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Abstract. We study decompositions of the global NVALUE constraint. Our main
contribution is theoretical: we show that there are propagators for global con-
straints like NVALUE which decomposition can simulate with the same time com-
plexity but with a much greater space complexity. This suggests that the benefit
of a global propagator may often not be in saving time but in saving space. Our
other theoretical contribution is to show for the first time that range consistency
can be enforced on NVALUE with the same worst-case time complexity as bound
consistency. Finally, the decompositions we study are readily encoded as linear
inequalities. We are therefore able to use them in integer linear programs.

1 Introduction

Global constraints are one of the distinguishing features of constraint programming.
They capture common modelling patterns and have associatedefficient propagators for
pruning the search space. For example, ALL -DIFFERENT is one of the best known
global constraints that has proven useful in the modelling and solving of many real
world problems. A number of efficient algorithms have been proposed to propa-
gate the ALL -DIFFERENT constraint (e.g. [1–3]). Whilst there is little debate that
ALL -DIFFERENT is a global constraint, the formal definition of a global constraint
is more difficult to pin down. One property often associated with global constraints is
that they cannot be decomposed into simpler constraints without impacting either the
pruning or the efficiency of propagation [4]. Recently progress has been made on the
theoretical problem of understanding what is and isn’t a global constraint. In particular,
whilst a bound consistency propagator for the ALL -DIFFERENT constraint can be ef-
fectively simulated with a simple decomposition [5], circuit complexity lower bounds
have been used to prove that a domain consistency propagatorfor ALL -DIFFERENT

cannot be polynomially simulated by a simple decomposition[6].
In this paper, we turn to a strict generalization of the ALL -DIFFERENT constraint.

NVALUE counts the number of values used by a set of variables; the ALL -DIFFERENT

constraint ensures that this count equals the cardinality of the set. From a theoretical
perspective, the NVALUE constraint is significantly more difficult to propagate thanthe
ALL -DIFFERENT constraint since enforcing domain consistency is known to be NP-
hard [7]. Moreover, as NVALUE is a generalization of ALL -DIFFERENT, there exists no

http://arxiv.org/abs/1007.0603v1


polynomial sized decomposition of NVALUE which achieves domain consistency [6].
Nevertheless, we show that decomposition can simulate the polynomial time algorithm
for enforcing bound consistency on NVALUE but with a significant space complexity.
We also prove, for the first time, that range consistency on NVALUE can be enforced
in the same worst case time complexity as bound consistency.This contrasts with the
ALL -DIFFERENT constraint where range consistency takesO(n2) time [2] but bound
consistency takes justO(n log n) time [3].

The main value of these decompositions is theoretical as their space complexity is
equal to their worst case time complexity. When domains are large, this space complex-
ity may be prohibitive. In the conclusion, we argue why it appears somewhat inevitable
that the space complexity is equal to the worst case time complexity. These results sug-
gest new insight into what is and isn’t a global constraint: aglobal constraint either
provides more pruning than any polynomial sized decomposition or provides the same
pruning but with lower space complexity. There are several other theoretical reasons
why the decompositions studied here are interesting. First, it is technically interest-
ing that a complex propagation algorithm like the bound consistency propagator for
NVALUE can be simulated by a simple decomposition. Second, these decompositions
can be readily encoded as linear inequalities and used in linear programs. In fact, we
will report experiments using both constraint and integer linear programming with these
decompositions. Since global constraints are one of the keydifferentiators between con-
straint and integer programming, these decompositions provide us with another tool to
explore the interface between constraint and integer programming. Third, the decompo-
sitions give insights into how we might add nogood learning to a NVALUE propagator.

2 Background

A constraint satisfaction problem (CSP) consists of a set ofvariables, each with a fi-
nite domain of values, and a set of constraints. We use capitals for variables and lower
case for values. We assume values are taken from the set 1 tod. We writedom(Xi)
for the domain of possible values forXi, min(Xi) for the smallest value indom(Xi),
max(Xi) for the greatest, andrange(Xi) for the interval[min(Xi),max(Xi)]. Con-
straint solvers typically use backtracking search to explore the space of partial assign-
ments. After each assignment, propagation algorithms prune the search space by en-
forcing local consistency properties like domain, range orbound consistency. A con-
straint isdomain consistent(DC) iff when a variable is assigned any of the values in
its domain, there exist compatible values in the domains of all the other variables of
the constraint. Such an assignment is called asupport. A CSP is domain consistent iff
every constraint is domain consistent. A constraint isdisentailediff there is no possi-
ble support. A propagator which enforces domain consistency will detect disentailment,
but a propagator that detects just disentailment will not enforce domain consistency. A
constraint isrange consistent(RC) iff, when a variable is assigned any of the values in
its domain, there exist compatible values between the minimum and maximum domain
value for all the other variables of the constraint. Such an assignment is called abound
support. A constraint isbound consistent(BC) iff the minimum and maximum value
of every variable of the constraint belong to a bound support. A CSP is bound con-



sistent iff every constraint is bound consistent. We compute the total amortized cost of
enforcing a local consistency down an entire branch of the search tree. This captures the
incremental cost of propagation. Finally, we will assume that a propagator is invoked
at most once for each domain change and that the solver uses anoptimal propagator
to enforce BC on sum and channeling constraints. Such assumptions hold for modern
solvers like Gecode and Ilog Solver. However, we make no assumption about the order
of invocation of the constraints in a decomposition. The upper bounds we give hold
regardlessof the order in which constraints are processed.

A global constraintis one in which the arity of the constraintn is a parameter. A
decompositionof a global constraint is a CSP involving then variables of the global
constraint (and possibly others), involving only constraints with fixed arity (no global
constraint) or constraints that are themselves decomposable, such that the size of the
CSP is polynomial in the sum of the sizes of the domains of then original variables, and
such that the projection of its solutions on thosen variables corresponds to the solutions
of the global constraint. A useful notion is algorithmic globality [4]. Informally, given
a local consistency property, a global constraint is algorithmically global if there is no
decomposition on which this local consistency is achieved in the same time and space
complexity. We suggest here two refinements of this notion ofalgorithmic globality.
First, we will separate the space and time complexity. That is, given a local consistency
property, a global constraint is algorithmically global with respect to time (space) if
there is no decomposition on which this local consistency isachieved in the same time
(space) complexity. Second, unlike [4], we consider decompositions that may introduce
new variables. Our results will show that, when we introducenew variables, NVALUE

is not algorithmically global with respect to time butis global with respect to space.

3 NVALUE constraint

Pachet and Roy first proposed the NVALUE constraint [8]. Formally
NVALUE([X1, . . . , Xn], N) ensures thatN = |{Xi | 1 ≤ i ≤ n}|. This gener-
alizes several other global constraints including ALL -DIFFERENT (which ensures
that the number of values taken by a set of variables equals the cardinality of the set)
and NOT-ALL -EQUAL (which ensures a set of variables take more than one value).
Enforcing domain consistency on the NVALUE constraint is NP-hard (Theorem 3 in
[7]) even whenN is fixed (Theorem 2 in [9]). In fact, just computing the lower bound
on N is NP-hard (Theorem 3 in [10]). In addition, enforcing domain consistency on
the NVALUE constraint is not fixed parameter tractable since it isW [2]-complete [11].
However, several polynomial propagation algorithms have been proposed that achieve
bound consistency and some closely related levels of local consistency [12, 9, 13].

3.1 Simple decomposition

Global constraints can often be decomposed into simpler, more primitive and small ar-
ity constraints. For example, the ALL -DIFFERENT constraint can be decomposed into
a quadratic number of binary inequalities. However, such decomposition often hinders
propagation and can have a significant impact on the solver’sability to find solutions



[14]. We can decompose the NVALUE constraint by introducing 0/1 variables to repre-
sent which values are used and posting a sum constraint on these introduced variables:

Xi = j → Bj = 1 ∀1 ≤ i ≤ n, 1 ≤ j ≤ d (1)

Bj = 1→
∨n

i=1 Xi = j ∀1 ≤ j ≤ d (2)
∑d

j=1 Bj = N (3)

Note that constraint 3 is not a fixed arity constraint, but canitself be decomposed to
ternary sums without hindering bound propagation. Unfortunately, this simple decom-
position hinders propagation. It can be BC whereas BC on the corresponding NVALUE

constraint detects disentailment.

Theorem 1 BC onNVALUE is stronger than BC on its decomposition into (1) to (3).

Proof: Clearly BC on NVALUE is at least as strong as BC on the decomposition. To
show strictness, considerX1 ∈ {1, 2}, X2 ∈ {3, 4}, Bj ∈ {0, 1} for 1 ≤ j ≤ 4, and
N = 1. Constraints (1) to (3) are BC. However, the corresponding NVALUE constraint
has no bound support and thus enforcing BC on it detects disentailment.✷

We observe that enforcing DC instead of BC on constraints (1)to (3) in the example
of the proof above still does not prune any value. To decompose NVALUE without
hindering propagation, we must look to more complex decompositions.

3.2 Decomposition into ATMOSTNVALUE and ATLEASTNVALUE

Our first step in decomposing the NVALUE constraint is to split it into
two parts: an ATMOSTNVALUE and an ATLEASTNVALUE constraint.
ATLEASTNVALUE([X1, . . . , Xn], N) holds iff N ≤ |{Xi|1 ≤ i ≤ n}| whilst
ATMOSTNVALUE([X1, . . . , Xn], N) holds iff |{Xi|1 ≤ i ≤ n}| ≤ N .

Running Example. Consider aNVALUE constraint over the following variables and
values:

1 2 3 4 5
X1 ∗ ∗ ∗ ∗
X2 ∗
X3 ∗ ∗ ∗
X4 ∗
X5 ∗ ∗
N ∗ ∗ ∗

Suppose we decompose this into anATMOSTNVALUE and anATLEASTNVALUE con-
straint. Consider theATLEASTNVALUE constraint. The 5 variables can take at most
4 different values becauseX2, X3, X4, andX5 can only take values2, 3 and4. Hence,
there is no bound support forN = 5. Enforcing BC on theATLEASTNVALUE con-
straint therefore prunesN = 5. Consider now theATMOSTNVALUE constraint. Since
X2 andX4 guarantee that we take at least 2 different values, there is no bound support
for N = 1. Hence enforcing BC on anATMOSTNVALUE constraint prunesN = 1. If
X1 = 1, 3 or 5, or X5 = 3 then any complete assignment uses at least 3 different val-
ues. Hence there is also no bound support for these assignments. Pruning these values



gives bound consistent domains for the originalNVALUE constraint:

1 2 3 4 5
X1 ∗
X2 ∗
X3 ∗ ∗ ∗
X4 ∗
X5 ∗
N ∗

To show that decomposing the NVALUE constraint into these two parts does not
hinder propagation in general, we will use the following lemma. Given an assignment
S of values,card(S) denotes the number of distinct values inS. Given a vector of
variablesX = X1 . . .Xn, card↑(X) = max{card(S) | S ∈ ΠXi∈Xrange(Xi)} and
card↓(X) = min{card(S) | S ∈ ΠXi∈Xrange(Xi)}.

Lemma 1 (adapted from [13]) ConsiderNVALUE([X1, . . . , Xn], N). If dom(N) ⊆
[card↓(X), card↑(X)], then the bounds ofN have bound supports.

Proof: Let Smin be an assignment ofX in ΠXi∈Xrange(Xi) with card(Smin) =
card↓(X) andSmax be an assignment ofX in ΠXi∈Xrange(Xi) with card(Smax) =
card↑(X). Consider the sequenceSmin = S0, S1, . . . , Sn = Smax whereSk+1 is the
same asSk except thatXk+1 has been assigned its value inSmax instead of its value in
Smin. |card(Sk+1)− card(Sk)| ≤ 1 because they only differ onXk+1. Hence, for any
p ∈ [card↓(X), card↑(X)], there existsk ∈ 1..n with card(Sk) = p. Thus,(Sk, p) is a
bound support forp on NVALUE([X1, . . . , Xn], N). Therefore,min(N) andmax(N)
have a bound support.✷

We now prove that decomposing the NVALUE constraint into ATMOSTNVALUE

and ATLEASTNVALUE constraints does not hinder pruning when enforcing BC.

Theorem 2 BC on NVALUE([X1, . . . , Xn], N) is equivalent to BC on
ATMOSTNVALUE([X1, . . . , Xn], N) and onATLEASTNVALUE([X1, . . . , Xn], N).

Proof: Suppose the ATMOSTNVALUE and ATLEASTNVALUE constraints are BC.
The ATMOSTNVALUE constraint guarantees thatcard↓(X) ≤ min(N) and the
ATLEASTNVALUE constraint guarantees thatcard↑(X) ≥ max(N). Therefore,
dom(N) ∈ [card↓(X), card↑(X)]. By Lemma 1, the variableN is bound consistent.

Consider a variable/bound value pairXi = b. Let (Sb
least, p1) be a bound sup-

port ofXi = b in the ATLEASTNVALUE constraint and(Sb
most, p2) be a bound sup-

port of Xi = b in the ATMOSTNVALUE constraint. We havecard(Sb
least) ≥ p1

and card(Sb
most) ≤ p2 by definition of ATLEASTNVALUE and ATMOSTNVALUE.

Consider the sequenceSb
least = Sb

0, S
b
1, . . . , S

b
n = Sb

most whereSb
k+1 is the same

asSb
k except thatXk+1 has been assigned its value inSb

most instead of its value in
Sb
least. |card(S

b
k+1) − card(Sb

k)| ≤ 1 because they only differ onXk+1. Hence,
there existsk ∈ 1..n with min(p1, p2) ≤ card(Sb

k) ≤ max(p1, p2). We know
that p1 and p2 belong torange(N) because they belong to bound supports. Thus,
card(Sb

k) ∈ range(N) and (Sb
k, card(S

b
k)) is a bound support forXi = b on

NVALUE([X1, . . . , Xn], N). ✷
When enforcing domain consistency, Bessiereet al. [13] noted that decompos-

ing the NVALUE constraint into ATMOSTNVALUE and ATLEASTNVALUE constraints



does hinder propagation, but only whendom(N) contains justcard↓(X) andcard↑(X)
and there is a gap in the domain in-between (see Theorem 1 in [13] and the discussion
that follows). When enforcing BC, any such gap in the domain forN is ignored.

4 ATMOSTNVALUE constraint

We now give a decomposition for the ATMOSTNVALUE constraint which does not hin-
der bound consistency propagation. To decompose the ATMOSTNVALUE constraint,
we introduce 0/1 variables,Ailu to represent whetherXi uses a value in the interval
[l, u], and “pyramid” variables,Mlu with domains[0,min (u− l + 1, n)] which count
the number of values taken inside the interval[l, u]. To constrain these introduced vari-
ables, we post the following constraints:

Ailu = 1 ⇐⇒ Xi ∈ [l, u] ∀ 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d (4)

Ailu ≤Mlu ∀ 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d (5)

M1u = M1k +M(k+1)u ∀ 1 ≤ k < u ≤ d (6)

M1d ≤ N (7)

Running Example. Consider the decomposition of anATMOSTNVALUE constraint
over the following variables and values:

1 2 3 4 5
X1 ∗ ∗ ∗ ∗
X2 ∗
X3 ∗ ∗ ∗
X4 ∗
X5 ∗ ∗
N ∗ ∗

Observe that we consider that value 5 forN has already been pruned by
ATLEASTNVALUE, as will be shown in next sections. Bound consistency reasoning
on the decomposition will make the following inferences. AsX2 = 2, from (4) we
get A222 = 1. Hence by(5), M22 = 1. Similarly, asX4 = 4, we getA444 = 1
andM44 = 1. NowN ∈ {1, 2}. By (7) and (6), M15 ≤ N , M15 = M14 + M55,
M14 = M13 +M44, M13 = M12 +M33, M12 = M11 +M22. SinceM22 = M44 = 1,
we deduce thatN > 1 and henceN = 2. This givesM11 = M33 = M55 = 0. By (5),
A111 = A133 = A155 = A533 = 0. Finally, from(4), we getX1 = 2 andX5 = 3. This
gives us bound consistent domains for theATMOSTNVALUE constraint.

We now prove that this decomposition does not hinder propagation in general.

Theorem 3 BC on constraints (4) to (7) is equivalent to BC onATMOSTNVALUE

([X1, . . . , Xn], N), and takesO(nd3) time to enforce down the branch of the search
tree.

Proof: First note that changing the domains of theX variables cannot affect the upper
bound ofN by the ATMOSTNVALUE constraint and, conversely, changing the lower
bound ofN cannot affect the domains of theX variables.



LetY = {Xp1
, . . . , Xpk

} be a maximum cardinality subset of variables ofX whose
ranges are pairwise disjoint (i.e.,range(Xpi

) ∩ range(Xpj
) = ∅, ∀i, j ∈ 1..k, i 6= j).

Let IY = {[bi, ci] | bi = min(Xpi
), ci = max(Xpi

), Xpi
∈ Y } be the corresponding

ordered set of disjoint ranges of the variables inY . It has been shown in [9] that|Y | =
card↓(X).

Consider the interval[bi, ci] ∈ IY . Constraints (5) ensure that the variablesMbici

i = [1, . . . , k] are greater than or equal to1 and constraints (6) ensure that the vari-
able M1d is greater than or equal to the sum of lower bounds of variables Mbici ,
i = [1, . . . , k], because intervals[bi, ci] are disjoint. Therefore, the variableN is greater
than or equal tocard↓(X) and it is bound consistent.

We show that whenN is BC anddom(N) 6= {card↓(X)}, all X variables areBC.
Take any assignmentS ∈ ΠXi∈Xrange(Xi) such thatcard(S) = card↓(X). Let
S[Xi ← b] be the assignmentS where the value ofXi in S has been replaced byb, one
of the bounds ofXi. We know thatcard(S[Xi ← b]) ∈ [card(S)− 1, card(S) + 1] =
[card↓(X)− 1, card↓(X) + 1] because only one variable has been flipped. Hence, any
assignment(S, p) with p ≥ card↓(X) + 1 is a bound support.dom(N) necessarily
contains such a valuep by assumption.

The only case when pruning might occur is if the variableN is ground and
card↓(X) = N . Constraints (6) imply thatM1d equals the sum of variablesM1,b1−1+
Mb1,c1 +Mc1+1,b2−1 . . .+MbN ,cN +McN+1,d. The lower bound of the variableMci,bi

is greater than one and there are|Y | = card↓(X) = N of these intervals. Therefore, by
constraint (7), the upper bound of variablesMci−1+1,bi−1 that correspond to intervals
outside the setIY are forced to zero.

There areO(nd2) constraints (4) and constraints (5) that can be wokenO(d) times
down the branch of the search tree. Each requiresO(1) time for a total ofO(nd3) down
the branch. There areO(d2) constraints (6) which can be wokenO(n) times down the
branch and each invocation takesO(1) time. This gives a total ofO(nd2). The final
complexity down the branch of the search tree is thereforeO(nd3). ✷

The proof of theorem 3 also provides the corollary that enforcing range on con-
sistency on constraints 4 enforces range consistency on ATMOSTNVALUE. Note that
theorem 3 shows that the BC propagator of ATMOSTNVALUE [12] is not algorithmi-
cally global with respect to time, as BC can be achieved with adecomposition with
comparable time complexity. On the other hand, theO(nd2) space complexity of this
decomposition suggests that it is algorithmically global with respect to space. Of course,
we only provide upper bounds here, so it may be that ATMOSTNVALUE is not algo-
rithmically global with respect to either time or space.

5 Faster decompositions

We can improve how the solver handles this decomposition of the ATMOSTNVALUE

constraint by adding implied constraints and by implementing specialized propagators.
Our first improvement is to add an implied constraint and enforce BC on it:

M1d =

d∑

i=1

Mii (8)



This does not change the asymptotic complexity of reasoningwith the decomposition,
nor does it improve the level of propagation achieved. However, we have found that the
fixed point of propagation is reached quicker in practice with such an implied constraint.

Our second improvement decreases the asymptotic complexity of enforcing BC on
the decomposition of Section 4. The complexity is dominatedby reasoning with con-
straints (4) which channel fromXi to Ailu and thence ontoMlu (through constraints
(5)). If constraints (4) are not woken uselessly, enforcingBC costsO(1) per constraint
down the branch. Unfortunately, existing solvers wake up such constraints as soon as a
bound is modified, thus giving a cost inO(d). We therefore implemented a specialized
propagator to channel betweenXi andMlu efficiently. To be more precise, we remove
theO(nd2) variablesAilu and replace them withO(nd) Boolean variablesZij . We
then add the following constraints

Zij = 1 ⇐⇒ Xi ≤ j 1 ≤ j ≤ d (9)

Zi(l−1) = 1 ∨ Ziu = 0 ∨Mlu > 0 1 ≤ l ≤ u ≤ d, 1 ≤ i ≤ n (10)

These constraints are enough to channel changes in the bounds of theX variables
toMlu. There areO(nd) constraints (9), each of which can be propagated in timeO(d)
over a branch, for a total ofO(nd2). There areO(nd2) clausal constraints (10) and each
of them can be made BC in timeO(1) down a branch of the search tree, for a total cost
of O(nd2). Since channeling dominates the asymptotic complexity of the entire decom-
position of Section 4, this improves the complexity of this decomposition toO(nd2).
This is similar to the technique used in [5] to improve the asymptotic complexity of the
decomposition of the ALL -DIFFERENTconstraint.

Our third improvement is to enforce stronger pruning by observing that when
Mlu = 0, we can remove the interval[l, u] from all variables, regardless of whether
this modifies their bounds. This corresponds to enforcing RCon constraints (4). Inter-
estingly, this is sufficient to achieve RC on the ATMOSTNVALUE constraint. Unfortu-
nately, constraints (10) cannot achieve this pruning and using constraints (4) increases
the complexity of the decomposition back toO(nd3). Instead we extend the decompo-
sition withO(d log d) Boolean variablesBil(l+2k) ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ l ≤ d, 0 ≤
k ≤ ⌊log d⌋. The following constraint ensures thatBijj = 1 ⇐⇒ Xi = j.

DOMAIN BITMAP(Xi, [Bi11, . . . , Bidd]) (11)

Clearly we can enforce RC on this constraint in timeO(d) over a branch, andO(nd)
for all variablesXi. We can then use the following clausal constraints to channel from
variablesMlu to these variables and on to theX variables. These constraints are posted
for every1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d, 1 ≤ j ≤ d and integersk such that0 ≤ k ≤
⌊log d⌋:

Bij(j+2k+1−1) = 1 ∨Bij(j+2k−1) = 0 (12)

Bij(j+2k+1−1) = 1 ∨Bi(j+2k)(j+2k+1−1) = 0 (13)

Mlu 6= 0 ∨Bil(l+2k−1) = 0 2k ≤ u− l + 1 < 2k+1 (14)

Mlu 6= 0 ∨Bi(u−2k+1)u = 0 2k ≤ u− l + 1 < 2k+1 (15)



The variableBil(l+2k−1), similarly to the variablesAlu, is true whenXi ∈ [l, l +

2k−1], but instead of having one such variable for every interval,we only have them for
intervals whose length is a power of two. WhenMlu = 0, with 2k ≤ u− l+1 < 2k+1,
the constraints (14)–(15) set to 0 theB variables that correspond to the two intervals of
length2k that start atl and finish atu, respectively. In turn, the constraints (12)–(13)
set to 0 theB variables that correspond to intervals of length2k−1, all the way down to
intervals of size 1. These trigger the constraints (11), so all values in the interval[l, u]
are removed from the domains of all variables.

Example. SupposeX1 ∈ [5, 9]. Then, by(9),Z14 = 0,Z19 = 1 and by(10),M59 > 0.
Conversely, supposeM59 = 0 andX1 ∈ [1, 10]. Then, by (14)–(15), we getB158 = 0
andB169 = 0. FromB158 = 0 and (12)–(13) we getB156 = 0, B178 = 0, B155 =
B166 = B177 = B188 = 0, and by(11), the interval[5, 8] is pruned fromX1. Similarly,
B169 = 0 causes the interval[6, 9] to be removed fromX1, soX1 ∈ [1, 4] ∪ {10}.

Note that RC can be enforced on each of these constraints in constant time over a
branch. There existO(nd log d) of the constraints (12)–(13) andO(nd2) of the con-
straints (14)–(15), so the total time to propagate them all down a branch isO(nd2).

6 ATLEASTNVALUE constraint

There is a similar decomposition for the ATLEASTNVALUE constraint. We introduce
0/1 variables,Ailu to represent whetherXi uses a value in the interval[l, u], and integer
variables,Elu with domains[0, n] to count the number of times values in[l, u] arere-
used, that is, how much the number of variables taking valuesin [l, u] exceeds the
numberu− l+1 of values in[l, u]. To constrain these introduced variables, we post the
following constraints:

Ailu = 1 ⇐⇒ Xi ∈ [l, u] ∀ 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d (16)

Elu ≥
∑n

i=1 Ailu − (u− l+ 1) ∀ 1 ≤ l ≤ u ≤ d (17)

E1u = E1k + E(k+1)u ∀ 1 ≤ k < u ≤ d (18)

N ≤ n− E1d (19)

Running Example. Consider the decomposition of anATLEASTNVALUE constraint
over the following variables and values:

1 2 3 4 5
X1 ∗ ∗ ∗ ∗
X2 ∗
X3 ∗ ∗ ∗
X4 ∗
X5 ∗ ∗
N ∗ ∗ ∗

Bound consistency reasoning on the decomposition will makethe following inferences.
Asdom(Xi) ⊆ [2, 4] for i ∈ 2..5, from (16) we getAi24 = 1 for i ∈ 2..5. Hence, by
(17),E24 ≥ 1. By(18),E15 = E14+E55,E14 = E11+E24. SinceE24 ≥ 1 we deduce
thatE15 ≥ 1. Finally, from (19) and the fact thatn = 5, we getN ≤ 4. This gives us
bound consistent domains for theATLEASTNVALUE constraint.



We now prove that this decomposition does not hinder propagation in general.

Theorem 4 BC on the constraints(16) to (19) is equivalent to BC on
ATLEASTNVALUE ([X1, . . . , Xn], N), and takesO(nd3) time to enforce down the
branch of the search tree.

Proof: First note that changing the domains of theX variables cannot affect the lower
bound ofN by the ATLEASTNVALUE constraint and, conversely, changing the upper
bound ofN cannot affect the domains of theX variables.

It is known [12] thatcard↑(X) is equal to the size of a maximum matchingM in
the value graph of the constraint. SinceN ≤ n−E1d, we show that the lower bound of
E1d is equal ton−|M |.5 We first show that we can construct a matchingM(E) of size
n−min(E1d), then show that it is a maximum matching. The proof uses a partition of
the interval[1, d] into a set of maximal saturated intervalsI = {[bj, cj ]}, j = 1, . . . , k
such thatmin(Ebj ,cj) =

∑n

i=1 min(Aibjcj) − (cj − bj + 1) and a set of unsaturated
intervals{[bj, cj ]}such thatmin(Ebj ,cj) = 0.

Let I = {[bj, cj ] | j ∈ [1 . . . k]} be the ordered set of maximal intervals such
that min(Ebj ,cj ) =

∑n

i=1 min(Aibjcj ) − (cj − bj + 1). Note that the intervals in
I are disjoint otherwise intervals are not maximal. An interval [bi, ci] is smaller than
[bj , cj ] iff ci < bj. We denote the union of the firstj intervalsDj

I =
⋃j

i=1[bi, ci],
j = [1, . . . , k], p = |Dk

I | and the variables whose domain is inside one of intervalsI
XI = {Xpi

|dom(Xpi
) ⊆ Dk

I }.
Our construction of a matching uses two sets of variables,XI andX \XI . First, we

identify the cardinality of these two sets. Namely, we show that the size of the setXI is
p+min(E1,d) and the size of the setX \XI is n− (p+min(E1,d)).

IntervalsI are saturated therefore each value from these intervals aretaken by a
variable inXI . Therefore,XI has size at leastp. Moreover, there existmin(E1d)
additional variables that take values fromDk

I , because values from intervals be-
tween two consecutive intervals inI do not contribute to the lower bound of the
variableE by construction ofI. Therefore, the number of variables inDk

I is at
leastp + min(E1,d). Note that constraints (18) imply thatE1d equals the sum of
variablesE1,b1−1 + Eb1,c1 + Ec1+1,b2−1 . . . + Ebk,ck + Eck+1,d. As intervals inI
are disjoint then

∑k

i=1 min(Ebi,ci) = |XI | − p. If |XI | > p + min(E1,d) then∑k

i=1 min(Ebi,ci) > min(E1,d) and the lower bound of the variableE1d will be in-
creased. Hence,|XI | = p+min(E1,d).

Since all these intervals are saturated, we can construct a matchingMI of sizep
using the variables inXI . The size ofX \ XI is n − p − min(E1d). We show by
contradiction that we can construct a matchingMD−Dk

I
of sizen − p − min(E1d)

using the variables inX \XI and the valuesD −Dk
I .

Suppose such a matching does not exist. Then, there exists aninterval [b, c] such
that |(D \ Dk

I ) ∩ [b, c]| <
∑

i∈X\XI
min(Aibc), i.e., after consuming the values in

I with variables inXI , we are left with fewer values in[b, c] than variables whose
domain is contained in[b, c]. We denotep′ = |[b, c] ∩ Dk

I |, so thatp′ is the number of
values inside the interval[b, c] that are taken by variables inXI . The total number of

5 We assume thatE1d is not pruned by other constraints.



variables inside the interval[b, c] is greater than or equal to
∑n

i=1 min(Aibc). The total
number of variablesXI inside the interval[b, c] equals top′ + min(Eb,c). Therefore,∑

i∈X\XI
min(Aibc) ≤

∑n

i=1 min(Aibc) − p′ − min(Eb,c). On the other hand, the
number of values that are not taken by the variablesXI in the interval[b, c] is c −
b + 1 − p′. Therefore, we obtain the inequalityc − b + 1 − p′ <

∑n

i=1 min(Aibc) −
p′ − min(Eb,c) or min(Ebc) <

∑n

i=1 min(Aibc) − (c − b + 1). By construction of
I,

∑n

i=1 min(Aibc) − (c − b + 1) < min(Ebc), otherwise the intervals inI that are
subsets of[b, c] are not maximal. This leads to a contradiction, so we can construct a
matchingM(E) of sizen−min(E1d).

Now suppose thatM(E) is not a maximum matching. This means thatmin(E1d)
is overestimated by propagation on (16) and (19). SinceM(E) is not a maximum
matching, there exists an augmenting path ofM(E), that producesM ′, such that
|M ′| = |M(E)| + 1. This new matching covers all the values thatM(E) covers and
one additional valueq. We show thatq cannot belong to the interval[1, d].

The valueq cannot be in any interval inI, because all values in[bi, ci] ∈ I are used
by variables whose domain is contained in[bi, ci]. In addition,q cannot be in an interval
[b, c] between two consecutive intervals inI, because those intervals do not contribute
to the lower bound ofE1d. Thus,M ′ cannot cover more values thanM(E) and they
must have the same size, a contradiction.

We show that whenN is BC anddom(N) 6= {card↑(X)}, all X variables areBC.
Take any assignmentS ∈ ΠXi∈Xrange(Xi) such thatcard(S) = card↑(X). Let
S[Xi ← b] be the assignmentS where the value ofXi in S has been replaced byb, one
of the bounds ofXi. We know thatcard(S[Xi ← b]) ∈ [card(S)− 1, card(S) + 1] =
[card↑(X)− 1, card↑(X) + 1] because only one variable has been flipped. Hence, any
assignment(S, p) with p ≤ card↑(X) − 1 is a bound support.dom(N) necessarily
contains such a valuep by assumption.

We now show that ifN = card↑(X), enforcing BC on the constraints (16)–(19)
makes the variablesX BC with respect to the ATLEASTNVALUE constraint. We first
observe that in a bound support, variablesX must take the maximum number of dif-
ferent values becauseN = card↑(X). Hence, in a bound support, variablesX that are
not included in a saturated interval will take values outside any saturated interval they
overlap and they all take different values. We recall thatmin(E1d) = n − |M | =
n − card↑(X). Hence, by constraint (19),E1d = n − N . We recall the the size
of setXI equalsp + E1d. Constraints (18) imply thatE1d equals the sum of vari-
ablesE1,b1−1 +Eb1,c1 +Ec1+1,b2−1 . . .+Ebk,ck +Eck+1,d and

∑k

i=1 min(Ebi,ci) =
|XI | − p = min(E1d) = max(E1d). Hence, by constraints (18), the upper bounds of
all variablesEbi,ci that correspond to the saturated intervals are forced tomin(Ebi,ci).
Thus, by constraints (16) and (17), all variables inX \ XI have their bounds pruned
if they belong toDk

I . By constraints (18) again, the upper bounds of all variablesElu

that correspond to the unsaturated intervals are forced to take value 0, and all variables
El′u′ with [l′, u′] ⊆ [l, u] are forced to 0 as well. Thus, by constraints (16) and (17), all
variables inX \XI have their bounds pruned if they belong to a Hall interval of other
variables inX \XI . This is what BC on the ALL -DIFFERENTconstraint does [5].

There areO(nd2) constraints (16) that can be wokenO(d) times down the branch
of the search tree inO(1), so a total ofO(nd3) down the branch. There areO(d2)



constraints (17) which can be propagated in timeO(n) down the branch for aO(nd2).
There areO(d2) constraints (18) which can be wokenO(n) times each down the branch
for a total cost inO(n) time down the branch. Thus a total ofO(nd2). The final com-
plexity down the branch of the search tree is thereforeO(nd3). ✷

The complexity of enforcing BC on ATLEASTNVALUE can be improved toO(nd2)
in a way similar to that described in Section 5 and in [5]. As with ATMOSTNVALUE,
enforcing RC on constraints (16) enforces RC on ATLEASTNVALUE, but in this case
we cannot reduce the complexity belowO(nd3). Similarly to ATMOSTNVALUE, the-
orem 4 shows that the bound consistency propagator of ATLEASTNVALUE is not algo-
rithmically global with respect to time and provides evidence that it is algorithmically
global with respect to space.

7 Experimental results

As noted before, the main value of these decompositions is theoretical: demonstrating
that the bound consistency propagator of [12] for the NVALUE constraint can be sim-
ulated using a simple decomposition with comparable time complexity over a branch
of the search tree but greater space complexity. To see when this space complexity hits,
we performed some experiments. We used a benchmark problem,the dominating set of
the Queen’s graph used in previous studies of NVALUE [13] and ran experiments with
Ilog Solver 6.2 and Ilog CPLEX 9.1 on an Intel Xeon 4 CPU, 2.0 Ghz, 4Gb RAM. The
dominating set of the Queen’s graph problem is to put the minimum number of queens
on an×n chessboard, so that each square either contains a queen or isattacked by one.
This is equivalent to the dominating set problem of the Queen’s graph. Each vertex in
the Queen’s graph corresponds to a square of the chessboard and there exists an edge
between two vertices iff a queen from one square can attack a queen from the other
square. To model the problem, we use a variableXi for each square, and values from
1 to n2 and post a single ATMOSTNVALUE([X1, . . . , Xn2 ], N) constraint. The value
j belongs todom(Xi) iff there exists an edge(i, j) in the Queen’s graph orj = i. For
n ≤ 120, all minimum dominating sets for the Queen’s problem are either of size⌈n/2⌉
or ⌈n/2 + 1⌉ [15]. We therefore only solved instances for these two values ofN .

We compare our decomposition with the simple decompositionof the
ATMOSTNVALUE constraint in Ilog Solver and Ilog CPLEX solvers. The simplede-
composition is the one described in Section 3.1 except that in constraint (3), we replace
“=” by “≤”. We denote this decompositionOccs andOccsCPLEX in Ilog Solver and
CPLEX, respectively. To encode this decomposition into an integer linear program, we
introduce literalsbij , i, j ∈ [1, n2] and use a direct encoding withbij for the truth of
Xi = j and channeling inequalities1 − bij + Bj ≥ 1, i, j ∈ [1, n2]. We use the di-
rect encoding of variables domains to avoid using logic constraints, like disjunction and
implication constraints in CPLEX. The default transformation of logic constraints in
CPLEX appears to generate large ILP models and this slows down the search.

The BC decomposition is described in Section 4, which we callPyramidBC and
PyramidCPLEX

BC in Ilog Solver and CPLEX, respectively. In Ilog Solver, as explained
in Section 5, we channel the variablesXi directly to the pyramid variablesMlu to
avoid introducing many auxiliary variablesAilu and we add the redundant constraint



∑n2

i=1 Mii = M1,n2 to the decomposition to speed up the propagation across the pyra-
mid. We re-implemented the ternary sum constraint in Ilog for a 30% speedup.

To encode the BC decomposition into an integer linear program, we use the linear
encoding of variables domains [16]. We introduce literalscij for the truth ofXi ≤ j,
and the channeling inequalities of the formci(l−1) + 1 − ciu + Mlu ≥ 1. We again

add the redundant constraint
∑n2

i=1 Mii = M1,n2 . Finally, we post constraints (6) as
lazy constraints in CLPEX. Lazy constraints are constraints that are not expected to
be violated when they are omitted. These constraints are nottaken into account in the
relaxation of the problem and are only included when they violate an integral solution.

Table 1. Backtracks and rumtime (in seconds) to solve the dominatingset problem for the
Queen’s graph.

n N Occs PyramidBC OccsCPLEX PyramidCPLEX

BC

backtracks timebacktracks timebacktracks timebacktracks time
5 3 34 0.01 7 0.00 1 0.05 3 0.4
6 3 540 0.16 118 0.03 2 0.16 183 9.6
7 4 195,212 84.50 83,73115.49 130,010 1802.49 63 15.8
8 5 390,717 255.64 256,582 58.42 24,588 585.07 30 41.28

Results of our experiments are presented in Table 1. Our BC decomposition per-
forms better than theOccs decomposition, both in runtime and in number of back-
tracks needed by Ilog Solver or CPLEX. CPLEX is slower per node than Ilog Solver.
However, CPLEX usually requires fewer backtracks comparedto ILOG Solver. In-
terestingly CPLEX performs well with the BC decomposition.The time to explore
each node is large, reflecting the size of decomposition, butthe number of search
nodes explored is small. We conjecture that integer linear programming methods
like CPLEX will perform in a similar way with other decompositions of global con-
straints which do not hinder propagation (e.g. the decompositions we have proposed for
ALL -DIFFERENT and GCC). Finally, the best results here are comparable withthose
for the ATMOSTNVALUE bounds consistency propagator in [13].

8 Other related work

Bessiereet al.consider a number of different methods to compute a lower bound on the
number of values used by a set of variables [13]. One method isbased on a simple linear
relaxation of the minimum hitting set problem. This gives a propagation algorithm that
achieves a level of consistency strictly stronger than bound consistency on the NVALUE

constraint. Cheaper approximations are also proposed based on greedy heuristics and
an approximation for the independence number of the interval graph due to Turán. De-
compositions have been given for a number of other global constraints. For example,
Beldiceanuet al. identify conditions under which global constraints specified as au-
tomata can be decomposed into signature and transition constraints without hindering



propagation [17]. As a second example, many global constraints can be decomposed
using ROOTS and RANGE which can themselves be propagated effectively using sim-
ple decompositions [18]. As a third example, the REGULAR and CFG constraints can be
decomposed without hindering propagation [19, 20]. As a fourth example, decomposi-
tions of the SEQUENCEconstraint have been shown to be effective [21]. Most recently,
we demonstrated that the ALL -DIFFERENT and GCC constraint can be decomposed
into simple primitive constraints without hindering boundconsistency propagation [5].
These decompositions also introduced variables to count variables using values in an
interval. For example, the decomposition of ALL -DIFFERENT ensures that no interval
has more variables taking values in the interval than the number of values in the inter-
val. Using a circuit complexity lower bound, we also proved that there is no polynomial
sized SAT decomposition of the ALL -DIFFERENTconstraint (and therefore of its gen-
eralizations like NVALUE) on which unit propagation achieves domain consistency [6].
Our use of “pyramid” variables is similar to the use of the “partial sums” variables in the
encoding of the SEQUENCEconstraint in [21]. This is related to the cumulative sums
computed in [22].

9 Conclusions

We have studied a number of decompositions of the NVALUE constraint. We have
shown that a simple decomposition can simulate the bound consistency propagator for
NVALUE [12] with comparable time complexity but with a much greaterspace com-
plexity. This supports the conclusion that the benefit of a global propagator may of-
ten not be in saving time but in saving space. Our other theoretical contribution is to
show the first range consistency algorithm for NVALUE, that runs inO(nd3) time and
O(nd2) space. These results are largely interesting from a theoretical perspective. They
help us understand the globality of global constraints. They highlight that saving space
may be one of the important advantages provided by propagators for global constraints.
We have seen that the space complexity of decompositions of many propagators equals
the worst case time complexity (e.g. for the ALL -DIFFERENT, GCC, AMONG, LEX,
REGULAR, CFG and SEQUENCE constraints). For global constraints like REGULAR,
the space complexity of the decompositions does not appear to be that problematic.
However, for global constraints like NVALUE, the space complexity of the decompo-
sitions is onerous. This space complexity seems hard to avoid. For example, consider
encodings into satisfiability and unit propagation as our inference method. As unit prop-
agation is linear in time in the size of the encoding, it is somewhat inevitable that the
size of any encoding is the same as the worst-case time complexity of any propagator
that is being simulated. One other benefit of these decompositions is that they help us
explore the interface between constraint and integer linear programming. For exam-
ple, we saw that an integer programming solver performed relatively well with these
decompositions.
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