
HAL Id: lirmm-00558029
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00558029v1

Submitted on 24 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Algorithms for Singleton Arc Consistency
Christian Bessiere, Stéphane Cardon, Romuald Debruyne, Christophe

Lecoutre

To cite this version:
Christian Bessiere, Stéphane Cardon, Romuald Debruyne, Christophe Lecoutre. Efficient Algorithms
for Singleton Arc Consistency. Constraints, 2011, 16, pp.25-53. �10.1007/s10601-009-9080-5�. �lirmm-
00558029�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00558029v1
https://hal.archives-ouvertes.fr

Constraints (2011) 16:25–53
DOI 10.1007/s10601-009-9080-5

Efficient algorithms for singleton arc consistency

Christian Bessiere · Stéphane Cardon ·
Romuald Debruyne · Christophe Lecoutre

Published online: 2 October 2009
© Springer Science + Business Media, LLC 2009

Abstract In this paper, we propose two original and efficient approaches for enforc-
ing singleton arc consistency. In the first one, the data structures used to enforce
arc consistency are shared between all subproblems where a domain is reduced to
a singleton. This new algorithm is not optimal but it requires far less space and is
often more efficient in practice than the optimal algorithm SAC-Opt. In the second
approach, we perform several runs of a greedy search (where at each step, arc
consistency is maintained), possibly detecting the singleton arc consistency of several
values in one run. It is an original illustration of applying inference (i.e., establishing
singleton arc consistency) by search. Using a greedy search allows benefiting from the
incrementality of arc consistency, learning relevant information from conflicts and,
potentially finding solution(s) during the inference process. We present extensive
experiments that show the benefit of our two approaches.

Keywords Singleton arc consistency · Filtering · Constraint propagation ·
Local consistency

This paper is a compilation and an extension of [5] and [18].

C. Bessiere
LIRMM–CNRS, Université de Montpellier, Montpellier, France
e-mail: bessiere@lirmm.fr

S. Cardon · C. Lecoutre (B)
CRIL–CNRS, Université d’artois, Lens, France
e-mail: lecoutre@cril.fr

S. Cardon
e-mail: cardon@cril.fr

R. Debruyne
LINA–CNRS, Ecole des Mines de Nantes, Nantes, France
e-mail: romuald.debruyne@emn.fr

26 Constraints (2011) 16:25–53

1 Introduction

Inference and search are two categories of techniques for processing constraints
[14, 17]. On the one hand, inference is used to transform a problem into an equivalent
form which is either directly used to show the satisfiability or unsatisfiability of
the problem, or simpler to be handled by a search algorithm. Inference aims at
modifying a constraint network by employing structural methods such as variable
elimination , or filtering methods based on properties such as arc consistency and
path consistency. On the other hand, search is used to traverse the space delimited
by the domains of all variables of the problem. For example, search can be systematic
and complete by relying on breadth-first or depth-first exploration with backtracking,
or stochastic and incomplete by relying on greedy exploration and randomized
heuristics.

One of the most popular systematic search algorithms to solve instances of
the constraint satisfaction problem (CSP) is called MAC [27]. MAC interleaves
inference and search since at each step of a depth-first exploration with backtrack-
ing, a local consistency called arc consistency (AC) is maintained. However, since
the introduction of stronger consistencies such as max-restricted path consistency
(Max-RPC) [11, 13] and singleton arc consistency (SAC) [12, 13], one issue has been
the practical interest of utilizing such consistencies, instead of arc consistency, before
or during search.

There is a recent focus on singleton consistencies, and more particularly on
singleton arc consistency, as illustrated by recent works [2, 4, 6, 12, 26]. A constraint
network P is (singleton) arc-consistent if and only if each value of P is (singleton)
arc-consistent. A value is singleton arc-consistent if assigning it to its variable does
not produce an arc inconsistent network.

In this paper, we propose some original algorithms to establish singleton arc
consistency. First, we note that to reach time optimality we have to fully exploit the
incrementality of arc consistency, i.e., the fact that iteratively establishing AC on a
more and more reduced search space is cheaper than repeatedly establishing it on the
original problem. This requires for each value the duplication of the data structures
used to enforce arc consistency. The time optimality can therefore be reached but at
the cost of a prohibitive space complexity. With the algorithm SAC-SDS, we propose
a good trade-off consisting, for each pair (xi, a) composed of a variable xi and a value
a in the domain of xi, in storing only the domains obtained by enforcing AC after
the assignment of the value a to xi. Storing these domains allows us both to know
which values may no longer be singleton arc-consistent after a value removal, and
not to check their singleton arc consistency from scratch. The other data structures
used to enforce AC are shared. So the space required is far less important than with
a duplication of these data structures. The resulting algorithm can be used on large
constraint networks and shows very good time performances compared to previous
SAC algorithms.

Second, we show how it is possible to establish singleton arc consistency by
performing several runs of a greedy search (where at each step, arc consistency
is maintained). This contrasts with the classical breadth-first search up to a depth
equal to 1 performed by SAC algorithms introduced so far. We introduce two
algorithms, denoted by SAC3 and SAC3-SDS: SAC3 does not record the context
of runs already performed, whereas SAC3-SDS does record them in the same vein

Constraints (2011) 16:25–53 27

as SAC-SDS. Although this approach has a high worst-case time complexity, it has
several advantages:

• extra space requirement is limited,
• both algorithms benefit from the incrementality of arc consistency,
• using a greedy search enables learning relevant information from conflicts,
• it is possible to find solution(s) while establishing singleton arc consistency.

More precisely, the good space complexity of both algorithms allows to use them
on large constraint networks. In particular, SAC3 admits the same space complexity
as the underlying arc consistency algorithm. Furthermore, when a greedy search
maintaining arc consistency is used, we naturally benefit from the incrementality of
arc consistency since variables are instantiated in sequence on each branch. Besides,
when a dead-end is encountered during a greedy search, a nogood can be recorded
and/or the origin of the failure taken into account. Also, some solutions may be
opportunistically found by the algorithm. Finally, if the instance contains a large
under-constrained part, a very efficient practical time complexity can be expected.

The paper is organized as follows. Section 2 introduces technical background and
Section 3 briefly presents AC algorithms. Section 4 provides an overview of existing
SAC algorithms. The new algorithms, namely SAC-SDS, SAC3 and SAC3-SDS, are
respectively developed in Sections 5, 6 and 7. An illustration of these new algorithms
is proposed in Section 8. The results of a vast experimentation concerning both
random and structured problems are presented in Section 9.

2 Background

A constraint network P consists of a finite set of n variables X = {x1, ..., xn}, a set of
domains D = {D(x1), ..., D(xn)}, where the domain D(xi) is the finite set of at most
d values that variable xi can take, and a set of e constraints C = {c1, ..., ce}. Each
constraint ck is defined by the ordered set var(ck) of at most r variables it involves,
and the set sol(ck) of combinations of values satisfying it. We will note (xi, a) ∈ D
(respectively, (xi, a) /∈ D) if and only if xi ∈ X and a ∈ D(xi) (respectively, a �∈
D(xi)). Given a set Y ⊆ X of variables, an assignment A on Y assigns each variable
xi ∈ Y a value in D(xi). A[xi] denotes the value assigned to xi in A. When a subset
Y ⊆ X of variables are assigned and all constraints c with var(c) ⊆ Y are satisfied,
we say that the assignment is locally consistent. A solution to a constraint network
is an assignment on X that is locally consistent. When var(c) = (xi, x j), we use cij to
denote sol(c) and we say that c is binary.

The constraint satisfaction problem (CSP) consists in finding whether or not a
given constraint network has solutions. It is NP-complete. To solve a CSP instance, a
depth-first search algorithm with backtracking can be applied, where at each step
of the search, a variable assignment is performed followed by a filtering process
called constraint propagation. Constraint propagation algorithms usually enforce
properties, such as arc consistency, that remove values that cannot occur in any
solution.

Arc consistency (AC) is defined as follows. Given a value a in the domain of a
variable xi and a constraint ck involving xi, a support for (xi, a) on ck is an assignment
A on the variables in var(ck) such that A[xi] = a and A satisfies ck. If there exists a

28 Constraints (2011) 16:25–53

constraint on which (xi, a) has no support, (xi, a) is said arc-inconsistent; otherwise,
(xi, a) is arc-consistent. A constraint network P = (X, D, C) is arc-consistent if and
only if D does not contain any arc-inconsistent value. AC(P) denotes the network
where all arc-inconsistent values have been removed from P. If the domain of a
variable becomes empty when enforcing arc consistency, we call this a domain wipe-
out. It is denoted by AC(P) = ⊥ and we say that P is arc-inconsistent.

Singleton arc consistency (SAC) is defined as follows. Given a constraint network
P = (X, D, C), a value a in D(xi) for some variable xi ∈ X is singleton arc-consistent
if and only if the network P|xi=a = (X, D|xi=a, C) is not arc-inconsistent, i.e., if and
only if AC(P|xi=a) �= ⊥, where D|xi=a is obtained by replacing D(xi) by the singleton
set {a}. If P|xi=a is arc-inconsistent, we say that (xi, a) is singleton arc-inconsistent.
Checking whether a value is singleton arc-consistent is called a singleton check. A
constraint network P = (X, D, C) is singleton arc-consistent if and only if D does not
contain any singleton arc-inconsistent value. SAC(P) denotes the network where all
singleton arc-inconsistent values have been removed from P. If there is a variable
with an empty domain in SAC(P), we say that P is singleton arc-inconsistent. Given
an assignment A on a subset of X, P|A is the constraint network obtained from P by
restricting the domain of each variable xi involved in A to the singleton {A[xi]}.

For any two constraint networks P and P′, we note P′ � P if and only if P =
(X, D, C), P′ = (X, D′, C) and D′ ⊆ D. Here, D′ ⊆ D means that for any variable
xi ∈ X, we have D′(xi) ⊆ D(xi). Informally, we have P′ � P if P′ can be obtained
from P just by removing values from domains.

We can observe that all the definitions given in this section apply to binary or
non-binary constraints indifferently. Hence, what is often called generalized arc
consistency (GAC) in the literature, is referred here as arc consistency. In the rest of
the paper, when no restriction is specified, the results hold for any constraint arity.
When we focus on binary constraints, we consider that the network is connected (i.e.,
n − 1 ≤ e) and normalized [1], that is, at most one constraint exists between two given
variables (i.e., e < n2). These restrictions will be assumed when giving complexities
for binary constraint networks.

3 Enforcing arc consistency

Many general-purpose algorithms have been proposed so far to enforce arc consis-
tency. They are classically classified as coarse-grained and fine-grained arc consis-
tency algorithms. Propagation is guided by events concerning variables in coarse-
grained algorithms whereas propagation is guided by deleted values in fine-grained
ones. Examples of coarse-grained algorithms are (G)AC3 [21, 22], (G)AC2001
[7, 8, 30] and (G)AC3rm [19] whereas examples of fine-grained algorithms are
(G)AC4 [23, 24] and AC6 [3]. AC2001, AC4 and AC6 are time-optimal algorithms
for binary constraints.

To enforce SAC, we need to use an arc consistency algorithm since SAC is built
on top of AC. However, in this paper we do not want to attach the presentation
of SAC algorithms to a particular underlying arc consistency algorithm because we
can adopt any generic AC algorithm or even any kind of propagators dedicated to
specific constraints. So, to enforce AC in our algorithms, we will just call a function
propagateAC without precisely describing its content.

Constraints (2011) 16:25–53 29

The function propagateAC, Algorithm 1, is called with three parameters D, Q
and U PD (plus an optional one). D is the domain of the (sub)problem that must
be made AC. Q is a variable-based propagation list, that is, it contains the variables
x j for which the domain D(x j) has changed. Such a type of propagation list is well
adapted to coarse-grained algorithms. Fine-grained algorithms, such as AC6 require
the complete list of values (x j, b) removed from D(x j). But this is essentially a matter
of presentation.

In our presentation, we are interested in the data structure employed by the
underlying AC algorithm. For example, this data structure corresponds to the Last
pointers for AC2001 and to residual supports for AC3rm. Because one priority is
to save space, for all SAC algorithms presented later, the data structure of the
underlying AC algorithm is not duplicated. However, when calling propagateAC,
it must be decided whether this data structure must be updated or not. Hence the
function propagateAC performs two types of propagation depending on whether
its Boolean parameter U PD is set to true or not. When U PD is true, propagateAC
uses and updates the data structure to propagate deletions in D. When U PD is false,
propagateAC uses the data structure to propagate deletions in D but does not
modify it. When enforcing SAC, we distinguish the main problem P from subprob-
lems P|xi=a corresponding to singleton checks of values (xi, a). Typically, when AC is
applied on P, U PD is true and when AC is applied on a subproblem, U PD is false
(however, we shall see that for greedy runs, this is different). Consequently, in the
case of an AC2001 implementation, subproblems can benefit from the knowledge of
Last supports computed in the main problem P, but not from computations already
performed inside the subproblem itself.

Function propagateAC has another parameter, Deleted, which is optional. That
extra parameter Deleted is used when propagateAC is called to enforce AC in
the main problem. In that case, in addition to enforcing AC, propagateAC stores
in Deleted the values removed from D during the propagation. As we shall see,
those removals performed in the main problem can directly be exploited in the
subproblems.

30 Constraints (2011) 16:25–53

When analyzing complexities, we will have the optimal algorithm AC2001 in mind.
Of course, if a non-optimal AC algorithm is used in propagateAC, the global time
complexity of SAC algorithms can be higher than our claims.

4 Overview of SAC algorithms

Table 1 shows the complexities of existing SAC algorithms that we briefly describe
in this section. In the rest of this paper, we will denote by T and S the time and
space complexities of the AC algorithm used to enforce arc consistency inside a SAC
algorithm.

The first algorithm that has been proposed to establish singleton arc consistency
is called SAC1 [12]. Requiring no specific data structure, its space complexity is the
same as the underlying arc consistency algorithm. The counterpart of having no data
structures to store the reason why a value was found singleton arc-consistent is that
after every value removal, SAC1 must check again the singleton arc consistency
of all remaining values. This leads to a worst case time complexity in O(n2d2T),
where T is the cost of enforcing arc consistency on the network with the underlying
arc consistency algorithm. On binary constraints, this gives a time complexity in
O(en2d4) if the arc consistency algorithm used is optimal.

The second algorithm, SAC2 [2], uses the fact that if AC(P|xi=a) �= ⊥ then the
singleton arc consistency of (xi, a) holds as long as all the values in AC(P|xi=a)

are in the domain. For each value (x j, b), SAC2 records the set Support[j, b] of
values (xi, a) such that (x j, b) ∈ AC(P|xi=a). This algorithm avoids useless singleton
checks because the singleton arc consistency of a value (xi, a) has to be checked after
the removal of a value (x j, b) only if (xi, a) belongs to Support[j, b]. As shown by
the experiments in [2], SAC2 is faster than SAC1. However, SAC2 has the same
worst-case time complexity as SAC1 because whenever the singleton arc consistency
of a value (xi, a) must be checked again, one has to perform the arc consistency
enforcement on P|xi=a from scratch.

To avoid doing and redoing arc consistency from scratch (potentially nd times
for each subproblem P|xi=a), SAC-Opt [5] creates nd copies of the domains and
data structures of the AC algorithm (one copy for each subproblem P|xi=a). Simply,
whenever the singleton arc consistency of a value (xi, a) must be checked, the
dedicated domains and data structures are used. Hence, as opposed to SAC1 and
SAC2, SAC-Opt benefits from the fact that arc consistency is incremental (namely,
time complexity on a problem P is the same for a single call of arc consistency or

Table 1 Complexities of existing SAC algorithms

Algorithm Non-binary CN Binary CN

Time Space Time Space

SAC1 [12] O(n2d2T) O(S) O(en2d4) O(ed)

SAC2 [2] O(n2d2T) O(n2d2 + S) O(en2d4) O(n2d2)

SAC-Opt [5] O(ndT) O(nd(nd + S)) O(end3) O(end2)

T and S are the time and space complexities of the underlying (G)AC algorithm. For binary
constraints, we consider an optimal AC algorithm, such as AC2001, with time in O(ed2) and space in
O(ed)

Constraints (2011) 16:25–53 31

for up to nd calls, where two consecutive calls differ only by the deletion of some
values from P). This allows SAC-Opt to enforce SAC in O(ndT). This has been
shown to be the optimal time complexity for binary constraints when an optimal arc
consistency algorithm is used (see [5, 6]). But the worst-case space complexity of
SAC-Opt prevents its use on large constraint networks.

It seems difficult to reach the same time complexity as SAC-Opt with smaller
space requirements because a SAC algorithm has to maintain AC on nd subproblems
P|xi=a. To guarantee optimal total time on such subproblems in spite of the nd
possible restrictions we need to use an optimal time AC algorithm. Since there does
not exist any optimal AC algorithm requiring less than O(erd) space, we obtain
nd · erd for the whole SAC algorithm (recall that r is the greatest constraint arity). In
the next section, we show how we can relax time optimality to save some space and
still obtain an algorithm with better time complexity than SAC1 and SAC2.

5 SAC-SDS

We propose a new algorithm that relaxes time optimality to reach a satisfactory
trade-off between space and time. Like SAC-Opt, our new algorithm, SAC-SDS
(Sharing Data Structures), duplicates the domains for each value. But unlike SAC-
Opt, it does not duplicate the data structures of the AC algorithm.

For every value (xi, a), SAC-SDS stores a propagation list Qia and the current
domain Dia of the subproblem P|xi=a. The subproblem having Dia as domain is
denoted by Pia. Qia contains variables whose domain has changed in Pia and for
which the change has not yet been propagated. It is needed to ensure optimal
(G)AC propagation on each subproblem. Dia is used to avoid restarting each new
AC propagation phase from scratch in Pia when some values have been removed
from P. The data structure of the AC algorithm (Last pointers for AC2001) is built
and updated only in the main problem P (no duplication). Nevertheless, it can be
used by all subproblems Pia to avoid repeating constraint checks already done in P.
Parameter U PD of function propagateAC allows this distinction. (See Section 4.)

SAC-SDS (see Algorithm 2) works as follows. After some initializations (lines
1–5), SAC-SDS repeatedly pops a value (xi, a) from PendingList and enforces AC
in Pia (lines 7–10). Note that ’Dia=nil’ means that this is the first enforcement of
AC in Pia, so Dia must be initialized (line 9). Each enforcement of AC in Pia starts
the propagation from the variables in Qia, which are the variables whose domain
has changed since the previous enforcement of AC in Pia. If enforcing AC in Pia

leads to an empty domain in Dia (line 11), (xi, a) is singleton arc-inconsistent. It
is therefore removed from D (line 12) and this deletion is propagated to P using
propagateAC (line 13). Any value removed from P, including (xi, a), is put in
the set Deleted (lines 12 and 13). This set is used by updateSubProblems (line
14) to remove from the subproblem the values removed from P (line 19), and
to update the lists Q jb and PendingList for further propagation in these modified
subproblems (lines 18 and 20). The advantage of propagating immediately in P (line
13) the singleton arc-inconsistent values detected in line 10 is twofold. First, if a value
(xk, c) is removed in line 13 before its subdomain Dkc is created, Dkc will never
be generated. Second, the subdomains Djb created after the removal of (xk, c) will
benefit from this propagation because they are created by duplication of D (line

32 Constraints (2011) 16:25–53

9). For each already created subproblem Pjb with c ∈ Djb (xk), xk is put in Q jb

and (x j, b) is put in PendingList for future propagation (line 14). Because the AC
algorithm embedded in SAC-SDS does not store its data structures (which prevents
it from being optimal), we refer to its worst-case time complexity by T ′.1

Theorem 1 SAC-SDS is a correct SAC algorithm with O(ndT ′) time complexity,
where T ′ is the cost of enforcing arc consistency on the network with an AC algorithm
that does not store any special data structure between two calls. This gives O(end4) on
binary constraint. The space complexity of SAC-SDS is in O(n2d2 + S), where S is the
space complexity of the AC algorithm used.

Proof We instantiate the proof in the case where propagateAC uses AC2001 to
enforce arc consistency. The data structure of AC2001 is the Last structure which

1For instance, standard AC2001 has T = O(ed2) optimal time complexity on binary constraint
networks whatever the number of times we call it after some value deletions in the network. When
we do not store its data structure between two calls, its complexity becomes T ′ = O(ed3).

Constraints (2011) 16:25–53 33

maintains in Last(xi, a, ck) the smallest support for (xi, a) on ck. The smallest support
is defined according to any total ordering o on the tuples on var(ck). Any other AC
algorithm can be used.

Soundness. Note first that the structure Last is updated only when achieving
AC in P so that any support for (xi, a) is greater than or equal to Last(xi, a, ck).
The domains of the subproblems being subdomains of D, any support for a value
(xi, a) on ck in a subproblem is also greater than or equal to Last(xi, a, ck). This
explains that propagateAC(Dia, Qia, false) can benefit from the structure Last
without losing any support . Thus, the tests of arc consistency on subproblems are
sound. Suppose now that some singleton arc-consistent values are removed by SAC-
SDS. Let (xi, a) be the first singleton arc-consistent value removed. It is necessarily
removed in line 12, thus Pia was found arc-inconsistent in line 10. Pia was initially arc-
consistent because we suppose that (xi, a) is singleton arc-consistent. Furthermore,
propagateAC(Dia, Qia, false) is sound. So, the arc inconsistency of (xi, a) comes
from values removed from Pia in line 19. Those values were removed from P in lines
12 or 13 and are singleton arc-inconsistent by our assumption that (xi, a) is the first
singleton arc-consistent value removed. So, (xi, a) is singleton arc-inconsistent too,
which contradicts our assumption. Therefore, SAC-SDS is sound.

Completeness. Completeness comes from the fact that any deletion is propagated.
After initialization, PendingList = D (line 3) and so, the main loop of SAC-SDS
processes all subproblems P|xi=a at least once. Each time a value (xi, a) is found
singleton arc-inconsistent in P because P|xi=a is arc-inconsistent (line 10) or because
the deletion of some singleton arc-inconsistent value makes it arc-inconsistent in P
(detected by propagateAC in line 13), (xi, a) is removed from the subproblems (line
19). PendingList and the local propagation lists are updated for future propagation
(lines 18 and 20). At the end of the main loop, PendingList is empty, so all the
removals have been propagated and for any value (xi, a) ∈ D, Dia is a non empty
arc-consistent subdomain of P|xi=a.

Complexity. Each of the nd domains Dia can contain nd values so they require
a space in O(n2d2). There are at most n variables in the nd local propagation lists
Qia, which requires a total space in O(n2d). As a result, the space complexity of
SAC-SDS is in O(n2d2 + S) if S is the space required by the AC algorithm used.
It gives O(n2d2 + erd) with AC2001, or O(n2d2) with AC3. So, considering space
requirements, SAC-SDS is similar to SAC2 as long as we use AC3 or if er < n2d,
which is true in most practical cases. On binary networks, space complexity becomes
O(n2d2) even with AC2001.

Regarding time complexity, SAC-SDS first duplicates the domains (line 9), which
is in nd · nd. Each value found singleton arc-inconsistent in line 10 is removed and
this removal is propagated to all subproblems P|xi=a via an update of PendingList,
Qia and Dia (lines 17–20). This update requires nd operations per removal, so nd · nd
operations in total. Each subproblem can in the worst case be called nd times
for arc consistency in line 10, and there are nd subproblems. The domain of each
subproblem P|xi=a is stored in Dia so that the AC propagation is launched with the
domain in the state in which it was at the end of the previous AC propagation in
the subproblem. In addition, the variables of P|xi=a that have lost values since the
last call to AC are stored in Qia so that AC is incrementally propagated from
the modified variables and not on the whole network from scratch. Thus, in spite
of the several AC propagations on a subproblem, the propagation of all the value

34 Constraints (2011) 16:25–53

removals costs O(T ′) in a subproblem.2 (Note that we cannot reach the optimal
O(T) time complexity for arc consistency on these subproblems because we do not
duplicate the data structures necessary for AC optimality.) Therefore, the total cost
of arc consistency propagations in all subproblems is in O(nd · T ′) (i.e., O(end4) on
binary constraints). 	

Like SAC2, SAC-SDS performs a less brute-force propagation than SAC1 be-
cause after the removal of a value (xi, a) from D, SAC-SDS checks the arc consis-
tency of the subproblems P| j=b only if they have (xi, a) in their domains (and not
all the subproblems as SAC1). But this is not sufficient to have a better worst-case
time complexity than SAC1. SAC2 has indeed the same time complexity as SAC1.
SAC-SDS improves this complexity because it stores the current domain of each
subproblem, and so, it does not propagate in the subproblems each time from scratch.
This is independent on the AC algorithm: using AC3 gives the same time complexity.
However, we can expect a better average time complexity with an algorithm like
AC2001 because the shared data structure reduces the number of constraint checks
required, even if it does not permit to obtain optimal worst-case time complexity.
Finally, in SAC1 and SAC2, each AC enforcement in a subproblem must be done on
a new copy of D built at runtime (potentially nd · nd times) whereas such duplication
is performed only once for each value in SAC-SDS (by creating subdomains Dia).

6 SAC3

All algorithms previously mentioned involve performing a breadth-first search up
to a depth equal to 1. Each branch (of size 1) of this search corresponds to check
the singleton arc consistency of a value, and allows removing this value if an
inconsistency is found (after establishing arc consistency). One alternative is to check
the singleton arc consistency of a value in the continuity of previous singleton checks.
In other words, we can try to build less branches of greater size using a greedy search
(where at each step, arc consistency is maintained). As long as, for a current branch,
no inconsistency is found, we try to extend it. When an inconsistency is found, either
the branch is of size 1 and that single value is detected singleton arc-inconsistent, or
all but last variable assignments correspond to singleton arc-consistent values. This
last statement relies on Proposition 1.

Proposition 1 Let P = (X, D, C) be a constraint network, S be an assignment on a
subset Y ⊆ X of variables, and P′ = (X, D′, C) = AC(P|S). If P′ �= ⊥, then for any
xi ∈ X such that |D′(xi)| = 1, the pair (xi, a), where a is the unique value in D′(xi), is
singleton arc-consistent in P.

Proof Arc consistency is contracting for �, that is, for any constraint network P,
we have AC(P) � P. Hence, AC(P|S) � P|S, and we deduce that P′ � P because
P′ = AC(P|S) and P|S � P. We also know from [1] that arc consistency is monotonic,
that is, for any constraint networks P1 and P2 with P1 � P2, we have AC(P1) �

2As an example, nd calls to the propagation phase of AC2001 on a binary network Pia are in
O(ed3)—the same as AC3—instead of O(nd · ed2) if domains Dia were re-initialized at each call
or if the local propagation list Qia was not maintained.

Constraints (2011) 16:25–53 35

AC(P2). Furthermore, for any xi ∈ X such that |D′(xi)| = 1 and a is the unique value
in D′(xi), we have P′|xi=a = P′. Since P′ � P, we know that P′|xi=a � P|xi=a, from
which we deduce that AC(P′|xi=a) � AC(P|xi=a). By assumption we have P′ �= ⊥
and P′ = AC(P′). As a result, AC(P′|xi=a) = AC(P′) = P′ �= ⊥, which implies that
AC(P|xi=a) �= ⊥. Therefore, (xi, a) is singleton arc-consistent in P. 	

As mentioned in the proposition above, some values can be detected singleton
arc-consistent while checking the singleton arc consistency of others. Proposition 1
can then be seen as a generalization of Property 2 in [10], and is also related to the
exploitation of singleton-valued variables in [28].

Below, we give the description of SAC3 (see Algorithm 3), a first algorithm that
uses a greedy search in order to establish singleton arc consistency. As for SAC-
SDS, PendingList is used to store the set of values whose singleton arc consistency
must be checked, and Deleted the set of values removed after a call to function
propagateAC.

Algorithm 3 starts by enforcing arc consistency on the network (line 2). Then,
as in SAC-SDS, all values are put in PendingList for checking their singleton arc
consistency (line 4). In order to check the singleton arc consistency of the values
in PendingList, successive branches are built. We start by picking a value (xi, a) in
PendingList (line 6) that will be the first assignment of the branch to be built. Note
that a heuristic can be employed to select this value (as well as the next ones along the
branch being built). To build a branch, the function buildBranch is called with the
value (xi, a) as parameter (line 8). Function buildBranch returns false if Dxi=a is
arc-inconsistent, true otherwise. In the first case, (xi, a) has been detected singleton
arc-inconsistent. As in SAC-SDS, this value must be removed and arc consistency
must be re-established (lines 9–10). We also need to set the flag CH ANGE to true
to know that some changes have occurred since the initialization of PendingList (line
11). When the set PendingList becomes empty, this flag is used to determine whether
we have to test again the singleton arc consistency of all values (lines 12–14). Observe
that, as opposed to SAC-SDS, SAC3 cannot update PendingList incrementally
because it does not store the subdomains Dia. These subdomains allowed SAC-SDS
to know which values have to be retested for singleton arc consistency.

Function buildBranch works as follows. First, it saves the data structure of the
AC algorithm used (line 16). This is necessary if we want to ensure optimal time
complexity on each branch. Then, the assignment (xi, a) passed as a parameter is
performed (line 17). If arc consistency on the subproblem obtained leads to a wipe-
out, we know that (xi, a) is singleton arc-inconsistent and the function returns false
after having restored the data structure as they were before entering the function
(lines 18–20). If the assignment xi = a has not provoked a wipe-out, the function
tries to continue that branch (rooted on xi = a) as long as arc consistency does not
lead to a wipe-out (lines 21–26). The values that are selected to continue the branch
are removed from PendingList (line 22). This is only when a wipe-out is detected
that the last value of the branch is put back in PendingList (line 25). All the other
values of the branch are necessarily singleton arc-consistent thanks to Proposition
1. Note that we can exit the while loop of line 21 without going through the break
in line 26. This happens when PendingList ∩ D = ∅, that is, there is no more way of
extending the current branch with values in PendingList because all values remaining
in PendingList have been removed from the domain of the subproblem obtained on
this branch. A new branch will have to be started by the main procedure. But in the

36 Constraints (2011) 16:25–53

extreme case, the current branch is of length n, which means that a solution has been
found (an explicit use of this case has been omitted in the pseudo-code presented in
Algorithm 3.)

We can observe that in lines 18 and 24, propagateAC is called without the set
Deleted because we are in a subproblem and removing a value from the subproblem
does not mean that this value is globally inconsistent. But we call propagateACwith
the parameter U PD set to true if we want to keep optimality of AC on the branch.
This is why in lines 16, 19 and 27, we save and restore the original data structure. A
simpler version of SAC3 can be obtained by setting U PD to false and removing lines
16, 19 and 27. For example, by using residual supports [19], one can expect to obtain

Constraints (2011) 16:25–53 37

a good behavior in practice. This is the version that will be used in some experiments
of Section 9.

Theorem 2 SAC3 is a correct SAC algorithm with O(b T) time complexity where
b denotes the total number of branches built by SAC3. This gives O(bed2) on
binary constraints. The space complexity of SAC3 is O(nd + S) where S is the space
complexity of the AC algorithm used.

Proof Correctness results from Proposition 1.
The data structure PendingList has size nd and S is the space complexity of the

AC algorithm used. Hence, SAC3 has an overall space complexity in O(nd + S). If
SAC3 embeds an optimal arc consistency algorithm such as AC2001, then the overall
space complexity is in O(erd).

The cost of saving and restoring the data structure on a branch (see lines 16, 19
and 27) cannot be more than the time complexity T of the AC algorithm using them.
Furthermore, due to incrementality, the cost of AC on each branch built by SAC3
is in O(T). Consequently, the overall time complexity of SAC3 is in O(b T) (i.e.,
O(bed2) on binary constraints). 	

Notice that b takes into account the branches of size 1 that correspond to the
detection of singleton arc-inconsistent values. Thus, in the worst-case, we have b =
n2d2+nd

2 because we may have to build up to nd branches before removing a first value,
up to nd − 1 additional branches before removing a second value, etc. We then obtain
a worst-case time complexity (with AC2001 embedded) in O(n2d2T), that is, the
same complexity as SAC1. However, when a constraint network is already singleton
arc-consistent, we can make the following observation.

Observation 1 On a constraint network that is singleton arc-consistent, SAC3 builds
between d and nd branches.

The number of branches built by SAC3 is minimal when each branch (of size n)
leads to a solution and uses as much as possible values not yet used by other branches.
Each branch contains at most one value per variable. Hence, d branches are required
to cover all values of the largest domain (of size d). The maximal number of branches
is reached when all branches are of size 2 (one consistent assignment followed by an
inconsistent one). In this case, only the first value of each branch is proved singleton
arc-consistent, which requires nd branches to cover all of them.

As a consequence of this observation, on a constraint network that is already
singleton arc-consistent, SAC3 embedding an optimal AC algorithm such as AC2001,
has a time complexity in O(ndT) (i.e., O(end3) on binary constraints) because
it explores at most nd branches of size 2. Interestingly, this suggests that SAC3
may be quite competitive with respect to SAC-SDS on structured (not necessarily
singleton arc-consistent) instances that contain large under-constrained parts as can
be expected in real-world applications.

SAC3 shows another interesting feature. Although the primary goal of the
greedy approach is to efficiently enforce singleton arc consistency by exploiting the
incrementality of arc consistency, one may opportunistically find solutions during
one of the greedy runs.

38 Constraints (2011) 16:25–53

7 SAC3-SDS

It is possible to improve the behavior of the algorithm SAC3 by adapting the idea
of storing domains of subproblems as in SAC-SDS. As an extension of SAC3, we
can then decide to record the domain of the constraint networks obtained after each
greedy run, that is to say, for each branch. Consequently, as in SAC-SDS, when a
value is removed, it is possible to determine which previously built branches must be
reconsidered. Indeed, if a removed value does not belong to the domain associated
with a given branch, all values of this branch remain singleton arc-consistent. On the
other hand, if a removed value supports a branch, we have to verify that the branch
still remains valid by re-establishing arc consistency from the recorded domain.
When a branch is no more valid, we have to delete it. In summary, SAC3-SDS can
(partially) exploit incrementality as SAC-SDS does.3

A branch corresponds to a set Br of values that have been (explicitly) assigned.
We record all branches built by the algorithm in a set called Branches. In order to
manage domains and propagation of subproblems corresponding to branches, we
also consider two arrays denoted D[] and Q[]. For a given branch Br, D[Br] is the
local domain of the subproblem associated with the branch Br and Q[Br] is its local
propagation list. Q[Br] contains the variables that should be considered when re-
establishing arc consistency in the subproblem because they have lost values. Those
D[Br] and Q[Br] play the same role as Dia and Qia in SAC-SDS. More rigorously,
we should associate an integer with each branch to be used as index value for D[]
and Q[]. But we omit it to simplify the presentation.

SAC3-SDS (see Algorithm 4) works as follows. After some initializations (lines
1–4), SAC3-SDS enters the main loop (line 5) and repeatedly pops an object from
PendingList (line 6). Observe that PendingList may contain two types of objects: it
may contain values (xi, a) that have to be checked for singleton arc consistency, and
it may also contain branches Br that have lost values in their associated subdomain.
If the popped object is a branch Br (of the set of branches Branches), SAC3-
SDS enforces arc consistency on its subdomain D[Br], knowing that the variables
modified since the last pass of AC are in the propagation list Q[Br] (line 8). A wipe-
out when enforcing AC on D[Br] means that the values in the branch Br are no
longer guaranteed to be singleton arc-consistent, and we have to put them back
in PendingList and remove Br from the set of branches (lines 9–10). If the object
popped in line 6 is a value (xi, a), we have to check its singleton arc consistency. As
in SAC3, this is done by calling buildBranch with (xi, a) as a parameter (line 11).
In addition to building a branch, function buildBranch returns false if Dxi=a is arc-
inconsistent, true otherwise. If false is returned, (xi, a) has been detected singleton
arc-inconsistent, it must be removed from the main problem, and arc consistency
must be re-established (lines 12–15). All branches Br such that values from D[Br]
have been removed from the main problem by the arc consistency pass of line 13
have to be put back in PendingList for revisiting them. This is done by function
updateBranches (line 14). If the AC call of line 13 has led to a wipe-out, the
problem is proved to be inconsistent and SAC3-SDS returns false (line 15).

3SAC3-SDS is a refinement of the algorithm SAC3+ presented in [18]. The new algorithm is made
more flexible (since at each step either a branch or a value can be selected) and consequently more
reactive. Worst-case complexities remain the same.

Constraints (2011) 16:25–53 39

40 Constraints (2011) 16:25–53

Function buildBranch works on the same principle as in SAC3, except that it
has to store the branch Br and the domains D[Br] of the subproblem associated with
the branch Br. So lines 16 to 20 are the same. The first difference happens in line 21
where the branch Br is initialized with (xi, a) once it has been proved that P|xi=a is not
arc-inconsistent. The second difference is in line 26, when extending the branch with
value (x j, b) has not led to arc inconsistency: Br is extended to contain (x j, b) and the
current domain is stored in Dpred for future use in line 29. If a wipe-out is detected
when trying to extend Br, the last value of the branch is put back in PendingList
and the loop is broken (lines 27–28). At this point, domain D corresponds to the
subdomain which has failed because of the last value we tried to add to Br. We need
to “backtrack” to the previous state, that is, to the domain stored in Dpred. This is
done in line 29, but an implementation in a solver will use the backtracking facilities
of the solver. Finally, Br is added to the set Branches (line 30) and the data structures
of the AC algorithm are restored before returning true.

Function updateBranches (lines 33 to 36) is the same as updateSub
Problems from SAC-SDS except that it deals with branches instead of values.

Theorem 3 SAC3-SDS is a correct SAC algorithm with O(b totT ′) time complexity,
where T ′ is the cost of enforcing arc consistency on the network with an AC algorithm
that does not store any special data structure between two calls and b tot is the total
number of times a branch is built by SAC3-SDS. This gives O(b toted3) on binary
constraints. The space complexity of SAC3-SDS is O(b maxnd + S), where S is the
space complexity of the AC algorithm used and b max is the maximum number of
branches recorded at the same time by SAC3-SDS.

Proof Correctness. Soundness is obvious. As for completeness, each time the main
loop of SAC3-SDS starts, every value in D is ensured to belong either to PendingList
or to a branch in Branches. Any branch Br in Branches is ensured either to
correspond to an arc-consistent subdomain D[Br] or to be in PendingList. Since
SAC3-SDS stops on empty PendingList, we are guaranteed that all values remaining
in D are in a branch Br for which D[Br] is arc-consistent. By Proposition 1, we have
that all values in D are singleton arc-consistent.

Complexity. In addition to the space requirement in O(S) of the underlying arc
consistency algorithm, it is necessary to record the domain of the subproblems
corresponding to the valid branches that have been built. As recording a domain
is in O(nd), we obtain O(b maxnd + S).

Concerning time complexity, the total cost is dominated by the cost of building and
updating branches. As in SAC3 the cost of building each branch in buildBranch is
in O(T). However, branches may need to be updated (line 8). The total cost on all
these updates is not O(ndT) because the domain of the subproblem is stored from
one call to another. On the other hand, the total cost for each branch (including
both the construction and the successive updates) is not O(T) because the data
structures of the AC algorithm are not saved from one call to another (U PD is
false when calling propagateAC at line 8). The total cost is O(T ′), the cost of arc
consistency without storing data structures. So, the total time complexity of SAC3-
SDS is O(b totT ′) (i.e., O(b toted3) on binary constraints). 	

Note that b max ≤ b tot (= O(n2d2)) because b max is the maximum number of
branches SAC3-SDS simultaneously stores in the set Branches whereas b tot is the

Constraints (2011) 16:25–53 41

Table 2 Complexities of the new SAC algorithms

Algorithm Non-binary CN Binary CN

Time Space Time Space

SAC-SDS O(ndT ′) O(n2d2 + S) O(end4) O(n2d2)

SAC3 O(b T) O(nd + S) O(bed2) O(ed)

SAC3-SDS O(b totT ′) O(b maxnd + S) O(b toted3) O(b maxn + e)d)

T and S are the time and space complexities of the underlying (G)AC algorithm. T ′ is the cost of
enforcing (G)AC with an algorithm that does not store any special data structure between two calls.
b tot is the total number of times a branch is built by SAC3-SDS and b max is the maximum number of
branches recorded at the same time by SAC3-SDS. For binary constraints, we consider an optimal
AC algorithm, such as AC2001, with time in O(ed2) and space in O(ed)

total number of branches SAC3-SDS will have stored at some point during its
execution. b max and b tot are both smaller than the number b+ of times SAC3-SDS
rechecks arc consistency of one of its branches (line 8 of Algorithm 4). Note that
b+ is not necessarily equal to b (see SAC3) because SAC3 and SAC3-SDS do not
propagate PendingList in the same ordering. Nevertheless, as in Observation 1 for
SAC3, we obtain d ≤ b+ ≤ nd on constraint networks that are already singleton
arc-consistent. In addition, on such networks, each branch is built once and never
rechecked, for a total cost in O(T) instead of O(T ′). As a consequence, on a
constraint network that is already singleton arc-consistent, SAC3-SDS embedding
an optimal AC algorithm such as AC2001 has a time complexity in O(ndT) like
SAC3 (i.e., O(end3) on binary constraints). Overall, one should be optimistic about
the average time complexity of SAC3-SDS because, as opposed to SAC3, it avoids
building new branches when unnecessary.

Table 2 shows the complexities of the new algorithms presented in this paper.

8 Illustrations

In this section, we propose a visual illustration of the different algorithms mentioned
in this paper. Here, we suppose a constraint network involving n variables x1, . . . , xn

with D(xi) = {a, b , c} ∀i ∈ 1..n.
Figure 1 provides an illustration of the algorithm SAC1. After having established

AC, all singleton checks are performed in turn; this is the first pass. Here, the value
(xn, b) is assumed to be proved inconsistent. It means that a second pass is necessary:
each remaining value (after propagating xn �= b) has to be checked; see the dotted
arrow. Imagine that during the second pass, the value (x j, a) is shown singleton

Fig. 1 Illustration of SAC1.
After identifying (xn, b) as a
singleton arc-inconsistent
value, xn �= b is propagated
and a second pass is performed

*

AC AC AC AC

AC

AC AC

42 Constraints (2011) 16:25–53

Fig. 2 Illustration of SAC-Opt
and SAC-SDS. After
identifying (xn, b) as a
singleton arc-inconsistent
value, xn �= b is propagated
and only values having (xn, b)

in their associated subdomain
are checked again. Here, we
only have (x1, b) in this
situation

AC AC

AC

AC AC

AC

AC AC

arc-inconsistent (this is not depicted in the figure). Once again, all remaining values
(after propagating x j �= a) will have to be checked. SAC2 avoids some useless
singleton checks. For example, if (x1, b) is the only value having (xn, b) in its
associated subdomain D|x1=b , it is the only value to be checked again. However, as
in SAC1, this is done from scratch.

The algorithms SAC-Opt and SAC-SDS are illustrated in Fig. 2. When the value
(xn, b) is proved inconsistent, only the values having (xn, b) in their associated
subdomain are checked again. In our illustration, we imagine that only (x1, b) is
in this situation. Contrary to SAC2, this is performed from the state reached after
the first AC enforcement. With SAC-SDS we lose time optimality because the data
structures of the AC algorithm (e.g., Last pointers for AC2001) are not up to date.

Finally, the algorithms SAC3 and SAC3-SDS are illustrated in Fig. 3. This time
we perform greedy runs. Suppose we assign first a to x1 and then c to x2. No
inconsistency is detected, meaning that both values are singleton arc-consistent.
Next, assume that the value (xn, b) is chosen (maybe, due to an heuristic as discussed
in Section 9) and a failure occurs. (xn, b) has still to be proved singleton arc-
consistent. Suppose it is chosen first when building the next branch and shown to

Fig. 3 Illustration of SAC3
and SAC3-SDS. The value
(xn, b) provokes a failure at
the end of the first branch, and
so is selected in priority for the
second one

Solution found

AC

AC

ACACAC

AC

AC

AC

Constraints (2011) 16:25–53 43

be singleton arc-inconsistent. With SAC3, we know that a second pass is necessary,
starting from scratch. However, for SAC3-SDS, only branches containing (xn, b) in
their associated subdomain have to be considered again. The opportunity of finding
a solution during the inference process is shown in the figure.

9 Experiments

In order to show the practical interest of the algorithms presented in this paper, we
have performed several experiments. For random problems, all algorithms have been
implemented in C++ and ran on a Pentium IV-1600 Mhz with 512 Mb of memory
under windows XP whereas for structured problems, we have used the constraint
solver Abscon and run it on a cluster of Xeon 3.0 GHz with 1GiB of RAM under
Linux.4 We have compared existing SAC algorithms, namely SAC1 and SAC2, with
those presented in this paper: SAC-SDS, SAC3 and SAC3-SDS. SAC-Opt was also
tested, but shown to be too space consuming in general.

9.1 Random problems

We compared the performance of the SAC algorithms on random uniform constraint
networks of binary constraints generated with the generator in [15], which produces
instances according to Model B [25]. These instances are characterized by the four
parameters 〈n, d, p1, p2〉, where n is the number of variables, d the size of all domains,
p1 the density, i.e., the proportion of pairs of variables linked by a binary constraint
(among the n(n − 1)/2 possible pairs), and p2 the tightness, i.e., the proportion of
forbidden pairs of values inside a constraint (among the d2 possible pairs). The
results reported are for versions of the algorithms based on AC2001. Note that for
SAC2 the implementation of the propagation list has been done according to the
recommendations made in [2]. The heuristic used for selecting values in PendingList
is lifo.5 For each combination of parameters tested, we generated 50 instances for
which we report mean cpu times.

9.1.1 Experiments on sparse constraint networks

Figure 4 presents performance on constraint networks having 100 variables, 20 values
in each domain, and a density of .05. In these relatively sparse constraint networks
the variables have five neighbors on average.

For a tightness lower than .55, all the values are singleton arc-consistent. On
these under-constrained networks, the SAC algorithms check the arc consistency
of each subproblem at most once. Storing support lists (as in SAC2) or duplicating
for each value the data structures of the AC algorithm (as in SAC-Opt) is useless
and prohibitive. Storing only local subdomains (as in SAC-SDS) or using a greedy

4The use of two different computers is due to our two platforms, one limited to binary constraints in
which all algorithms were implemented, and the other one allowing any type of constraints, but in
which some algorithms were not available.
5Other heuristics have been tested but due to lack of structure in random instances, the difference of
behavior between heuristics is small.

44 Constraints (2011) 16:25–53

Fig. 4 cpu time on random
problems with n = 100, d = 20,
and density= .05

.10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90
1E-2

1E-1

1E0

1E+1

SAC3

SAC2

SAC1

SAC-Opt

SAC-SDS

Tightness

cpu time (in sec.)
n=100, d=20, and density=.05

.77

Zoom with a non
logarithmic scale

.75.73.71.69.67

2

0

4

6

8

10

12

14

16

SAC3-SDS

approach (as in SAC3 and SAC3-SDS) is far less costly, but the brute-force algorithm
SAC1 shows the best performance.

On problems having tighter constraints, some singleton arc-inconsistent values are
removed and at tightness .72 we can see a peak of complexity. As mentioned in [2],
the improved propagation of SAC2 is useless on sparse constraint networks. SAC2
is always more expensive than SAC1. Around the peak of complexity, SAC-SDS is
the clear winner. SAC-Opt and SAC1 are around 1.7 times slower, and all the others
are between 2.1 and 3 times slower.

9.1.2 Experiments on dense constraint networks

Figure 5 presents performance on constraint networks having 100 variables, 20 values
in each domain and a complete graph of binary constraints.

SAC1 and SAC2 show very close performance. When all values are SAC (tight-
ness lower than .37) the additional data structure of SAC2 is useless because there is
no propagation. Nevertheless, the cost of building this data structure is not important
compared to the overall time and the time required by SAC2 is almost the same

Fig. 5 cpu time on random
problems with n = 100, d = 20,
and density= 1

.90
1E-1

1E0

1E+1

1E+2

1E+3

1E+4

Tightness

cpu time (in sec.)
n=100, d=20, and density=1 (complete constraint networks)

Zoom with a non
logarithmic scale

.38 .39 .40 .41 .42 .43 .44 .45

100

200

300

400

500

600

 0

.10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85

SAC3
SAC2
SAC1

SAC-Opt
SAC-SDS
SAC3-SDS

Constraints (2011) 16:25–53 45

as SAC1. Around the peak of complexity, SAC2 requires slightly less time than
SAC1. The reason is that SAC2 rechecks the arc consistency of less subproblems
than SAC1. On very tight constraints, SAC1 requires less time than SAC2 because
the inconsistency of the problem is found with almost no propagation and building
the data structure of SAC2 is useless.

The best results are obtained with SAC-Opt and SAC-SDS which are between
1.41 and 3.74 times faster than the others at the peak. The smarter propagation
mechanism of these two algorithms pays off on these problems. However, the interest
of SAC-Opt can be seen only at the peak since it remains very costly elsewhere.

When constraints are not tight, SAC3 and SAC3-SDS build long branches and
clearly show the best performance. However, as on sparse problems, SAC3 is the
most costly at the peak. Without storing the branches on which rely the singleton
consistency of the values, SAC3 performs useless tests. The enhanced version SAC3-
SDS has not this drawback and highlights a better behavior at the peak.

9.2 Structured problems

For structured problems, we have decided to focus on the most efficient algorithms
identified above, while keeping SAC1 as baseline algorithm. SAC2 was removed
as a clear loser in the previous experiments. SAC-Opt was tested on a few binary
structured problems, but it reached the space limit so often that we decided not to
include it. For algorithms based on greedy search, we have tested several heuristics
to select values when building branches. Two representative ones are lifo6 already
used in our experiments with random instances, and dom/wdeg. Let us call a value
of PendingList ∩ D a valid choice. While lifo selects the youngest valid choice put in
PendingList, dom/wdeg selects first the variable with the best ratio “domain size” on
“weighted degree” [9] among variables for which at least a valid choice exists. For
dom/wdeg, if x is the selected variable, the youngest valid choice for x is considered.
There is one case where dom/wdeg is overridden: when we encounter a failure that
does not correspond to an identified singleton arc-inconsistent value (i.e., when a
branch with more than one assignment terminates with a domain wipe-out), a new
branch is systematically started with the variable-value pair assignment that led
to the wipe-out. Note that lifo automatically behaves in a similar way after each
encountered failure. The main benefit is that the last variable assignment before the
wipe-out is more likely to fail again.

The (G)AC algorithm embedded in the various SAC algorithms used for this
experiment (concerning structured problems) is (G)AC3rm. Although non-optimal
in theory, this algorithm is known to be quite efficient in practice, even for non-
binary problems [19]. For problem series, such as renault and crosswords, that involve
constraints in extension of arity strictly greater than 3, we have used the algorithm
STR to enforce GAC. This algorithm [16, 29] belongs to state-of-the-art GAC
algorithms for constraints in extension (so called table constraints).

We have experimented on series of structured CSP instances that are available
from http://www.cril.fr/~lecoutre. These series represent a large spectrum of in-
stances, and importantly, allow anyone to easily reproduce our experimentation.

6The heuristic fifo is rather close to lifo in terms of performance, but lifo has the advantage of
checking in priority the last value assigned when a branch ends with a failure.

http://www.cril.fr/~lecoutre

46 Constraints (2011) 16:25–53

Among the series, we find instances from the scheduling job-shop problem (instances
with prefix ewddr), graph-coloring problem (instances with prefix fpsol), all-interval
series problem (instances with prefix series), Langford problem, radio-link frequency
assignment problem (so-called RLFAP instances with prefix graph or scen), fre-
quency assignment problem with polarization (so-called FAPP instances with prefix
fapp), Renault configuration problem, crossword problem (instances with prefix cw),
queen attacking problem, Golomb ruler problem (instances with prefix ruler), and
primes problem.

We have distinguished between three main categories of instances: those that
are already singleton arc-consistent, those that are singleton arc-inconsistent, and
finally those that are neither singleton arc-consistent nor singleton arc-inconsistent.
Even if the most interesting category is the last one, we briefly analyze some results
concerning the two other categories below. Results are given for representative
structured instances since contrary to random problems, computing mean results
per series is almost always irrelevant for SAC. Below the name of each instance,
we give three numbers, i- j-k. i is the number of initial values, j is the number of
values removed by AC, and k is the number of values removed by SAC (including
values removed by AC, i.e., we have k ≥ j). For example, for the instance graph3 in
Table 5, we know that the number of initial values is 7820, the number of removed
arc-inconsistent values is 340 and the total number of values removed after enforcing
SAC is 1274. For each algorithm tested, the cpu time (in seconds) as well as the
number of singleton checks (#scks) are given.

Table 3 shows the results obtained on some representative instances for which
enforcing SAC has no impact: these instances are already singleton arc-consistent.
Consequently, applying a SAC algorithm on such instances is nothing more than
a waste of time. Nevertheless, it is interesting to see the relative behavior of the
different algorithms. First, note that SAC1 and SAC-SDS behave equivalently since

Table 3 Results obtained on instances (already) singleton arc-consistent

Instance SAC1/ SAC3 SAC3-SDS
SAC-SDS lifo dom/wdeg lifo dom/wdeg

ewddr2-1 cpu 2.52 1.16 1.51 1.25 1.52
(6720-0-0) #scks 6,720 6,868 6,851 6,868 6,851
ewddr2-10 cpu 2.28 0.98 1.35 1.07 1.35
(6895-0-0) #scks 6,895 6,924 6,934 6,924 6,934
fpsol2-i-1-15 cpu 21.3 10.7 14.1 10.7 13.5
(4035-0-0) #scks 4,035 4,378 4,415 4,378 4,415
fpsol2-i-1-20 cpu 26.5 13.0 18.1 12.7 18.9
(5380-0-0) #scks 5,380 5,689 5,755 5,689 5,755
series-40 cpu 9.42 12.5 10.2 12.7 10.1
(3121-0-0) #scks 3,121 3,205 3,204 3,205 3,204
series-50 cpu 23.1 36.7 31.4 34.4 31.6
(4901-0-0) #scks 4,901 5,004 5,010 5,004 5,010
langford-3-40 cpu 102 21.9 21.9 21.0 21.8
(9240-0-0) #scks 9,240 9,331 9,327 9,331 9,327
langford-3-50 cpu 253 53.7 53.5 54.0 53.4
(14550-0-0) #scks 14,550 14,652 14,648 14,652 14,648

SAC-SDS has a behavior similar to SAC1 because a value never needs to be tested twice

Constraints (2011) 16:25–53 47

never a value has to be tested twice. The only difference between the two algorithms
is the overhead of managing the data structures that are specific to SAC-SDS. As
it is quite negligible here, we present the results for both algorithms within a single
column. Second, for the greedy algorithms SAC3 and SAC3-SDS, using a “clever”
heuristic to build branches has a very limited impact. This is not surprising because
these instances are (highly) under-constrained. Whatever the heuristic is, the chance
of building long similar branches is important. Finally, in terms of results, if the
greedy algorithms are overall faster than SAC1/SAC-SDS, in some cases (see series-
50) they can be penalized. Indeed, on certain instances, whereas each isolated sin-
gleton check is cheap as involving no propagation, building a branch leads to a point
where propagation starts to be effective, which is counter-productive. Nevertheless,
note that the gain obtained by SAC3 and SAC3-SDS is sometimes substantial: on
Langford instances, both algorithms are five times faster than SAC1/SAC-SDS.

Table 4 presents the results obtained on some instances that are singleton arc-
inconsistent but not arc-inconsistent. Again, we merge the results obtained with
SAC1 and SAC-SDS because on all these instances, except graph8-f11, only one pass
is necessary to prove that the instances are unsatisfiable (i.e., each values is tested at
most once). As a consequence, SAC-SDS is not given the opportunity to exploit the
incrementality of arc consistency algorithms. On graph8-f11 the difference observed
between SAC1 and SAC-SDS is small. As a first general observation, it appears
that greedy SAC algorithms are almost always beneficial. It is partially due to the
incrementality exploited when building branches. Another explanation is the natural
inclination of greedy SAC algorithms to “explore” different portions of the search
space. Indeed, instead of focusing on values of the same variable, SAC3 and SAC3-
SDS necessarily test values for different variables. It allows them to quickly find
the most constrained variables and potentially singleton arc-inconsistent values since
both heuristics lifo and dom/wdeg “reason” from the last conflict. By additionally
learning from conflicts through constraint weighting, dom/wdeg is capable of pro-
gressively focusing on the hard region(s) of the constraint network, those where
singleton arc-inconsistent values are expected to appear. This is confirmed by the

Table 4 Results obtained on instances singleton arc-inconsistent

Instance SAC1/ SAC3 SAC3-SDS
SAC-SDS lifo dom/wdeg lifo dom/wdeg

graph8-f11 cpu 3.36 2.52 2.0 4.44 3.47
(19322-6306-19322) #scks 21,996 19,149 13,898 18,881 13,878
scen7-w1-f5 cpu 0.24 0.25 0.06 0.32 0.06
(14176-4836-14176) #scks 3,846 3,442 135 3,442 135
fapp5-350-9 cpu 149 23.2 2.54 21.6 2.66
(79311-15943-79311) #scks 5,709 595 61 595 61
fapp5-350-10 cpu 221 50.1 1.81 50.6 1.79
(79311-9349-79311) #scks 9,541 1,886 35 1,886 35
renault-mod-12 cpu 1.15 0.07 0.10 0.08 0.11
(562-24-562) #scks 474 131 214 131 214
renault-mod-15 cpu 1.13 0.05 0.12 0.05 0.14
(562-14-562) #scks 481 71 243 71 243

SAC-SDS has a behavior similar to SAC1 because only one pass is necessary to prove inconsistency
(except for instance graph8- f 11)

48 Constraints (2011) 16:25–53

number of singleton checks performed by the different algorithms. For example, on
instance fapp5-350-10, only 35 singleton checks are necessary to SAC3 and SAC3-
SDS to prove unsatisfiability when using dom/wdeg. When using lifo, they require
1, 886 singleton checks. When a classical approach is used, almost 10, 000 singleton
checks are required. Obviously, it has a dramatic impact in terms of cpu time.

Finally, we have selected representative instances that are neither singleton arc
consistent nor singleton arc inconsistent. First, we have tested instances originated
from real-world applications (see Table 5). On RLFAP instances, the best identified
algorithm is SAC3-SDS combined with dom/wdeg: it is from 3 to 10 times faster than
the basic SAC1. The interest of using dom/wdeg instead of lifo is clear as it permits
to be twice faster. SAC-SDS is not very effective here as it runs out of memory on
graph10. However, on FAPP instances, i.e., instances from the Frequency Assign-
ment Problem with Polarization, SAC-SDS has a good behavior. It is quite close to
SAC3-SDS-dom/wdeg and largely outperforms the other SAC algorithms. On non-
binary instances from renault and crossword series, the observed difference between
using lifo and dom/wdeg is rather small. In fact, these instances contain a more
regular structure than the one present in frequency allocation problem instances.
Consequently, constraint weighting has a limited7 impact. Whereas SAC3-SDS is
the most efficient approach on renault instances, this is not so clear on crossword
ones. Roughly speaking, SAC-SDS and SAC3-SDS are the best algorithms for these
instances but they are “only” 50% faster than SAC1. SAC3 is even outperformed by
SAC1 when dictionary uk is used. Exploiting the incrementality of arc consistency on
crossword instances seems then little effective. Here, we have to mention that if STR
is replaced by a generic GAC algorithm such as GAC2001, the results obtained by
SAC3 and SAC3-SDS are damaged, compared to SAC1 and SAC-SDS. It illustrates
the difficulty of experimentally comparing algorithms based on approaches that are
significantly different. The results obtained on academic instances (Table 6) confirm
our previous observations. On some series, SAC3-SDS is clearly the best approach
(queenAttacking), but on some other series (ruler and primes), SAC3-SDS and SAC-
SDS have close performances.

For SAC1 and SAC-SDS, we have also tested heuristics such as dom/wdeg to
select values from PendingList. On a limited number of instances, we obtain an
improvement of the algorithm performance, but this remains unusual. The difference
between SAC algorithms based on a breadth-first approach and SAC algorithms
based on a greedy approach is that the latter have the possibility of quickly learning
and diversifying exploration. This renders the use of an adaptive heuristic such as
dom/wdeg quite relevant.

What general lessons can we draw from these experiments? Clearly, there is no
algorithm always dominating all the others. We can always find an instance, which,
because of its structure or because of its constrainedness, will be favorable to an algo-
rithm and not to another. Nevertheless, there are general trends that are quite visible.
When problems are not trivially under-constrained, the incrementality of SAC-SDS
and of SAC3-SDS pays off. When problems are structured, as real problems often
are. algorithms based on a greedy search show the best performance. All in all,
SAC3-SDS appears as an overall winner, benefiting from both incrementality and
greedy search.

7Besides, the higher the arity, the lower the preciseness of constraint weighting.

Constraints (2011) 16:25–53 49

Table 5 Results obtained on real-world instances

Instance SAC1 SAC-SDS SAC3 SAC3-SDS

lifo dom/wdeg lifo dom/wdeg

Binary instances
graph3 cpu 22.2 11.0 8.51 5.02 5.04 2.82
(7820-340-1274) #scks 20,075 15,798 22,164 21,001 8,375 7,475
graph4 cpu 82.2 39.8 33.4 18.7 23.9 14.0
(15592-776-2876) #scks 51,957 37,394 44,912 41,996 16,508 15,370
graph10 cpu 141 Mem out 82.9 50.7 55.5 29.5
(26980-386-2572) #scks 74,321 83,046 78,288 29,093 27,557
scen5 cpu 0.85 1.38 0.31 0.27 0.32 0.27
(15768-12046-13814) #scks 6,261 3,966 4,215 4,148 2,487 2,242
fapp1-200-4 cpu 77.3 39.2 108 102 56.9 33.8
(26963-13029-16038) #scks 33,955 41,832 53,773 62,839 17,285 14,373
fapp1-200-6 cpu 83.5 33.1 80.3 65.7 33.9 26.4
(26963-11039-12082) #scks 45,200 41,425 49,846 48,351 17,491 16,685
fapp1-200-8 cpu 85.4 32.6 71.2 52.8 27.3 20.4
(26963-9155-9523) #scks 52,603 37,061 56,374 54,882 19,127 18,576
fapp1-200-10 cpu 38.6 20.0 28.0 23.2 15.2 12.1
(26963-5976-6053) #scks 41,889 38,484 42,762 42,394 21,440 21,250

Non-binary instances
renault cpu 2.0 1.15 0.55 0.49 0.33 0.29
(462-13-14) #scks 754 409 781 781 392 392
renault-mod-18 cpu 2.11 1.51 0.71 0.74 0.47 0.4
(562-36-51) #scks 1,013 962 1,177 1,167 596 591
renault-mod-44 cpu 3.85 2.14 1.42 1.0 0.63 0.5
(462-27-108) #scks 1,739 1,565 1,893 1,403 665 623
cw-lex-15-08 cpu 15.6 9.72 14.5 14.8 7.48 7.7
(4836-231-235) #scks 9,206 7,789 10,211 10,726 5,105 5,365
cw-lex-19-08 cpu 30.4 25.4 34.2 39.8 16.6 21.8
(7670-431-441) #scks 14,468 14,372 15,895 16,741 7,953 8,374
cw-lex-21-08 cpu 40.0 31.6 39.3 42.9 20.9 21.8
(9490-357-360) #scks 18,263 12,445 19,907 21,148 9,951 10,566
cw-lex-23-08 cpu 54.8 45.9 57.9 61.7 30.1 31.0
(11804-562-566) #scks 22,480 22,313 24,624 26,944 12,316 13,462
cw-uk-vg14-15 cpu 187 128 224 230 135 116
(5460-248-480) #scks 15,174 13,503 22,634 21,672 7,819 7,429
cw-uk-vg14-16 cpu 203 155 323 342 163 141
(5824-337-798) #scks 20,586 15,304 40,134 39,029 8,690 8,410
cw-uk-vg15-15 cpu 133 125 204 193 140 141
(5850-300-850) #scks 15,567 15,222 24,440 23,859 8,840 8,529
cw-uk-vg15-16 cpu 174 160 301 328 193 195
(6240-400-1444) #scks 30,069 33,733 58,867 58,170 10,481 10,390

9.3 Enforcing SAC before and during search

The previous subsections show a comparison of the performance of SAC algorithms
when enforcing SAC alone. However, each time new algorithms for a local consis-
tency are proposed, the natural questions that arises is whether or not these new
algorithms improve the search for solutions. In this section we briefly address this
question in two ways. First, we compare MAC and SAC followed by MAC on a

50 Constraints (2011) 16:25–53

Table 6 Results obtained on academic instances

Instance SAC1 SAC-SDS SAC3 SAC3-SDS

lifo dom/wdeg lifo dom/wdeg

Binary instances
queenAttacking-6 cpu 1.94 1.24 0.84 0.78 0.47 0.42
(1302-33-48) #scks 2,523 1,702 2,752 2,788 1,388 1,400
queenAttacking-7 cpu 6.12 4.07 2.33 2.39 1.24 1.25
(2411-45-65) #scks 4,712 3,255 4,996 5,052 2,507 2,536
queenAttacking-8 cpu 19.1 12.8 9.86 6.77 3.29 3.56
(4106-108-160) #scks 7,942 5,664 12,661 8,557 4,269 4,299
queenAttacking-9 cpu 53.1 30.3 24.5 17.3 8.79 9.43
(6576-132-197) #scks 12,819 9,045 20,200 13,598 6,785 6,828

Non-binary instances
ruler-34-8-a3 cpu 38.8 11.0 37.4 13.5 12.0 7.5
(1232-168-351) #scks 6,335 3,340 9,726 3,947 1,755 1,423
ruler-34-9-a3 cpu 50.8 15.7 55.6 36.9 18.6 14.2
(1539-240-513) #scks 8,474 4,720 13,184 11,135 2,175 2,101
ruler-44-9-a3 cpu 189 46.4 185 123 64.2 36.5
(1989-240-513) #scks 12,074 6,445 18,340 15,484 2,934 2,631
ruler-44-10-a3 cpu 257 64.9 241 181 78.1 53.1
(2430-330-718) #scks 15,810 8,829 21,993 21,000 3,571 3,436
primes-10-20-3-1 cpu 40.1 21.3 20.7 13.3 11.4 8.36
(2800-386-484) #scks 2,139 1,526 3,421 2,240 1,348 1,139
primes-10-20-3-3 cpu 140 91.3 202 205 123 104
(2800-180-225) #scks 2,942 2,787 3,282 3,292 1,725 1,677
primes-10-20-3-5 cpu 355 128 246 383 133 127
(2800-111-133) #scks 5,503 5,092 3,982 5,895 2,086 2,003
primes-20-60-3-1 cpu 5.5 6.96 3.75 4.2 4.04 4.55
(7000-3368-5938) #scks 3,231 3,171 3,388 2,983 2,864 2,651
primes-20-60-3-3 cpu 487 227 674 567 268 227
(7000-629-1877) #scks 25,288 20,585 34,982 29,909 9,380 8,540
primes-20-60-3-5 cpu 647 350 830 840 448 455
(7000-437-573) #scks 12,850 11,422 14,305 14,574 7,255 7,480

selection of instances from subsections above. Second, we compare MAC and a brute
force implementation of maintaining SAC during search.

One may wonder about the impact of enforcing SAC at preprocessing time before
running MAC; what we will be denoted by SAC+MAC. Clearly, it will depend on the
number (or proportion) of singleton arc-inconsistent values in the original instance
to be solved. If there is none, enforcing SAC is just a waste of time (but sophisticated
SAC algorithms moderate this drawback). At the other extreme, enforcing SAC may
be sufficient to solve the instance either by proving its unsatisfiability (when the
instance is singleton arc-inconsistent) or by opportunistically finding one solution

Table 7 Solving singleton
arc-inconsistent instances
using MAC and SAC3

Instance MAC SAC3

queensKnights-10-5-mul 0.5 0.4
queensKnights-20-5-mul 3.2 0.7
queensKnights-30-5-mul 12.8 1.7
queensKnights-40-5-mul > 3600 46

Constraints (2011) 16:25–53 51

Table 8 CPU time in seconds
(and number of visited nodes)
for instances of the queens and
RLFAP problems, given a
30 min cutoff

Instance MAC time Maintaining
(#nodes) SAC1 time SAC3 time

(#nodes) (#nodes)

100-queens 4.2 (119) time-out 17.4 (1)
110-queens time-out time-out 37.9 (1)
120-queens 1,636 (323K) time-out 16.7(1)
scen11-f12 3.6 (696) 1,072 (42) 418 (6)
scen11-f10 4.4 (863) 1,732 (53) 814 (9)
scen11-f8 67.8 (14K) time-out time-out

(when greedy runs are performed). To illustrate the case where there are SAC
inconsistent values in the instance, let us consider some instances of the queen-
sKnights problem as described in [9]. Instances of the form queensKnights-n-5-mul
are singleton arc-inconsistent (n denotes the size of the chessboard), and so enforcing
SAC allows us to avoid exploring a search tree. Table 7 shows the cpu time required
to solve some of these instances (for n = 10, 20, 30 and 40) when MAC is used (using
dom/wdeg as variable ordering heuristic8 and lexico as value ordering heuristic) but
also when SAC is enforced at preprocessing (using algorithm SAC3-dom/wdeg). The
interest of SAC at preprocessing is immediate here.

The second question is about the cost of maintaining SAC during search; what
we will be denoted by MSAC. In Table 8 we compare MAC and MSAC both
on satisfiable and unsatisfiable instances. Results are given for MAC, MSAC1 and
MSAC3 (where MSACX maintains SACX during search). We chose SAC1 and
SAC3 because they do not involve complex data structures to maintain, so that we
expect them not to be too much penalized by our brute force implementation for
maintaining SAC during search.

The top of Table 8 illustrates what happens on satisfiable instances. The instances
used are satisfiable instances of the n-queens problem. It is interesting to note that for
all these satisfiable instances, SAC3 visits a single node. This is because the solution
is found by one of the greedy runs of the first pass of SAC. This makes MSAC3 much
more efficient than MAC. However, MSAC1 is terribly inefficient. This confirms that
efficient (and opportunistic) algorithms for SAC are useful.

The bottom of Table 8 illustrates the behavior of the same algorithms on unsatisfi-
able instances. The instances used are some difficult (modified) unsatisfiable RLFAP
instances. The results show that maintaining SAC significantly reduces the number
of nodes that have to be visited. Compared to MAC, MSAC1 reduces the number
of nodes by one order of magnitude whereas MSAC3 reduces it by two orders of
magnitude. This means that one order of magnitude of reduction of the search tree
comes from the pruning power of SAC whereas the second order of magnitude comes
from the fact that SAC3 learns from failures (of greedy runs) via use of the dom/wdeg
heuristic. Unfortunately, this strong reduction of the size of the search space does not
compensate for the cost of applying SAC at each node. Time performance of MSAC
algorithms are much worse than those of MAC.

8Results are even worse when classical non-adaptive variable ordering heuristics such as dom
(choosing at each step the variable with the smallest domain size) are used.

52 Constraints (2011) 16:25–53

The high cost of applying SAC at each node has already been pointed out in [20].
The authors proposed relaxed versions of SAC that could be maintained during
search at a lower cost than full SAC. For instance, they proposed existential SAC,
that stipulates that at least one value in each domain is SAC-consistent. We have
adapted MSAC3 for maintaining existential SAC. We call it MESAC3. We ran it
on the instances of Table 8. It has approximately the same performance as MSAC3
on the satisfiable instances. But on unsatisfiable ones, it is significantly faster than
MSAC3. For instance, on the scen11-f10 instance, it explores 26 nodes in 38.3 s for
solving the problem. This is 20 times faster than MSAC3 for only three times more
nodes. It solves scen11-f8 in 290 s and 213 nodes.

Of course, the results given in this subsection are extremely preliminary. They
just give a first idea of the questions that will have to be tackled. This will deserve a
thorough study.

10 Conclusion

We have reviewed existing algorithms for singleton arc consistency and we have
given their complexities. Two of them have a high time complexity (SAC1, SAC2)
and one has a high space complexity (SAC-Opt). Our first contribution, SAC-SDS,
is a trade-off between these two extremes. Like SAC-Opt, SAC-SDS stores the
domains of the subproblems created for checking singleton arc consistency of values.
Unlike SAC-Opt, it does not store all the data structures used by arc consistency
in these subproblems. This leads to a higher time complexity and a lower space
complexity than SAC-Opt. The data stored by SAC-SDS are enough to obtain
a lower time complexity than SAC1 and SAC2. Our second contribution, SAC3,
is an original approach that mixes inference and search to enforce singleton arc
consistency. A side effect of building a branch while maintaining arc consistency is
that all its values except the last are guaranteed to be singleton arc-consistent. Such
an approach has several advantages. We can benefit from the guidance of standard
heuristics usually used during search, we can check singleton arc consistency quickly
when the network is already singleton arc-consistent, and we can find a solution ’by
chance’ while building a branch. The third algorithm presented in this paper, SAC3-
SDS, combines our two first contributions in a single algorithm. SAC3-SDS builds
branches, like SAC3, and SAC3-SDS stores the domains of the subproblems built,
like SAC-SDS. This paper also contains an extensive experimental evaluation. This
shows the benefit of our contributions compared to existing algorithms for SAC.
Overall, SAC3-SDS seems to be the more frequent winner thanks to its combination
of the good characteristics of SAC-SDS and SAC3.

Acknowledgements The first author was supported by the ANR project ANR-06-BLAN-0383-02.
The second and fourth authors were supported by the CNRS and by the “IUT de Lens”.

References

1. Apt, K. R. (2003). Principles of constraint programming. Cambridge: Cambridge University
Press.

Constraints (2011) 16:25–53 53

2. Bartak, R., & Erben, R. (2004). A new algorithm for singleton arc consistency. In Proceedings of
FLAIRS’04 (pp. 257–262).

3. Bessiere, C. (1994). Arc consistency and arc consistency again. Artificial Intelligence, 65, 179–190.
4. Bessiere, C., & Debruyne, R. (2004). Theoretical analysis of singleton arc consistency. In Pro-

ceedings of ECAI’04 workshop on modelling and solving problems with constraints (pp. 20–29).
5. Bessiere, C., & Debruyne, R. (2005). Optimal and suboptimal singleton arc consistency algo-

rithms. In Proceedings of IJCAI’05 (pp. 54–59).
6. Bessiere, C., & Debruyne, R. (2008). Theoretical analysis of singleton arc consistency and its

extensions. Artificial Intelligence, 172(1), 29–41.
7. Bessiere, C., & Régin, J. (2001). Refining the basic constraint propagation algorithm. In Proceed-

ings of IJCAI’01 (pp. 309–315).
8. Bessiere, C., Régin, J. C., Yap, R., & Zhang, Y. (2005). An optimal coarse-grained arc consistency

algorithm. Artificial Intelligence, 165(2), 165–185.
9. Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting systematic search by

weighting constraints. In Proceedings of ECAI’04 (pp. 146–150).
10. Chmeiss, A., & Sais, L. (2000). About the use of local consistency in solving CSPs. In Proceedings

of ICTAI’00 (pp. 104–107).
11. Debruyne, R., & Bessiere, C. (1997a). From restricted path consistency to max-restricted path

consistency. In Proceedings of CP’97 (pp. 312–326).
12. Debruyne, R., & Bessiere, C. (1997b). Some practical filtering techniques for the constraint

satisfaction problem. In Proceedings of IJCAI’97 (pp. 412–417).
13. Debruyne, R., & Bessiere, C. (2001). Domain filtering consistencies. Journal of Artificial Intelli-

gence Research, 14, 205–230.
14. Dechter, R. (2003). Constraint processing. San Francisco: Morgan Kaufmann.
15. Frost, D., Dechter, R., Bessiere, C., & Régin, J. C. (1996). Random uniform CSP generators.

http://www.lirmm.fr/~bessiere/generator.html.
16. Lecoutre, C. (2008). Optimization of simple tabular reduction for table constraints. In Proceed-

ings of CP’08 (pp. 128–143).
17. Lecoutre, C. (2009). Constraint networks: Techniques and algorithms. New York: ISTE/Wiley.
18. Lecoutre, C., & Cardon, S. (2005). A greedy approach to establish singleton arc consistency. In

Proceedings of IJCAI’05 (pp. 199–204).
19. Lecoutre, C., & Hemery, F. (2007). A study of residual supports in arc consistency. In Proceed-

ings of IJCAI’07 (pp. 125–130).
20. Lecoutre, C., & Prosser, P. (2006). Maintaining singleton arc consistency. In Proceedings of

CPAI’06 workshop held with CP’06 (pp. 47–61).
21. Mackworth, A. K. (1977a). Consistency in networks of relations. Artificial Intelligence, 8(1), 99–

118.
22. Mackworth, A. K. (1977b). On reading sketch maps. In Proceedings of IJCAI’77 (pp 598–606).
23. Mohr, R., & Henderson, T. C. (1986). Arc and path consistency revisited. Artificial Intelligence,

28, 225–233.
24. Mohr, R., & Masini, G. (1988). Good old discrete relaxation. In Proceedings of ECAI’88

(pp. 651–656).
25. Prosser, P. (1996). An empirical study of phase transitions in binary constraint satisfaction

problems. Artificial Intelligence, 81, 81–109.
26. Prosser, P., Stergiou, K., Walsh, T. (2000). Singleton consistencies. In Proceedings of CP’00

(pp. 353–368).
27. Sabin, D., & Freuder, E. C. (1994). Contradicting conventional wisdom in constraint satisfaction.

In Proceedings of CP’94 (pp. 10–20).
28. Sabin, D., & Freuder, E. C. (1997). Understanding and improving the MAC algorithm. In

Proceedings of CP’97 (pp. 167–181).
29. Ullmann, J. R. (2007). Partition search for non-binary constraint satisfaction. Information Sci-

ence, 177, 3639–3678.
30. Zhang, Y., & Yap, R. (2001). Making AC3 an optimal algorithm. In Proceedings of IJCAI’01

(pp. 316–321).

http://www.lirmm.fr/~bessiere/generator.html

	Efficient algorithms for singleton arc consistency
	Abstract
	Introduction
	Background
	Enforcing arc consistency
	Overview of SAC algorithms
	SAC-SDS
	SAC3
	SAC3-SDS
	Illustrations
	Experiments
	Random problems
	Experiments on sparse constraint networks
	Experiments on dense constraint networks

	Structured problems
	Enforcing SAC before and during search

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

