classification enables the identification of a needed web service as
well as its possible alternatives. Thus, a Web service composition can
be achieved more easily and can be supported with backup services, to
recover the functionality of a broken service.

1 Introduction

A Web service is a software functionality accessible through the network. It ex-
poses its functionality to the external world by an abstract interface expressed
by Web Service Description Language, WSDL4. A WSDL interface is a uni-
form mechanism for describing a service’s available operations, parameters, data
types, and access protocols.

According to the functionalities described by the WSDL interfaces, web ser-
vices can be assembled to serve a particular function, solve a specific problem,
or deliver a particular solution. They represent the building blocks for creating
composite applications. When creating a composite application, each selected
4 http://www.w3.org/TR/wsdl

2

web service must fulfil a part of the application’s functionality. Therefore, each
service’s WSDL must be analyzed to verify its provided operations, and so to
decide whether to select the service or not. Due to the big number of web ser-
vices that exist on the web nowadays, the task of finding an appropriate service
to use becomes hard and time-consuming. After identifying the needed services,
they can be assembled together in order to form the functionality of the aimed
composite application. This application will be functional as long as each of its
composing services is functional, but once one of its services breaks, the part
of the application represented by this service will break too, causing a total or
partial dysfunctionality to the application. The obvious solution in this case, will
be to search for another web service to replace the broken one and recover the
missing functionality. Thus, the task of finding an appropriate web service to
use has to be repeated every time a service breaks and has to be replaced by an
equivalent one.

In this paper, we propose an approach for web service browsing, in order to
facilitate the discovery of a web service and the identification of its candidate
backups. We use the formal concept analysis (FCA), a mathematical formalism
that permits the identification of groups of objects having common attributes.
We adopted FCA in a number of our previous work [2, 1]. Using FCA, we con-
struct web service lattices according to their functionality domain, depending on
the similarity estimated between their operations.

Our generated service lattices represent a browsing mechanism that facilitates
the discovery of a needed service, along with a set of possible backup services.

The rest of the paper is organized as follows: Section 2 defines the problem
statement. In Section 3, we give a quick overview about formal concept analysis
with its basic definitions. In Section 4, we explain our approach along with
examples and formal definitions. In Section 5, we demonstrate a case study to
explain the use of our approach. In Section 6, we list and discuss the related
work. Finally, in Section 7, we conclude our paper and briefly give some of our
perspectives.

2 Problem Statement

Web services face several challenging issues coming from several factors. Since,
they are offered by various providers, remotely accessed, and sometimes provided
for free, there is no guarantee of a continuous execution. An available functioning
web service may crash and become unavailable at any time, which necessitates
finding an equivalent one to replace it. Unfortunately, this can be hard to achieve
since there is a lack of WSDL organizing facilities, especially after the deficiency
of the UDDI5 registries: ”UDDI did not achieve its goal of becoming the registry
for all Web Services metadata and did not become useful in a majority of Web
Services interactions over the Web” [18].

Thus, a mechanism for finding service backups becomes indispensable, espe-
cially when a service represents a part of a composite application.
5 http://www.uddi.org/pubs/uddi v3.htm

3

Let’s take the two following services: a currency converter service and a cal-
culation service. The currency converter service offers an operation that returns
the exchange rate between two entered currencies. The calculation service offers
several operations for calculation, one of them return the multiplication of two
entered numbers. We will link the exchange rate operation with the multiplica-
tion operation in order to build a composite service of the two mentioned service,
we will call it the composite currency service. This new composite service will
give us a converted amount from a currency to another. Fig. 1 shows us an
overview of this composite service.

Fig. 1. The composite currency service.

In the composition of Fig. 1, if the service Calc crashes, for example, a service
offering a multiplication operation equivalent to mul() must be searched and
discovered. Thus to recover the missing functionality, and ensure the continuity
of the composition.

In the following sections, we illustrate some background definitions about
FCA in order to describe the classification of Web services into concept lattices.

3 FCA Overview

In our approach, we use the FCA formalism in order to construct a classification
of web services. FCA is a mathematical theory that permits the identification of

4

groups of objects having common attributes [11]. FCA takes as input a given data
set represented as a formal context and produces the set of all the formal concepts
which form a concept lattice. A formal context is denoted by K = (G,M, I) where
G is a set of objects, M is a set of attributes, and I is a binary relation between G
and M (I ⊆ G×M). (g,m) ∈ I denotes the fact that object g ∈ G is in relation
through I with attribute m ∈M (also read as g has m). We adapt the FCA for
web services, by considering that the set of objects represent web services and
the set of attributes represent operations. In this way, a formal context of web
services and operations becomes K = (W,O, I), where:

W = {wsi | 1 ≤ i ≤ |W| ∧ |W| > 1}

is the set of web services, we suppose that it must contain more than one web
service. Each service offers a set of one or more operations, and the union of all
of the sets of operations offered by the services forms the total set of operations:

wsi = {opij | 1 ≤ i ≤ |W| ∧ 1 ≤ j ≤ |wsi|}

O =
i≤|W|⋃
i≥1

wsi

(ws, op) ∈ I denotes the fact that the service ws ∈W provides the operation
op ∈ O (also read as ws has op). Table 1 shows an example of a formal context
(W,O, I) where W = {ws1, ws2, ws3} and O = {op1, op2, op3, op4, op5}.

Table 1. A formal context for W×O.

op1 op2 op3 op4 op5

ws1 × × ×
ws2 × × ×
ws3 × × × ×

Having a set of web services X ⊆W,

X ′ = {op ∈ O | ∀ ws ∈ X : (ws, op) ∈ I}

is the set of common operations. In the same way, having the set of operations
Y ⊆ O,

Y ′ = {ws ∈W | ∀ op ∈ Y : (ws, op) ∈ I}

is the set of common web services. In our example,
({ws1, ws3})′ = {op1, op2, op4} and ({op3})′ = {ws2, ws3}.

A concept is a pair of sets (X,Y) where X ⊆W is called the extent, Y ⊆ O
is called the intent, and Y = (X)′, X = (Y)′. Meaning that, a concept is a
maximal collection of services offering similar operations. The set of all concepts
is denoted by B(W,O, I).

5

In our example, ({ws1, ws3}, {op1, op2, op4}) is a concept while ({op3}, {ws2, ws3})
is not. In fact, while ({op3})′ = {ws2, ws3}, ({ws2, ws3})′ = {op2, op3}. A con-
cept (X1, Y 1) is a subconcept of a concept (X2, Y 2) if X1 ⊆ X2, which imposes
a partial order relation on B(W,O, I) expressed as (X1, Y 1) ≤ (X2, Y 2). The
partial order relation ≤ can be used to build a structure, which is called a con-
cept lattice. A concept lattice defines a hierarchical representation of services
and operations, in which a certain concept inherits all the extents (services) of
its descendants and all the intents (operations) of its ascendants. Fig. 2 illus-
trates the lattice built for the context shown in table 1, we notice that upper
labels are the reduced intent sets (operations) and bottom labels are the reduced
extent sets (services). In this lattice we can reveal the relationships between the
present services, some of them are the following:

– ws1, ws2 and ws3 offer the operation {op2}, thus, they can replace each
other for this operation

– ws1 and ws3 offer the operations {op1, op2, op4}
– ws3 can replace ws1 since it offers all of its operations in addition to op3

– ws2 and ws3 offer together the operations {op2, op3}
– ws2 can replace ws1 for the operation op2

Fig. 2. The service lattice for the context in table1.

4 Classifying Web Services into Concept Lattices

In this section, we explain our approach using some basic formal definitions,
along with an illustrative example. For clarity sake, we illustrate our approach
using an imaginary set of Web services for performing calculations. Each service
from this set is parsed by a WSDL parser to extract its signatures. The set of
services with their signatures are given unique identifiers, as listed in table 2.

Next, a similarity measure must be chosen, and the operations signatures
extracted from the WSDL files will be used by this similarity measure, accord-
ing to its input format. Several similarity measures for web services exist in the

6

Table 2. A set of calculation services with their operations.

Services Id Operations Id

Calculator1 ws1 add(a,b) op11

sub(a,b) op12

Calculator2 ws2 add(a,b,c) op21

Calculator3 ws3 add(a,b,c,d) op31

sub(a,b,c) op32

mult(a,b) op33

add(a,b,c) op34

literature. They evaluate the similarity according to the syntactic and seman-
tic levels, such like [10, 21, 14]. The similarity measure is applied on pairs of
operations provided by different services. We do not consider the similarity be-
tween operations provided by the same service, because when a service becomes
dysfunctional, all of its operations become dysfunctional too. The similarity is
assessed in the form of values in the range [0,1]. If two operations are sufficiently
similar, the similarity value will approach 1, or else it will approach 0.

A similarity measure (Sim) can be defined as follows:

Sim : O×O→ [0, 1]
∀ opij ∈ O =⇒ Sim(opij , opij) = 1

(an operation with itself)
∀ opij , opik ∈ O =⇒ Sim(opij , opik) = 0

(operations in the same service)
∀ opij , opnm ∈ O =⇒ Sim(opij , opnm) ∈ [0, 1]

(operations in different services)

The calculated similarity values can be presented by a symmetric square
matrix that we will call SimMat, as shown in table 36. This matrix is of size
n = |O|, and its diagonal elements are all equal to 1, since we consider that the
similarity of an operation with itself is equal to 1 as declared above.

From the similarity matrix SimMat, we can extract several binary contexts,
by specifying threshold values θ ∈]0, 1]. Thus, the values of SimMat that are
greater or equal to the chosen threshold θ are scaled to 1, while other values are
scaled to 0. The binary context that corresponds to θ = 0.75 is shown in table
4, we call it SimCxt.

The SimCxt context is a triple (O,O, RSimθ), where RSimθ is a binary
relation indicating whether an operation is similar to another operation or not.

(opij , opnm) ∈ RSimθ ⇐⇒ Sim(opij , opnm) ≥ θ

We use the SimCxt context to generate a lattice of operations, B(O,O, RSimθ).
This lattice helps in discovering groups of similar operations, which are used
6 We can calculate the similarity values using any Web services similarity measure.

Here we used a string distance measuring method, since similarity measuring is not
the main objective of this paper

7

Table 3. The similarity matrix (SimMat).

op11 op12 op21 op31 op32 op33 op34

op11 1 0 0.75 0.5 0 0 1

op12 0 1 0 0 0.75 0 0

op21 0.75 0 1 0.75 0 0 0.75

op31 0.5 0 0.75 1 0 0 0

op32 0 0.75 0 0 1 0 0

op33 0 0 0 0 0 1 0

op34 1 0 0.75 0 0 0 1

Table 4. The binary context (SimCxt) for θ = 0.75.

op11 op12 op21 op31 op32 op33 op34

op11 x x x

op12 x x

op21 x x x x

op31 x x

op32 x x

op33 x

op34 x x x

later on to construct the services lattice.

In the resulting operation lattice, groups of mutually similar operations can
be identified by the concepts having equal extent and intent sets. We call such
concepts as square concepts, because they form square gatherings on the binary
context matrix. We define a group Gop of mutually similar operations OpSim as:

Gop = {OpSim | (OpSim, OpSim) ∈ B(O,O, RSimθ)}

The notion of square concepts can be better recognized by performing a mutual
column-line interchange in the SimCxt, the resulting interchanged context is
shown in table 5.

Table 5. The interchanged (SimCxt) context.

op11 op34 op21 op31 op12 op32 op33

op11 x x x

op34 x x x

op21 x x x x

op31 x x

op12 x x

op32 x x

op33 x

8

From the lattice in Fig. 3 as from the interchanged context in table 5, we can
identify the groups of similar operations, and they are the following:

– {op11, op34, op21}
– {op21, op31}
– {op12, op32}
– {op33}

Fig. 3. The generated lattice for (SimCxt) shown in table 4.

The groups of similar operations, denoted as G, are used to define the final binary
context. This context is a triple (W,G, R), in which the relation R indicates
whether or not a service offers the functionality represented by the corresponding
group of similar operations.

We will represent each group of operations by an identifier that corresponds
to the indices of the operations. The new context is shown in table 6: From the

Table 6. The final services × groups context.

(11,34,21) (21,31) (12,32) (33)

ws1 x x

ws2 x x

ws3 x x x x

final binary context, we can generate the corresponding service lattice, which is
shown in Fig 4.

9

Fig. 4. The final service lattice with possible backups.

Lattice interpretation

From the final generated lattice, shown in Fig. 4, we can notice the following:

– ws1, ws2, and ws3 offer the functionality denoted by (11, 34, 21), so they can
replace each other for this specific functionality

– ws3 can replace ws1 and ws2, and it offers an additional functionality (33)

We can also infer immediately which services offer a specific functionality (de-
noted by a specific label), by regarding the indices in the label.

5 Case Study

In this section, we demonstrate the use of the service lattices for the construction
of composite web services and supporting them with backup services. We return
to the example of the composite currency service, described in Section 2. We use
BPEL7 to orchestrate the two services by their operations, as shown in Fig. 1. We
use many-valued contexts of similarity values as explained previously, in order to
build two service lattices, a lattice for currency exchange services, and a lattice
for calculation services. We retrieved a set of services8 for currency conversion as
shown in table 7 and for calculations as shown in table 8. We limit the number
of services in this example, in order to simplify it and clearly explain the idea of
lattice use.

We choose manually a value for similarity threshold in order to get a binary
context. Then we obtain two lattices corresponding to each set of services. The
two lattices are shown in the right side of Fig. 5. We can use the service lattices
to build our composite service as well as to support it with backup services. We
select operation op11(CR:11) from the service s1 for exchange rate (currency lat-
tice), and operation op13(mul:13) from service s1 for multiplication (calculation

7 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
8 The services are obtained from the Seekda web service search engine,

http://www.seekda.com

10

Table 7. The set of currency converter services.

Services Id Operations Id

CurrencyConverter ws1 GetConversionRate(fromCurrency,toCurrency) op11

CurrencyConvertor ws2 ConversionRate(FromCurrency,ToCurrency) op21

DOTSCurrencyExchange ws3 GetExchangeRate(ConvertFromCurrency,ConvertToCurrency) op31

ConvertCurrency(Amount,ConvertFromCurrency,ConvertToCurrency) op32

GetCountryCurrency(Country) op33

CurrencyRates ws4 GetRate(CurrencyCode) op41

GetConversion(FromCurrencyCode,ToCurrencyCode) op42

RadixxFlights ws5 GetExchange(FromCurrency,ToCurrency) op51

ConvertCurrency(Amount,FromCurrency,ToCurrency) op52

rates ws6 Convert(CurrencyFrom,CurrencyTo,ValueFrom) op61

Conversion ws7 CelciusToFahrenheit(fCelsius) op71

FahrenheitToCelcius(fFahrenheit) op72

Currency(fValue,sFrom,sTo) op73

CurConvert ws8 GetCurrencySign(CountryName) op81

ConvertCurrency(FromCountry,ToCountry,Amount) op82

ConverterService ws9 Convert(sourceCurrency,targetCurrency,value) op91

lattice). From the lattices in Fig. 5, we can extract some backup services for
our composite service. For example, we used operation op11 from service s1, this
operation has 3 equivalents: op21, op31 and op51 appearing clearly in the lattice.
This means that if service s1 breaks down, we can replace it by the services s2, s3
or s5. Moreover, if we go down in the lattice, we get the set of services that cover
the used operations and offer other operations, like service s5 and service s3. In
the same way, we can extract the backup services for the calculation service s1
that we are using. According to the calculation services lattice, the service s1 as
a whole set of operations cannot be replaced by any service. But, regarding the
multiplication functionality, op13(mul:13), it can be replaced by the operations
op33, op43, op52, op63, which are offered by the services s3, s4, s5, s6 respectively.

The service lattices present the table of services in an organized way, which
reveals the relations between the services. We can verify the correctness of the
lattice by verifying the data in the table. The chosen threshold value determines
the necessity of human intervention, when it is small, the precision becomes
lesser, then a service’s substitutes may need few adaptations in order to replace
a service. For example, while doing our experiments, we had an operation for
rate exchange that takes an additional date parameter. For a specific threshold
value, lesser than 1, we got this operation grouped with the other operations,
which do not have a date parameter. We need to do a little adaptation, in order
to use this operation, which can be putting a default value like today’s date.

11

Table 8. The set of calculation services.

Services Id Operations Id

Calc ws1 add(a,b) op11

div(a,b) op12

mul(a,b) op13

pow(b,a) op14

sub(a,b) op15

Service ws2 add(a,b) op21

sqrt(a) op22

sub(a,b) op23

MathService ws3 Add(A,B) op31

Divide(A,B) op32

Multiply(A,B) op33

Subtract(A,B) op34

CalculatorService ws4 add(y,x) op41

divide(denominator,numerator) op42

multiply(y,x) op43

subtract(y,x) op44

CalcService ws5 Divide(A,B) op51

Multiply(A,B) op52

OperationAdd(A,B) op53

Subtract(A,B) op54

Calculate ws6 Add(dbl1,dbl2) op61

Divide(dbl1,dbl2) op62

Multiply(dbl1,dbl2) op63

Subtract(dbl1,dbl2) op64

6 Related Work

Several works have been proposed for web service classification, in order to facil-
itate browsing, discovery and selection. A quick overview of some of the works
can be obtained from [6, 15]. Below, we describe a selection of works, classified
according to their adapted techniques.

6.1 Using formal concept analysis (FCA)

In [3], Aversano et al. classify web services using FCA as a means for WSDL
browsing. Their formal contexts are composed according to three levels, service
level, operation level and type level, together with keywords. These keywords are
identified from the WSDL files by applying vector space metrics with the help
of WordNet to discover the synonyms. The resulting service lattice represents
an indexing of web services, it highlights the relationships between the services
and permits the identification of different categorizations of a certain service.

In [7], Bruno et al. also use keywords extracted from services’ interfaces
together with FCA to build a web services lattice. They analyze the extracted
words, process them using WordNet and other IR techniques. Then, they classify

12

Fig. 5. The composite currency service, supported by backups from the service lattices.

them into vectors using support vector machines (SVM). The obtained vectors
categorize the services into domains, then service lattices can be obtained for
each category using FCA.

In Peng et al. [5], similarity values are calculated for service operations, and
depending on a chosen threshold, a service lattice is built.

6.2 Using machine learning

Many approaches adapt techniques from machine learning field, in order to dis-
cover and group similar services. In [8, 13], service classifiers are defined depend-
ing on sets of previously categorized services. Then the resulting classifiers are
used to deduce the relevant categories for new given services. In case there were
no predefined categories, unsupervised clustering is used. In [17], CPLSA ap-
proach is defined that reduces a services set then clusters it into semantically
related groups.

6.3 Using service matching

In [16], a web service broker is designed relying on approximate signature match-
ing using XML schema matching. It can recommend services to programmers in
order to compose them. In [12], a service request and a service are represented

13

as two finite state machines then they are compared using various heuristics to
find structural similarities between them. In [10], the Woogle web service search
engine is presented, which takes the needed operation as input and searches for
all the services that include an operation similar to the requested one. In [4],
tags coming from folksonomies are used to discover and compose services.

6.4 Using vector space model techniques

The vector space model is used for service retrieval in several existing works as in
[20, 22, 9]. Terms are extracted from every WSDL file and the vectors are built for
each service. A query vector is also built, and similarity is calculated between the
service vectors and the query vector. This model is sometimes enhanced by using
WordNet, structure matching algorithms to ameliorate the similarity scores as
in [22], or by partitioning the space into subspaces to reduce the searching space
as in [9].

6.5 Discussion on the related work

In FCA approaches based on keywords, similar operations can’t be determined
and thus, web service substitutes can’t be identified either. In our approach, we
use the lattice based on keywords as a preliminary index together with oper-
ation similarity measuring, in order to generate our concept lattices. We have
proposed several uses of the generated lattices, as for service discovery, selec-
tion and supporting service compositions with backup services. One of our main
contributions is the idea of supporting the continuity of service compositions.

A service lattice is an organization of services that reveals the relations be-
tween them according to the operations provided in common. It offers a structure
of navigation that enables better discovery and browsing than in structures such
as lists and sets in other approaches (described in subsections 6.2, 6.3 and 6.4).
New services can be classified in existing lattices by incremental algorithms for
lattice generation. Thus, there is no need to regenerate the whole lattice, if a
new service is to be added. A query represents a new concept in the lattice, and
the services that offer the minimum required functionality represent the con-
cepts that are closest to the query concept, while further situated services offer
extra functionalities. In the lattice, when selecting a service, a sub-lattice that
is descendant from this service can be extracted. This sub-lattice contains the
possible backups that can replace this service to ensure a recovered functionality.

7 Conclusion

In this paper, we proposed an approach based on formal concept analysis (FCA)
for building web service lattices according to functionality domains. We make
use of similarity measures for web services to form our formal contexts in order
to build the lattices according to threshold values.

14

A web service lattice reveals the invisible relations between web services in a
certain domain, showing the services that are able to replace other ones. Thus,
facilitating service browsing, selecting and identifying possible substitutions. We
explained how to exploit the resulting lattices to build orchestrations of web
services and supporting them with backup services.

The quality of our generated lattices depends on the chosen similarity mea-
sure and the similarity threshold. The more accurate the measure is, the more
precise the obtained lattice is. The chosen values of threshold will give us a vari-
ation of lattices, and they reflect the level of the required adaptations. Thus, a
high value of threshold means similar services with a low number of required
adaptations.

Our work in progress is to enrich the service lattices with quality of service
(QoS) aspects, in order to enable an automatic selection of a service that respond
to a requested level of QoS. We are also working on the dynamic substitution
of a web service by one of its backups, to ensure a continuous functionality of a
service orchestration.

References

1. G. Arévalo, N. Desnos, M. Huchard, C. Urtado, and S. Vauttier. Precalculating
component interface compatibility using fca. In P. W. Eklund, J. Diatta, and
M. Liquiere, editors, CLA, volume 331 of CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

2. G. Arévalo, N. Desnos, M. Huchard, C. Urtado, and S. Vauttier. Fca-based ser-
vice classification to dynamically build efficient software component directories.
International Journal of General Systems, May 2009. To appear.

3. L. Aversano, M. Bruno, G. Canfora, M. D. Penta, and D. Distante. Using concept
lattices to support service selection. Int. J. Web Service Res., 3(4):32–51, 2006.

4. E. Bouillet, M. Feblowitz, H. Feng, Z. Liu, A. Ranganathan, and A. Riabov. A
folksonomy-based model of web services for discovery and automatic composition.
In IEEE International Conference on Services Computing (SCC), pages 389–396.
IEEE Computer Society, 2008.

5. D. Peng, S. Huang, X. Wang, and A. Zhou, “Concept-based retrieval of alternate
web services,” in DASFAA, ser. Lecture Notes in Computer Science, L. Zhou, B. C.
Ooi, and X. Meng, Eds., vol. 3453. Springer, 2005, pp. 359–371.

6. S. Brockmans, M. Erdmann, and W. Schoch. Service-finder deliverable d4.1. re-
search report about current state of the art of matchmaking algorithms. Technical
report, October 2008.

7. M. Bruno, G. Canfora, M. D. Penta, and R. Scognamiglio. An approach to support
web service classification and annotation. In EEE, pages 138–143. IEEE Computer
Society, 2005.

8. M. Crasso, A. Zunino, and M. Campo. Awsc: An approach to web service clas-
sification based on machine learning techniques. Inteligencia Artificial, Revista
Iberoamericana de Inteligencia Artificial, 12, No 37:25–36, 2008.

9. M. Crasso, A. Zunino, and M. Campo. Query by example for web services. In
SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing, pages
2376–2380, New York, NY, USA, 2008. ACM.

15

10. X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity search for
web services. In VLDB ’04: Proceedings of the Thirtieth international conference
on Very large data bases, pages 372–383. VLDB Endowment, 2004.

11. B. Ganter and R. Wille. Formal Concept Analysis. Springer, mathematical foun-
dations edition, 1999.

12. A. Günay and P. Yolum. Structural and semantic similarity metrics for web service
matchmaking. In EC-Web, pages 129–138, 2007.

13. A. Heßand N. Kushmerick. Learning to attach semantic metadata to web services.
In International Semantic Web Conference, pages 258–273, 2003.

14. N. Kokash. A comparison of web service interface similarity measures. In Pro-
ceeding of the 2006 conference on STAIRS 2006, pages 220–231, Amsterdam, The
Netherlands, The Netherlands, 2006. IOS Press.

15. H. Lausen and N. Steinmetz. Survey of current means to discover web services.
Technical report, Semantic Technology Institute (STI), August 2008.

16. J. Lu and Y. Yu. Web service search: Who, when, what, and how. In WISE
Workshops, pages 284–295, 2007.

17. J. Ma, Y. Zhang, and J. He. Efficiently finding web services using a clustering
semantic approach. In Proceedings of CSSSIA ’08, pages 1–8, New York, NY,
USA, 2008. ACM.

18. E. Newcomer and G. Lomow. Understanding SOA with Web Services (Independent
Technology Guides). Addison-Wesley Professional, 2004.

19. M. P. Papazoglou. Web Services: Principles and Technology. Pearson, Prentice
Hall, 2008.

20. C. Platzer and S. Dustdar. A vector space search engine for web services. In Third
IEEE European Conference on Web Services, 2005. ECOWS 2005., pages 62–71,
2005.

21. E. Stroulia and Y. Wang. Structural and semantic matching for assessing web-
service similarity. Int. J. Cooperative Inf. Syst., 14(4):407–438, 2005.

22. Y. Wang and E. Stroulia. Semantic structure matching for assessing web service
similarity. In 1st International Conference on Service Oriented Computing (IC-
SOC03, pages 194–207. Springer-Verlag, 2003.

