N

N
N

HAL

open science

Decomposition of the NValue Constraint

Christian Bessiere, George Katsirelos, Nina Narodytska, Claude-Guy
Quimper, Toby Walsh

» To cite this version:

Christian Bessiere, George Katsirelos, Nina Narodytska, Claude-Guy Quimper, Toby Walsh. Decom-
position of the NValue Constraint. CP: Principles and Practice of Constraint Programming, Sep
2010, St. Andrews, Scotland, United Kingdom. pp.114-128, 10.1007/978-3-642-15396-9 12 . lirmm-

00558048

HAL Id: lirmm-00558048
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00558048
Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-00558048
https://hal.archives-ouvertes.fr

arXiv:1007.0603v1 [cs.Al] 5Jul 2010

Decomposition of the NVALUE constraint

Christian Bessiere George Katsirelds Nina Narodytsk3, Claude-Guy Quimpér
and Toby Walsh

1 LIRMM, CNRS, Montpellier, email: bessiere@lirmm.fr
2 CRIL-CNRS, Lens, email: gkatsi@gmail.com
3 NICTA and University of NSW, Sydney, Australia, email:
{nina.narodytska,toby.wald@nicta.com.au
4 Université Laval, email: cquimper@gmail.com

Abstract. We study decompositions of the global NMUE constraint. Our main
contribution is theoretical: we show that there are propagafor global con-
straints like N\ALUE which decomposition can simulate with the same time com-
plexity but with a much greater space complexity. This sstgéhat the benefit
of a global propagator may often not be in saving time but inngaspace. Our
other theoretical contribution is to show for the first tinhattrange consistency
can be enforced on NALUE with the same worst-case time complexity as bound
consistency. Finally, the decompositions we study areilseadcoded as linear
inequalities. We are therefore able to use them in integeali programs.

1 Introduction

Global constraints are one of the distinguishing featufesoastraint programming.
They capture common modelling patterns and have asso@éitiei@nt propagators for
pruning the search space. For exampleL ADIFFERENT is one of the best known
global constraints that has proven useful in the modellindg solving of many real
world problems. A number of efficient algorithms have beeonppsed to propa-
gate the AL-DIFFERENT constraint (e.g. [1-3]). Whilst there is little debate that
ALL-DIFFERENT s a global constraint, the formal definition of a global doaist
is more difficult to pin down. One property often associatéthglobal constraints is
that they cannot be decomposed into simpler constraintowitimpacting either the
pruning or the efficiency of propagation [4]. Recently pegg has been made on the
theoretical problem of understanding what is and isn’t &gl@onstraint. In particular,
whilst a bound consistency propagator for theLADIFFERENT constraint can be ef-
fectively simulated with a simple decomposition [5], citccomplexity lower bounds
have been used to prove that a domain consistency propdgatAiL -DIFFERENT
cannot be polynomially simulated by a simple decomposii&jn

In this paper, we turn to a strict generalization of theLADIFFERENT constraint.
NVALUE counts the number of values used by a set of variables; the NFFERENT
constraint ensures that this count equals the cardindlitienset. From a theoretical
perspective, the NM.UE constraint is significantly more difficult to propagate thihe
ALL-DIFFERENT constraint since enforcing domain consistency is knownetdNP-
hard [7]. Moreover, as NM_UE is a generalization of AL -DIFFERENT, there exists no
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polynomial sized decomposition of MYUE which achieves domain consistency [6].
Nevertheless, we show that decomposition can simulatedlya@mial time algorithm
for enforcing bound consistency on MNMUE but with a significant space complexity.
We also prove, for the first time, that range consistency omINM can be enforced
in the same worst case time complexity as bound consist@iniy.contrasts with the
ALL-DIFFERENT constraint where range consistency takés?) time [2] but bound
consistency takes jus)(n log n) time [3].

The main value of these decompositions is theoretical asghace complexity is
equal to their worst case time complexity. When domainsangel this space complex-
ity may be prohibitive. In the conclusion, we argue why it eagps somewhat inevitable
that the space complexity is equal to the worst case time ity These results sug-
gest new insight into what is and isn’t a global constraingl@bal constraint either
provides more pruning than any polynomial sized decomioositr provides the same
pruning but with lower space complexity. There are sevettatiotheoretical reasons
why the decompositions studied here are interesting.,Rirg technically interest-
ing that a complex propagation algorithm like the bound &iaacy propagator for
NVALUE can be simulated by a simple decomposition. Second, thesergmsitions
can be readily encoded as linear inequalities and usedeaardiprograms. In fact, we
will report experiments using both constraint and integesdr programming with these
decompositions. Since global constraints are one of theitiyentiators between con-
straint and integer programming, these decompositionggeas with another tool to
explore the interface between constraint and integer progring. Third, the decompo-
sitions give insights into how we might add nogood learnmg NVALUE propagator.

2 Background

A constraint satisfaction problem (CSP) consists of a setadgBbles, each with a fi-
nite domain of values, and a set of constraints. We use ¢sjfitavariables and lower
case for values. We assume values are taken from the sef.We write dom (X))

for the domain of possible values féf;, min(X;) for the smallest value idom(X;),
maz(X;) for the greatest, ancunge(X;) for the intervallmin(X;), maz(X;)]. Con-
straint solvers typically use backtracking search to engotbe space of partial assign-
ments. After each assignment, propagation algorithmsepthe search space by en-
forcing local consistency properties like domain, rangdaund consistency. A con-
straint isdomain consistenDC) iff when a variable is assigned any of the values in
its domain, there exist compatible values in the domaindldhe other variables of
the constraint. Such an assignment is calletigport A CSP is domain consistent iff
every constraint is domain consistent. A constrairdisentailediff there is no possi-
ble support. A propagator which enforces domain consigtefiitdetect disentailment,
but a propagator that detects just disentailment will néve® domain consistency. A
constraint igange consistentRC) iff, when a variable is assigned any of the values in
its domain, there exist compatible values between the minirand maximum domain
value for all the other variables of the constraint. Suchssigment is called lbound
support A constraint isbound consistentBC) iff the minimum and maximum value
of every variable of the constraint belong to a bound suppoi€SP is bound con-



sistent iff every constraint is bound consistent. We coraplu¢ total amortized cost of
enforcing a local consistency down an entire branch of thecbgree. This captures the
incremental cost of propagation. Finally, we will assumat th propagator is invoked
at most once for each domain change and that the solver usmstiamal propagator
to enforce BC on sum and channeling constraints. Such asgmaold for modern
solvers like Gecode and llog Solver. However, we make nomagtian about the order
of invocation of the constraints in a decomposition. Theargpunds we give hold
regardlessof the order in which constraints are processed.

A global constraintis one in which the arity of the constraintis a parameter. A
decompositiorof a global constraint is a CSP involving thevariables of the global
constraint (and possibly others), involving only consttaiwith fixed arity (no global
constraint) or constraints that are themselves decomfmsalth that the size of the
CSP is polynomial in the sum of the sizes of the domains ofitbdginal variables, and
such that the projection of its solutions on thaseariables corresponds to the solutions
of the global constraint. A useful notion is algorithmic lgédity [4]. Informally, given
a local consistency property, a global constraint is atorically global if there is no
decomposition on which this local consistency is achieveitié same time and space
complexity. We suggest here two refinements of this notioalgbrithmic globality.
First, we will separate the space and time complexity. Thajiven a local consistency
property, a global constraint is algorithmically globalthvrespect to time (space) if
there is no decomposition on which this local consisten@achieved in the same time
(space) complexity. Second, unlike [4], we consider deamsitipns that may introduce
new variables. Our results will show that, when we introdnee variables, NXLUE
is not algorithmically global with respect to time batglobal with respect to space.

3 NVALUE constraint

Pachet and Roy first proposed the MNWE constraint [8]. Formally
NVALUE([X1,...,X,],N) ensures thatv = [{X; | 1 < ¢ < n}|. This gener-
alizes several other global constraints includingLADIFFERENT (which ensures
that the number of values taken by a set of variables equalsatdinality of the set)
and NoT-ALL-EQUAL (which ensures a set of variables take more than one value).
Enforcing domain consistency on the NMJE constraint is NP-hard (Theorem 3 in
[7]) even whenN is fixed (Theorem 2 in [9]). In fact, just computing the lowerund
on N is NP-hard (Theorem 3 in [10]). In addition, enforcing domaonsistency on
the NVALUE constraint is not fixed parameter tractable since iWWiR]-complete [11].
However, several polynomial propagation algorithms hasentproposed that achieve
bound consistency and some closely related levels of laradistency [12, 9, 13].

3.1 Simpledecomposition

Global constraints can often be decomposed into simplere memitive and small ar-
ity constraints. For example, theLA-DIFFERENT constraint can be decomposed into
a quadratic number of binary inequalities. However, suagod®osition often hinders
propagation and can have a significant impact on the solabilgy to find solutions



[14]. We can decompose the MMUE constraint by introducing 0/1 variables to repre-
sent which values are used and posting a sum constraint sa ititieoduced variables:

Xi=j—Bj=1 Vi<i<n,1<j<d (1)
szlﬁvzl:le:] Vi<j<d (2)
Yo B =N 3)

Note that constraint 3 is not a fixed arity constraint, butitseif be decomposed to
ternary sums without hindering bound propagation. Unfaately, this simple decom-
position hinders propagation. It can be BC whereas BC ondhesponding N¥LUE
constraint detects disentailment.

Theorem 1 BC onNVALUE is stronger than BC on its decomposition into (1) to (3).

Proof: Clearly BC on N\ALUE is at least as strong as BC on the decomposition. To
show strictness, considéf; € {1,2}, X» € {3,4}, B; € {0,1}for1 < j < 4, and
N = 1. Constraints (1) to (3) are BC. However, the correspondiNgINJE constraint
has no bound support and thus enforcing BC on it detects tditment.O

We observe that enforcing DC instead of BC on constraint®((@3) in the example
of the proof above still does not prune any value. To decompd¥aLUE without
hindering propagation, we must look to more complex decasitions.

3.2 Decomposition into ATMOSTNVALUE and ATLEASTNVALUE

Our first step in decomposing the MMJE constraint is to split it into
two parts: an AMOSTNVALUE and an ALEASTNVALUE constraint.
ATLEASTNVALUE([X1,...,X,,],N) holds iff N < |{X;|1 < i < n}| whilst
ATMOSTNVALUE([ X7, ..., X,], N) holds iff |{X;]1 <i < n}| < N.

Running Example. Consider aNVALUE constraint over the following variables and
values:

Suppose we decompose this intofarM 0STNVALUE and anATLEASTNVALUE con-
straint. Consider theATLEASTNVALUE constraint. The 5 variables can take at most
4 different values becausé,, X3, X4, and X5 can only take valueg, 3 and4. Hence,
there is no bound support fav = 5. Enforcing BC on theATLEASTNVALUE con-
straint therefore prune&/ = 5. Consider now th\TM OSTNVALUE constraint. Since

X, and X, guarantee that we take at least 2 different values, there isqund support

for N = 1. Hence enforcing BC on aATMOSTNVALUE constraint prunesV = 1. If

X, =1,30r5,0r X5 = 3then any complete assignment uses at least 3 different val-
ues. Hence there is also no bound support for these assiganimning these values



gives bound consistent domains for the origiNAJALUE constraint:

12345

To show that decomposing the MMUE constraint into these two parts does not
hinder propagation in general, we will use the following tam Given an assignment
S of values,card(S) denotes the number of distinct valuesSn Given a vector of
variablesX = X ... X, cardy(X) = maz{card(S) | S € IIx,exrange(X;)} and
cardy (X) = min{card(S) | S € IIx,cxrange(X;)}.

Lemma 1 (adapted from [13]) ConsiderNVALUE([X1,...,X,], N). If dom(N)
[card) (X), cardy(X)], then the bounds @¥ have bound supports.

N

Proof: Let S, be an assignment oX in ITx,cxrange(X;) with card(Spin) =
cardy(X) andSy,q., be an assignment of in ITx,cxrange(X;) with card(Smaz) =
cardy(X). Consider the sequenés,;,, = So, S1, ..., Sn = Smas WhereSy,, is the
same asH;, exceptthatX; has been assigned its valuedp,,.. instead of its value in
Smin- |card(Sk+1) — card(Sk)| < 1 because they only differ ol ;. Hence, for any
p € [card (X)), card;(X)], there exist& € 1..n with card(Sy) = p. Thus,(Sk,p) isa
bound support fop on NVALUE([X}, ..., X,], N). Thereforemin(N) andmaxz(N)
have a bound suppofil

We now prove that decomposing the NMJUE constraint into AMOSTNVALUE
and ATLEASTNVALUE constraints does not hinder pruning when enforcing BC.

Theorem2 BC on NVALUE([Xq,...,X,],N) is equivalent to BC on
ATMOSTNVALUE([X71,. .., X,], N) and onATLEASTNVALUE([ X}, ..., X,], N).

Proof: Suppose the AMOSTNVALUE and ATLEASTNVALUE constraints are BC.
The ATMOSTNVALUE constraint guarantees thatrd, (X) < min(N) and the
ATLEASTNVALUE constraint guarantees thatird;(X) > maxz(N). Therefore,
dom(N) € [card;(X), card;(X)]. By Lemma 1, the variabl&/ is bound consistent.

Consider a variable/bound value pai; = b. Let (S}, .,.p1) be a bound sup-
port of X; = b in the ATLEASTNVALUE constraint andS?, .., p2) be a bound sup-
port of X; = b in the ATMOSTNVALUE constraint. We haveard(S?.,,.,) > p1
and card(S%,,.;) < po by definition of AALEASTNVALUE and ATMOSTNVALUE.
Consider the sequenc#,,,, = Sb, Sb,...,5) = St whereS?P. | is the same
asS? except thatX,1 has been assigned its value s, ., instead of its value in
S st lcard(Sp, ) — card(S?)| < 1 because they only differ oi}1. Hence,
there existsk € 1..n with min(p1,p2) < card(S2) < max(p1,p2). We know
that p; and p» belong torange(N) because they belong to bound supports. Thus,
card(Sp) € range(N) and (Sp,card(S?)) is a bound support foX; = b on
NVALUE([X1,...,X,],N).O

When enforcing domain consistency, Bessieteal. [13] noted that decompos-
ing the NVALUE constraintinto AMOSTNVALUE and ATLEASTNVALUE constraints



does hinder propagation, but only whénn (') contains justard (X) andecard; (X)
and there is a gap in the domain in-between (see Theorem Bjmafil the discussion
that follows). When enforcing BC, any such gap in the domain¥ is ignored.

4 ATMOSTNVALUE constraint

We now give a decomposition for therM 0STNVALUE constraint which does not hin-
der bound consistency propagation. To decompose tHd @s TNVALUE constraint,
we introduce 0/1 variables);;, to represent whetheX; uses a value in the interval
[, u], and “pyramid” variables)/;,, with domains0, min (v — I + 1, n)] which count
the number of values taken inside the inteffyal]. To constrain these introduced vari-
ables, we post the following constraints:

A =1 = X, €ll,u] V1<i<n1<I<u<d (4)
Ag < My, Vi<i<nl<li<u<d (5)
My = My + Mgpryy V1<k<u<d 6)
Mg <N (1)

Running Example. Consider the decomposition of &TrMoOSTNVALUE constraint
over the following variables and values:

Observe that we consider that value 5 f@¥ has already been pruned by
ATLEASTNVALUE, as will be shown in next sections. Bound consistency réagon
on the decomposition will make the following inferences.XAs= 2, from (4) we
get Azoo = 1. Hence by(5), M2y = 1. Similarly, asX, = 4, we getdyy = 1
and My = 1. NowN € {1,2} By (7) and (6), M5 < N, Mys = My + Mss,
Miy = Mg+ Myy, M3 = Mis + Mss, M5 = Mq1 + Mos. SinceMos = Myy =1,
we deduce thalv > 1 and henceV = 2. This givesM; = M33 = M55 = 0. By (5),
Ay = A133 = A155 = A533 =0. Fina”y, from(4), we getX1 =2 andX5 = 3. This
gives us bound consistent domains for 81/ 0STNVALUE constraint.

We now prove that this decomposition does not hinder praj@agan general.

Theorem 3 BC on constraints (4) to (7) is equivalent to BC &iTMOSTNVALUE
([X1,...,Xy,], N), and takesO(nd?) time to enforce down the branch of the search
tree.

Proof: First note that changing the domains of tkievariables cannot affect the upper
bound of N by the AAMOSTNVALUE constraint and, conversely, changing the lower
bound of N cannot affect the domains of tBé variables.



LetY = {X,,,..., X,,} be amaximum cardinality subset of variablesoivhose
ranges are pairwise disjoint (i.egnge(X,,) Nrange(X,,) = 0,Vi,j € 1.k, i # j).
LetIy = {[bi, c;] | bi = min(Xy,), ¢ = maz(X,,), X,, € Y} be the corresponding
ordered set of disjoint ranges of the variable¥inlt has been shown in [9] th&Y'| =
cardy(X).

Consider the intervdb;, ¢;] € Iy. Constraints (5) ensure that the variahMds, .,

i = [1,...,k] are greater than or equal toand constraints (6) ensure that the vari-
able M, is greater than or equal to the sum of lower bounds of varsablg,.,,
i=1[1,..., k], because interval®;, ¢;] are disjoint. Therefore, the variab}éis greater
than or equal teard; (X) and it is bound consistent.

We show that whetV is BC anddom(N) # {card,(X)}, all X variables are3C.
Take any assignmerff € IIx,cxrange(X;) such thatcard(S) = card (X). Let
S[X; < b] be the assignmer where the value oX; in S has been replaced lbyone
of the bounds ofX;. We know thatard(S[X; < b]) € [card(S) — 1, card(S) + 1] =
[card, (X) — 1, card; (X )+ 1] because only one variable has been flipped. Hence, any
assignmentS, p) with p > card (X) + 1 is a bound supportlom(N) necessarily
contains such a valyeby assumption.

The only case when pruning might occur is if the variableis ground and
cardy(X) = N. Constraints (6) imply that/, ; equals the sum of variabléd; ;, 1 +
My, ey +Meys1,bp—1-- -+ Mpy.cn +Mey+1,4- The lower bound of the variable,, 5,
is greater than one and there &@ = card; (X) = N of these intervals. Therefore, by
constraint (7), the upper bound of variables, , 1,1 that correspond to intervals
outside the sely are forced to zero.

There areD(nd?) constraints (4) and constraints (5) that can be waRéd) times
down the branch of the search tree. Each requings time for a total ofO(nd?) down
the branch. There a@(d?) constraints (6) which can be wokénn) times down the
branch and each invocation tak@g1) time. This gives a total 0©)(nd?). The final
complexity down the branch of the search tree is thereft{red®). O

The proof of theorem 3 also provides the corollary that erifigy range on con-
sistency on constraints 4 enforces range consistencytdhdsSTNVALUE. Note that
theorem 3 shows that the BC propagator aMOSTNVALUE [12] is not algorithmi-
cally global with respect to time, as BC can be achieved witte@omposition with
comparable time complexity. On the other hand, @{@d?) space complexity of this
decomposition suggests that it is algorithmically globihwespect to space. Of course,
we only provide upper bounds here, so it may be theM&STNVALUE is not algo-
rithmically global with respect to either time or space.

5 Faster decompositions
We can improve how the solver handles this decompositioh@frM osSTNVALUE

constraint by adding implied constraints and by implenrensipecialized propagators.
Our first improvement is to add an implied constraint and sexg@®C on it:

d
Mg = Z M;; (8)
i=1



This does not change the asymptotic complexity of reasowitigthe decomposition,
nor does it improve the level of propagation achieved. Haxeve have found that the
fixed point of propagation is reached quicker in practicéwiich an implied constraint.

Our second improvement decreases the asymptotic comptehénforcing BC on
the decomposition of Section 4. The complexity is domindigdeasoning with con-
straints (4) which channel frorX; to A;,, and thence ontd/,, (through constraints
(5)). If constraints (4) are not woken uselessly, enfor@@ycostsO(1) per constraint
down the branch. Unfortunately, existing solvers wake ughsonstraints as soon as a
bound is modified, thus giving a cost@(d). We therefore implemented a specialized
propagator to channel betweéh and M, efficiently. To be more precise, we remove
the O(nd?) variablesA;;,, and replace them witid(nd) Boolean variableZ;;. We
then add the following constraints

Zij =1 <= X; <3 1<j<d 9
Zigo1y =1V Ziw =0V My, > 0 l<l<u<di<i<n (10)

These constraints are enough to channel changes in the $otitfte X variables
to M;,,. There ar@(nd) constraints (9), each of which can be propagated in ti®)
over a branch, for a total @ (nd?). There areé)(nd?) clausal constraints (10) and each
of them can be made BC in tin@(1) down a branch of the search tree, for a total cost
of O(nd?). Since channeling dominates the asymptotic complexitg@&ntire decom-
position of Section 4, this improves the complexity of thecdmposition taD(nd?).
This is similar to the technique used in [5] to improve therapiotic complexity of the
decomposition of the AL-DIFFERENTconstraint.

Our third improvement is to enforce stronger pruning by obisg that when
M., = 0, we can remove the intervdl, u] from all variables, regardless of whether
this modifies their bounds. This corresponds to enforcinggR€onstraints (4). Inter-
estingly, this is sufficient to achieve RC on theMOSTNVALUE constraint. Unfortu-
nately, constraints (10) cannot achieve this pruning aimbusonstraints (4) increases
the complexity of the decomposition back@ind?). Instead we extend the decompo-
sition with O(d log d) Boolean variable$;;;ox) € [0,1],1 < i <n,1 <1 <d,0 <
k < |logd]. The following constraint ensures thf;; = 1 <= X, = j.

DOMAINBITMAP (X, [Bi11, - - - , Bidd]) (11)

Clearly we can enforce RC on this constraint in ti@gl) over a branch, an@(nd)
for all variablesX ;. We can then use the following clausal constraints to chidnom
variablesM, to these variables and on to thevariables. These constraints are posted
foreveryl <i < n,1 <l <u<d1<j<dandintegers suchtha < k <
|logd]:

Bij(j2r+1-1) = 1V Byj(j1ae—1) =0 (12)
Bij(j‘f‘?kJrl—l) = 1 V Bi(j+2k)(j+2k+1—l) == 0 (13)
My # 0V Byqoi_1) =0 P <u—l+1<2M (14)

My # 0V Bi(y_gt 41y, =0 F <u—1+1<28  (15)



The variableB;;; 1« 1), similarly to the variables,,,, is true whenX; € [I,1 +
2% —1], but instead of having one such variable for every intewalpnly have them for
intervals whose length is a power of two. Whf, = 0, with 28 < u — 1 +1 < 2k+1
the constraints (14)—(15) set to 0 tBevariables that correspond to the two intervals of
length2* that start ai and finish atu, respectively. In turn, the constraints (12)—(13)
set to 0 theB3 variables that correspond to intervals of length!, all the way down to
intervals of size 1. These trigger the constraints (11),llseatues in the intervall, u]
are removed from the domains of all variables.

Example. SupposeX; € [5,9]. Then, by(9), Z14 = 0, Z19 = 1 and by(10), M59 > 0.
Conversely, supposelso = 0 and X; € [1,10]. Then, by (14)—(15), we gét;ss = 0
and Bigg = 0. From Bi55 = 0 and (12)—(13) we 968156 =0, Bi7s = 0, Bis5 =
Bies = B177 = Bi1gs = 0, and by(11), the interval[5, 8] is pruned fromX; . Similarly,
Big9 = 0 causes the intervab, 9] to be removed fronk;, soX; € [1,4] U {10}.

Note that RC can be enforced on each of these constraintstard time over a
branch. There exisD(ndlog d) of the constraints (12)—(13) ar@(nd?) of the con-
straints (14)—(15), so the total time to propagate themairda branch i€ (nd?).

6 ATLEASTNVALUE constraint

There is a similar decomposition for therAEASTNVALUE constraint. We introduce
0/1 variablesA;;,, to represent whethe¥; uses a value in the intervgl «], and integer
variables,E;,, with domains|0, »] to count the number of times values|inu] arere-
used, that is, how much the number of variables taking vailuds u] exceeds the
numberu — [+ 1 of values in[l, u]. To constrain these introduced variables, we post the
following constraints:

Agw =1 = X, €[l,y] Vi<i<nl1l<I<u<d (16)
En>>0 1A —(u—1+1) V1<i<u<d a7
Evy = Bk + By Vi<k<u<d (18)

N <n-—Eyq (19)

Running Example. Consider the decomposition of &ATLEASTNVALUE constraint
over the following variables and values:

Bound consistency reasoning on the decomposition will ifekéllowing inferences.
Asdom(X;) C [2,4] for i € 2..5, from (16) we getd,», = 1 fori € 2..5. Hence, by
(17), FEoy > 1. By(lg), Ei5 = F14+ Ess, E14 = E11+ Ea4. SinceEsy, > 1 we deduce
that E15 > 1. Finally, from (19) and the fact that = 5, we getN < 4. This gives us
bound consistent domains for tAe LEASTNVALUE constraint.



We now prove that this decomposition does not hinder prajagan general.

Theorem4 BC on the constraints(16) to (19) is equivalent to BC on
ATLEASTNVALUE ([X1,...,X,],N), and takesO(nd?) time to enforce down the
branch of the search tree.

Proof: First note that changing the domains of tkievariables cannot affect the lower
bound of NV by the ArLEASTNVALUE constraint and, conversely, changing the upper
bound of N cannot affect the domains of thé variables.

It is known [12] thatcardy (X)) is equal to the size of a maximum matchifgin
the value graph of the constraint. Sinl¥e< n — E4, we show that the lower bound of
E14 is equal ton — | M |.5 We first show that we can construct a matchMgF) of size
n —min(F14), then show that it is a maximum matching. The proof uses diparbf
the interval[1, d] into a set of maximal saturated intervdls= {[b;,c;]},7 =1,...,k
such thatnin(Ey, ;) = > i min(Aap,c,) — (¢; — b; + 1) and a set of unsaturated
intervals{[b;, c;]}such thatnin(Es, .,) = 0.

LetI = {[bj,cj] | 5 € [1...k]} be the ordered set of maximal intervals such
that min(Ey, ;) = Y. min(Aa,c;) — (¢; — bj + 1). Note that the intervals in
I are disjoint otherwise intervals are not maximal. An in&1¥;, ¢;] is smaller than
[bj, ;] iff ¢; < b;. We denote the union of the firgtintervals D} = (J7_, [b;, ¢i],

j =11,...,k], p = |D¥| and the variables whose domain is inside one of intervals
X = {X;Dz|d0m(X;D¢) - D]Ic}

Our construction of a matching uses two sets of variabfesand X \ X ;. First, we
identify the cardinality of these two sets. Namely, we shat the size of the sét; is
p + min(Eq,4) and the size of the séf \ X isn — (p + min(E1,q)).

IntervalsI are saturated therefore each value from these intervalakea by a
variable in X;. Therefore,X; has size at leagt. Moreover, there existnin(E1,)
additional variables that take values froP¥, because values from intervals be-
tween two consecutive intervals ih do not contribute to the lower bound of the
variable E by construction ofl. Therefore, the number of variables i} is at
leastp + min(E; 4). Note that constraints (18) imply thd;; equals the sum of
variablesE p,—1 + Eb e + Eci41,69—1--- + Eby e + Eci+1,4- As intervals inf
are disjoint thean:1 min(Ey, ;) = |Xi| — p. If | X1| > p + min(Ey 4) then
Zle min(Ey, ;) > min(Ey 4) and the lower bound of the variablg 4 will be in-
creased. HencéX ;| = p + min(E1 q).

Since all these intervals are saturated, we can construettehing M; of sizep
using the variables iX;. The size ofX \ X; isn — p — min(F14). We show by
contradiction that we can construct a matching, p. of sizen —p — min(E1q)
using the variables iX \ X; and the value® — D’;.

Suppose such a matching does not exist. Then, there existseaval [b, c] such
that|(D \ D¥) N [b,c]| < >iex\x; Min(Auc), i.e., after consuming the values in
I with variables inX;, we are left with fewer values ifb, ¢] than variables whose
domain is contained ifb, ¢]. We denotey’ = |[b, c] N D¥|, so thaty’ is the number of
values inside the intervdb, ¢| that are taken by variables i;. The total number of

5 We assume thak, 4 is not pruned by other constraints.



variables inside the intervél, c] is greater than or equal 8, ; min(A;.). The total
number of variables(; inside the intervalb, c] equals top’ + min(Ep ). Therefore,
ZieX\XI min(Aie) < >y min(Ape) — p' — min(Ey,c). On the other hand, the
number of values that are not taken by the variabigsin the interval[b, ¢| is ¢ —
b+ 1 —p'. Therefore, we obtain the inequality— b + 1 — p’ < >, min(Aipe) —
p' — min(Ey,c) of min(Ey.) < Y, min(Ape) — (¢ — b+ 1). By construction of
I Y0 min(Ape) — (¢ — b+ 1) < min(Ey.), otherwise the intervals i that are
subsets ofb, ¢] are not maximal. This leads to a contradiction, so we cantoactsa
matching) (E) of sizen — min(E1,).

Now suppose that/(E) is not a maximum matching. This means thatn(E14)
is overestimated by propagation on (16) and (19). Siht€F) is not a maximum
matching, there exists an augmenting pathM{E), that produces\/’, such that
|M’'| = |IM(E)| + 1. This new matching covers all the values thid{ E') covers and
one additional valug. We show that; cannot belong to the intervél, d].

The valugg cannot be in any interval if, because all values ih;, ¢;] € I are used
by variables whose domain is containediin ¢;]. In addition,q cannot be in an interval
[b, c] between two consecutive intervalsinbecause those intervals do not contribute
to the lower bound o¥; 4. Thus,M’ cannot cover more values thad(E) and they
must have the same size, a contradiction.

We show that wheV is BC anddom(N) # {card;(X)}, all X variables areBC.
Take any assignmerff € ITy,cxrange(X;) such thatcard(S) = cardy(X). Let
S[X; < b] be the assignmeit where the value ok in S has been replaced lbyone
of the bounds ofX;. We know thatard(S[X; < b)) € [card(S) — 1, card(S) + 1] =
[card(X) — 1, card; (X)) + 1] because only one variable has been flipped. Hence, any
assignmentS, p) with p < cardy(X) — 1 is a bound supportlom(N) necessarily
contains such a valyeby assumption.

We now show that itV = cardy(X), enforcing BC on the constraints (16)—(19)
makes the variableX BC with respect to the ALEASTNVALUE constraint. We first
observe that in a bound support, variablsnust take the maximum number of dif-
ferent values becausé = card;(X). Hence, in a bound support, variabl€sthat are
not included in a saturated interval will take values owgsaty saturated interval they
overlap and they all take different values. We recall thai(FE14) = n — |M| =
n — cardy(X). Hence, by constraint (19¥:4 = n — N. We recall the the size
of set X; equalsp + E14. Constraints (18) imply thaF,,; equals the sum of vari-
ab|eSE1,b1_1 + Ebl,cl + Ec1+l,b2—1 A Ebk7ck + Ec;ﬁ—l,d andeZl min(Ebi,ci) =
| X1| — p = min(E14) = maz(E14). Hence, by constraints (18), the upper bounds of
all variablesEy, ., that correspond to the saturated intervals are forceaito( E, ., ).
Thus, by constraints (16) and (17), all variablesXin\ X; have their bounds pruned
if they belong toD%. By constraints (18) again, the upper bounds of all varshblg
that correspond to the unsaturated intervals are forceakmualue 0, and all variables
Ey, with [I'; 4] C [I, u] are forced to 0 as well. Thus, by constraints (16) and (1T), al
variables inX \ X; have their bounds pruned if they belong to a Hall intervaltbieo
variables inX \ X;. This is what BC on the AL-DIFFERENTconstraint does [5].

There areD(nd?) constraints (16) that can be wokéxr{d) times down the branch
of the search tree iD(1), so a total ofO(nd*) down the branch. There ar@(d?)



constraints (17) which can be propagated in ti{e) down the branch for & (nd?).
There are)(d?) constraints (18) which can be wokéxin) times each down the branch
for a total cost inO(n) time down the branch. Thus a total ©{nd?). The final com-
plexity down the branch of the search tree is theretofed?). O

The complexity of enforcing BC onTA. EASTNVALUE can be improved t®(nd?)
in a way similar to that described in Section 5 and in [5]. AHMATM OSTNVALUE,
enforcing RC on constraints (16) enforces RC arLAASTNVALUE, but in this case
we cannot reduce the complexity belaWnd?). Similarly to ATMOSTNVALUE, the-
orem 4 shows that the bound consistency propagatorbEASTNVALUE is not algo-
rithmically global with respect to time and provides eviderthat it is algorithmically
global with respect to space.

7 Experimental results

As noted before, the main value of these decompositionisrétical: demonstrating
that the bound consistency propagator of [12] for theaNWE constraint can be sim-
ulated using a simple decomposition with comparable tinrapdexity over a branch
of the search tree but greater space complexity. To see wigestace complexity hits,
we performed some experiments. We used a benchmark protblemiominating set of
the Queen’s graph used in previous studies olNVE [13] and ran experiments with
llog Solver 6.2 and llog CPLEX 9.1 on an Intel Xeon 4 CPU, 2.¢GHGb RAM. The
dominating set of the Queen’s graph problem is to put themmimi number of queens
on an x n chesshoard, so that each square either contains a queeattacised by one.
This is equivalent to the dominating set problem of the Qisegiraph. Each vertex in
the Queen’s graph corresponds to a square of the chesshwhthleae exists an edge
between two vertices iff a queen from one square can attackeargfrom the other
square. To model the problem, we use a variabldor each square, and values from
1 to n? and post a single WMOSTNVALUE ([ X1, . .., X,,2], V) constraint. The value
j belongs talom/(X;) iff there exists an edgg, j) in the Queen’s graph gr = 4. For

n < 120, all minimum dominating sets for the Queen’s problem ateegiof size[n /2]

or [n/2 + 1] [15]. We therefore only solved instances for these two \&abfeV.

We compare our decomposition with the simple decompositafn the
ATMOSTNVALUE constraint in llog Solver and llog CPLEX solvers. The simgée
composition is the one described in Section 3.1 exceptthadmstraint (3), we replace
“="py “<”. We denote this decompositiaccs andOces“FLEX in llog Solver and
CPLEX, respectively. To encode this decomposition intoree@ger linear program, we
introduce literalsh;;, i, j € [1,n?] and use a direct encoding with; for the truth of
X; = j and channeling inequalitiels— b,; + B; > 1,4,5 € [1,n%. We use the di-
rect encoding of variables domains to avoid using logic trairgs, like disjunction and
implication constraints in CPLEX. The default transforioatof logic constraints in
CPLEX appears to generate large ILP models and this slows tlosvsearch.

The BC decomposition is described in Section 4, which we Bghamidgc and
Pyramid§EXEX in llog Solver and CPLEX, respectively. In llog Solver, apkzned
in Section 5, we channel the variabl&s directly to the pyramid variabled/;, to
avoid introducing many auxiliary variables;,, and we add the redundant constraint



Z;il M;; = M, ,,» to the decomposition to speed up the propagation acrosythe p
mid. We re-implemented the ternary sum constraint in llagaf80% speedup.

To encode the BC decomposition into an integer linear praogrwee use the linear
encoding of variables domains [16]. We introduce litergjsfor the truth ofX; < j,
and the channeling inequalities of the fory_1) + 1 — ¢ + M, > 1. We again

add the redundant c:onstra@i1 M;; = M, ,,». Finally, we post constraints (6) as
lazy constraints in CLPEX. Lazy constraints are constsaihat are not expected to
be violated when they are omitted. These constraints aréaken into account in the
relaxation of the problem and are only included when thelet&an integral solution.

Table 1. Backtracks and rumtime (in seconds) to solve the dominasigtgproblem for the
Queen’s graph.

n|N Occs Pyramidpc OcesCFLEX TPyramidg ot B
backtracks timgacktracks timgacktracks timgacktracks time
53 34 0.01 7 0.00 1 0.05 3 0.4
63 540 0.14 118 0.03 2 0.16 183 9.6
714 195,212 84.50 83,73115.49| 130,010 1802.49 63 15.8
8|5 390,717 255.64 256,582 58.4p 24,588 585.0[7 30 41.28

Results of our experiments are presented in Table 1. Our BGndposition per-
forms better than théccs decomposition, both in runtime and in number of back-
tracks needed by llog Solver or CPLEX. CPLEX is slower perentithn llog Solver.
However, CPLEX usually requires fewer backtracks compaoed OG Solver. In-
terestingly CPLEX performs well with the BC decompositidine time to explore
each node is large, reflecting the size of decomposition thithnumber of search
nodes explored is small. We conjecture that integer lingagg@amming methods
like CPLEX will perform in a similar way with other decomptisins of global con-
straints which do not hinder propagation (e.g. the decoitipns we have proposed for
ALL-DIFFERENTand GCC). Finally, the best results here are comparabletivithe
for the ATMoSTNVALUE bounds consistency propagator in [13].

8 Other related work

Bessiereet al. consider a number of different methods to compute a lowentan the
number of values used by a set of variables [13]. One methuasied on a simple linear
relaxation of the minimum hitting set problem. This givesragagation algorithm that
achieves a level of consistency strictly stronger than baaemsistency on the NALUE
constraint. Cheaper approximations are also proposed lmasgreedy heuristics and
an approximation for the independence number of the intgnagh due to Turan. De-
compositions have been given for a number of other globastcaimts. For example,
Beldiceanuet al. identify conditions under which global constraints specifas au-
tomata can be decomposed into signature and transitioriraoris without hindering



propagation [17]. As a second example, many global comésraian be decomposed
using RooTsand RANGE which can themselves be propagated effectively using sim-
ple decompositions [18]. As a third example, thedULAR and G-G constraints can be
decomposed without hindering propagation [19, 20]. As atfoexample, decomposi-
tions of the SQUENCEconstraint have been shown to be effective [21]. Most rdgent
we demonstrated that theLA-DIFFERENT and GCC constraint can be decomposed
into simple primitive constraints without hindering bourwhsistency propagation [5].
These decompositions also introduced variables to couidblas using values in an
interval. For example, the decomposition of IADIFFERENT ensures that no interval
has more variables taking values in the interval than thebmuraf values in the inter-
val. Using a circuit complexity lower bound, we also proviedttthere is no polynomial
sized SAT decomposition of thelA-DIFFERENT constraint (and therefore of its gen-
eralizations like NMLUE) on which unit propagation achieves domain consistency [6]
Our use of “pyramid” variables is similar to the use of thertfd sums” variables in the
encoding of the BQUENCE constraint in [21]. This is related to the cumulative sums
computed in [22].

9 Conclusions

We have studied a number of decompositions of theal)& constraint. We have
shown that a simple decomposition can simulate the bounsistency propagator for
NVALUE [12] with comparable time complexity but with a much greatpace com-
plexity. This supports the conclusion that the benefit of @gl propagator may of-
ten not be in saving time but in saving space. Our other thigatecontribution is to
show the first range consistency algorithm for NVE, that runs inO(nd?) time and
O(nd?) space. These results are largely interesting from a tHeatperspective. They
help us understand the globality of global constraints.yTtighlight that saving space
may be one of the important advantages provided by propegfatoglobal constraints.
We have seen that the space complexity of decompositionsinypropagators equals
the worst case time complexity (e.g. for the ADIFFERENT, GCC, AMONG, LEX,
REGULAR, CFG and SEQUENCE constraints). For global constraints likeeRULAR,
the space complexity of the decompositions does not appeae that problematic.
However, for global constraints like NWUE, the space complexity of the decompo-
sitions is onerous. This space complexity seems hard taakor example, consider
encodings into satisfiability and unit propagation as ofarience method. As unit prop-
agation is linear in time in the size of the encoding, it is sarhat inevitable that the
size of any encoding is the same as the worst-case time critypdé any propagator
that is being simulated. One other benefit of these decomigasis that they help us
explore the interface between constraint and integer dipeagramming. For exam-
ple, we saw that an integer programming solver performeatively well with these
decompositions.
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