Propagating Conjunctions of ALLDIFFERENT Constraints
Christian Bessiere, George Katsirelos, Nina Narodytska, Claude-Guy Quimper, Toby Walsh

To cite this version:

HAL Id: lirmm-00558126
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00558126
Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Propagating Conjunctions of \textsc{AllDifferent} Constraints

Christian Bessiere
LIRMM, CNRS
Montpellier, France
bessiere@lirmm.fr

George Katsirelos
CRIL-CNRS
Lens, France
gkatsi@gmail.com

Nina Narodytska
NICTA and UNSW
Sydney, Australia
ninan@ese.unsw.edu.au

Claude-Guy Quimper
Université Laval
Québec, Canada
equimper@gmail.com

Toby Walsh
NICTA and UNSW
Sydney, Australia
toby.walsh@nicta.com.au

Abstract

We study propagation algorithms for the conjunction of two \textsc{AllDifferent} constraints. Solutions of an \textsc{AllDifferent} constraint can be seen as perfect matchings on the variable/value bipartite graph. Therefore, we investigate the problem of finding simultaneous bipartite matchings. We present an extension of the famous Hall theorem which characterizes when simultaneous bipartite matchings exist. Unfortunately, finding such matchings is NP-hard in general. However, we prove a surprising result that finding a simultaneous matching on a convex bipartite graph takes just polynomial time. Based on this theoretical result, we provide the first polynomial time bound consistency algorithm for the conjunction of two \textsc{AllDifferent} constraints. We identify a pathological problem on which this propagator is exponentially faster compared to existing propagators. Our experiments show that this new propagator can offer significant benefits over existing methods.

Introduction

Global constraints are a critical factor in the success of constraint programming. They capture patterns that often occur in practice (e.g. “these courses must occur at different times”). In addition, fast propagation algorithms are associated with each global constraint to reason about potential solutions (e.g. “these 4 courses have only 3 time slots between them so, by a pigeonhole argument, the problem is infeasible”). One of the oldest and most useful global constraints is the \textsc{AllDifferent} constraint (Laurière 1978). This specifies that a set of variables takes all different values. Many different algorithms have been proposed for propagating the \textsc{AllDifferent} constraint (Régin 1994; Leconte 1996; Puget 1998). Such propagators can have a significant impact on our ability to solve problems (Stergiou & Walsh 1999).

Problems often contain multiple \textsc{AllDifferent} constraints (e.g. “The CS courses must occur at different times, as must the IT courses. In addition, CS and IT have several courses in common”). Currently, constraint solvers ignore information about the overlap between multiple constraints (except for the limited communication provided by the domains of common variables). Here, we show the benefits of reasoning about such overlap. This is a challenging problem as finding a solution to just two \textsc{AllDifferent} constraints is NP-hard (Kutz et al. 2008) and existing approaches to deal with such overlaps require exponential space (Lardeux et al. 2008). Our approach is to focus on domains that are ordered, as often occurs in practice. For example in our time-tabling problem, values might represent times (which are naturally ordered). In such cases, domains can be compactly represented by intervals. Propagation algorithms can narrow such intervals using the notion of bound consistency. Our main result is to prove we can enforce bound consistency on two \textsc{AllDifferent} constraints in polynomial time. Our algorithm exploits a connection with matching on bipartite graphs. In particular, we consider \textit{simultaneous} matchings. By generalizing Hall’s theorem, we identify a necessary and sufficient condition for the existence of such a matching and show that this problem is polynomial for convex graphs.

Formal background

Constraint programming. We use capitals for variables and lower case for values. Values range over 1 to \(d\). We write \(D(X)\) for the domain of values for \(X\), \(lb(X)\) (\(ub(X)\)) for the smallest (greatest) value in \(D(X)\). A \textit{global constraint} is one in which the number of variables \(n\) is a parameter. For instance, \textsc{AllDifferent}([\(X_1, \ldots, X_n]\]) ensures that \(X_i \neq X_j\) for any \(i < j\). Constraint solvers prune search by enforcing properties like domain consistency. A constraint is \textit{domain consistent (DC)} iff when a variable is assigned any value in its domain, there are compatible values in the domains of all other variables. Such an assignment is a \textit{support}. A constraint is \textit{bound consistent (BC)} iff when a variable is assigned the minimum or maximum value in its domain, there are compatible values between the minimum and maximum domain value for all other variables. Such an assignment is a \textit{bound support}. A constraint is \textit{bound disentangled} iff no possible assignment is a bound support.

Graph Theory. Solutions of \textsc{AllDifferent} correspond to matchings in a bipartite variable/value graph (Régin 1994).

Definition 1. The graph \(G = (V, E)\) is bipartite if \(V\) partitions into 2 classes, \(V = A \cup B\) and \(A \cap B = \emptyset\), such that every edge has ends in different classes.

Definition 2. Let \(G = (A \cup B, E)\) be a bipartite graph. A matching that covers \(A\) is a set of pairwise non-adjacent edges \(M \subseteq E\) such that every vertex from \(A\) is incident to
If \(M \in u \) to solving the timetabling problem. (Hall 1935). We use this to show that a simultaneous matching based on an extension of Hall’s theorem (Hall 2008). Our contribution here is to identify a necessary and sufficient condition for the existence of a perfect matching in a bipartite graph.

Theorem 1 (Hall Condition). Let \(G = (A \cup B, E) \) and sets \(S, T \) be an overlapping bipartite graph. There exists a simultaneous matching in it. (Hall 1935). We use this to show that a simultaneous matching in it.

Theorem 2 (Simultaneous Hall Condition (SIM-\(\mathcal{H} \)). Let \(G = (A \cup B, E) \) and sets \(S, T \) be an overlapping bipartite graph. There exists a simultaneous matching in it.

Proof. We prove SIM-\(\mathcal{H} \) by induction on \(|A|\). When \(|A| = 1\), the statement holds. Let \(|A| = k > 1\).

If \(A^S = \emptyset \) or \(A^T = \emptyset \) then SIM-\(\mathcal{H} \) reduces to the condition of Hall’s theorem and the statement is true for that reason. Hence, we assume \(A^S \neq \emptyset \) and \(A^T \neq \emptyset \). We show that there is an edge \((u, v)\) that can be chosen for a simultaneous matching in it. (Hall 1935). We use this to show that a simultaneous matching in it.

Case 1. Suppose \(|N(P)| + |N(P^S) \cap N(P^T)| > |P| \) for all sets \(P \subseteq A \). As \(A^S \neq \emptyset \) we select any edge \((u, v), u \in A^S \) and construct the graph \(G^S(u,v) \) (the case \(u \in A^T \) is symmetric). For any set \(P \subseteq A \setminus \{u\} \) we consider two cases: either \(v \notin N(P) \) or \(v \in N(P) \). In the first case, the neighborhood of \(P \) is the same in \(G \) and \(G' \), so the SIM-\(\mathcal{H} \) holds for \(P \). In the case that \(v \in N(P) \), either \(v \) is a shared neighbor of \(P^S \) and \(P^T \), which means that \(N'(P^S) \cap N'(P^T) = N(P^S) \cap N(P^T) - 1 \) but \(N'(P) = N(P) \) by construction, or \(v \) is a neighbor of \(P^S \) but not of \(P^T \). Therefore \(N'(P) \geq N(P) - 1 \), which means that \(N'(P) \cap N'(P^T) = N(P^S) \cap N(P^T) \) by construction. In either case, \(|N'(P)| + |N'(P^S) \cap N'(P^T)| \geq |N(P)| + |N(P^S) \cap N(P^T)| - 1 \geq |P| \) for any set \(P \) in \(G' \). By the inductive hypothesis there exists a simultaneous matching in it.

Case 2. Suppose that there exists a set \(P \subseteq A \) such that \(|N(P)| + |N(P^S) \cap N(P^T)| = |P| \). Let \(Q = (A' \cup B', E') \) such that \(A' = A \setminus P \), \(B' = B \cup N(P^S) \cap N(P^T) \) and \(E' = \{(u, v) \in E \cap (A' \times B') \} \).

There exists a simultaneous matching in \(G - Q \) by the inductive hypothesis. We claim that the SIM-\(\mathcal{H} \) holds also for \(Q \). This implies that, by the inductive hypothesis, there exists a simultaneous matching in \(G' \). Suppose there exists a set \(P' \subseteq A' \) that violates the SIM-\(\mathcal{H} \) in \(Q \).

We denote as \(N(P) \) the neighborhood of \(P \) in \(G \) and \(N_Q(P^S) \) as the neighborhood of \(P^S \) in \(Q \). We know that the sets \(P' \) and \(P \) are disjoint. We observe that \(N(P \cup

Extension of Hall’s Theorem

Hall’s theorem provides a necessary and sufficient condition for the existence of a perfect matching in a bipartite graph.
Removing edges
To build a propagator, we consider how to detect edges that cannot appear in any simultaneous matching.

Definition 5. Let \(G = (A \cup B, E) \) and sets \(S, T \) be an overlapping bipartite graph. A set \(P, P \subseteq A \) is

a **simultaneous Hall set iff**
\[
|N(P)| + |N(P^S) \cap N(P^T)| = |P|.
\]

an almost simultaneous Hall set iff
\[
|N(P)| + |N(P^S) \cap N(P^T)| = |P| + 1.
\]

a **loose set iff**
\[
|N(P)| + |N(P^S) \cap N(P^T)| \geq |P| + 2.
\]

Theorem 3. \(G = (A \cup B, E) \) and sets \(S, T \) be an overlapping bipartite graph. Each edge \((u, v)\), \(u \in A \) and \(v \in B \) can be extended to a matching that covers \(S \) and \(T \) iff

1. for each set \(P \):

 (a) \(|N(P)| + |N(P^S) \cap N(P^T)| \geq |P|

2. for each simultaneous Hall set \(P \):

 (a) if \(u \notin P \) then \(v \notin (N(P^S) \cap N(P^T)) \)

(b) if \(u \in S \setminus (T \cup P) \) then \(v \notin (N(P^T)) \)

(c) if \(u \in T \setminus (S \cup P) \) then \(v \notin (N(P^S)) \)

(d) if \(u \in (S \cap T) \setminus P \) then \(v \notin N(P) \)

3. for each almost simultaneous Hall set \((a) \):

 if \((u, v) \in (S \cap T) \setminus P \) then \(v \notin N(P^S) \cap N(P^T) \)

Proof. **Soundness.** The soundness of Rule 1a follows from Theorem 2. Let \((u, v)\) be an edge that we want to extend to a matching. Suppose that \((u, v)\) violates one of the rules for a \(\text{SIM-HALL} \) or an \(\text{A-SIM-HALL} \) in \(G \). We show that if \((u, v)\) is selected to be in a matching, then \(P \) fails \(\text{SIM-HC} \) in \(G' \).

Rule 2a: If \((u, v)\) violates Rule 2a for a \(\text{SIM-HALL} \) \(P \) then \(|N(P^S) \cap N'(P^T)| = |N(P^S) \cap N(P^T)| - 1 \) and \(N'(P) = N(P) \), so the \(\text{SIM-HC} \) is violated for \(P \) in \(G' \).

Rule 2b: If \((u, v)\) violates Rule 2b for a \(\text{SIM-HALL} \) \(P \) then \(|N(P^S) \cap N'(P^T)| = |N(P^S) \cap N(P^T)| - 1 \) and \(N'(P) = N(P) \), so the \(\text{SIM-HC} \) is violated for \(P \) in \(G' \).

Rule 2c: Symmetric to Rule 2b.

Rule 2d: If \((u, v)\) violates Rule 2d for a \(\text{SIM-HALL} \) \(P \) then \(|N'(P)| = |N(P)| - 1 \) so the \(\text{SIM-HC} \) is violated for \(P \) in \(G' \).

Rule 3a: If \((u, v)\) violates Rule 3a for an \(\text{A-SIM-HALL} \) \(P \) then \(|N'(P)| = |N(P)| - 1 \) and \(|N'(P^S) \cap N'(P^T)| = |N(P^S) \cap N(P^T)| - 1 \), so \(|N'(P)| + |N'(P^S) \cap N'(P^T)| = |P| - 1 \) and the \(\text{SIM-HC} \) is violated for \(P \) in \(G' \).

Completeness. Second, we show that Rules 2a-3a are complete. We will show that we can use any edge \((u, v)\) in a matching by showing that the graph \(G'_{(u,v)} \) satisfies the \(\text{SIM-HC} \), thus has a \(\text{SIM-BM} \).

Suppose there exists a set \(P \) that violates the \(\text{SIM-HC} \) in \(G' \) but not in \(G \) so that
\[
|N'(P)| + |N'(P^S) \cap N'(P^T)| < |P| \quad (1)
\]
and
\[
|N(P)| + |N(P^S) \cap N(P^T)| \geq |P| \quad (2)
\]
Note that $N'(P) = N(P) \setminus \{v\}$ and $N'(P_S) \cap N'(P_T) = N(P_S) \cap N(P_T) \setminus \{v\}$. Hence, $|N'(P)| \geq |N(P)| - 1$ and $|N'(P_S) \cap N'(P_T)| \geq |N(P_S) \cap N(P_T)| - 1$.

There are three cases to consider for P in G, when P is a loose set, a SIM-HALLSET and an A-SIM-HALLSET in G. These cases are similar, so we consider only the most difficult case. Let P be an A-SIM-HALLSET in G. If $u \in A^{ST}$ then $v \notin N(P_S) \cap N(P_T)$ by Rule 3a. Hence $N'(P_S) \cap N'(P_T) = N(P_S) \cap N(P_T)$, so $|N'(P)| + |N'(P_S) \cap N'(P_T)| \geq |N(P)| + |N(P_S) \cap N(P_T)| - 1 \geq |P|$ and therefore (1) and (2) cannot both be true.

If $u \in A^{S}$ ($u \in A^{T}$ is symmetric) then $v \in N(P_S) \cap N(P_T)$ or its complement. In the first case $N'(P) = N(P)$, while in the second $N'(P_S) \cap N'(P_T) = N(P_S) \cap N(P_T)$. In both cases, $|N'(P)| + |N'(P_S) \cap N'(P_T)| \geq |N(P)| + |N(P_S) \cap N(P_T)| - 1 \geq |P|$ so (1) and (2) cannot both be true.

\begin{proof}

\end{proof}

\textbf{Running example.} Consider again our running example. We show that Rules 2a-3a remove every edge that can not be extended to a matching. Consider the set $P = \{X_2, X_3, X_4, X_5\}$. This is a SIM-HALLSET as $N(P) = \{1, 2, 3\}, N(P_S) \cap N(P_T) = \{2\}$ and $4 = |P| = |N(P)| + |N(P_S) \cap N(P_T)| = 4$. Hence, by Rule 2d we prune 1, 2, 3 from X_5 and by Rule 2a we prune 2 from X_1 and X_7. Now consider the set $P = \{X_2, X_3, X_6\}$. This is an A-SIM-HALLSET. By Rule 3a we prune 2 from X_4. The set $P = \{X_2, X_4, X_6\}$ is also a A-SIM-HALLSET and, by Rule 3a, we prune 2 from X_3. Next consider the set $P = \{X_3, X_4\}$ which is a SIM-HALLSET. By Rules 2b and 2c we prune 1, 3 from X_1, X_2, X_6 and X_7. Now, $\{X_1\}$ is a SIM-HALLSET and 1 is pruned from X_2 by Rule 2d. Finally, from the simultaneous Hall set $\{X_4\}$, we prune 5 from X_7 using Rule 2c and we are now at the fixedpoint.

\begin{table}
\begin{tabular}{c|cccc}
 & 1 & 2 & 3 & 4 \\
\hline
$A^S = S \setminus T$ & X_1 & & & * \\
$A^S = S \cap T$ & X_3 & & & * \\
$A^T = T \setminus S$ & X_6 & & & *
\end{tabular}
\end{table}

The overlapping \texttt{ALLDIFFERENT} constraint

We now use these results to build a propagator.

\textbf{Definition 6. \textsc{OverlappingAllDifferent}(X, S, T) where S \subseteq X, T \subseteq X, S \cup T = X holds if \texttt{ALLDIFFERENT}(S) and \texttt{ALLDIFFERENT}(T) hold simultaneously.}

Enforcing \textsc{BC} on the \textsc{OverlappingAllDifferent} constraint is NP-hard (Bessiere et al. 2007). We consider instead enforcing just \textsc{BC}. This relaxation is equivalent to the simultaneous matching problem on a bipartite convex variable-value graph. Our main result is an algorithm that enforces \textsc{BC} on the \textsc{OverlappingAllDifferent} constraint in $O(n d^2)$ time. The algorithm is based on the decomposition of the \textsc{OverlappingAllDifferent} constraint into a set of arithmetic constraints derived from Rules 2b–3a. It is inspired by a decomposition of \texttt{ALLDIFFERENT} (Bessiere et al. 2009). As there, we introduce Boolean variables $a_{i, u}$, b_{i} to represent whether X_{i} takes a value in the interval $[l, u]$ and the variables C_{ST}, C_{ST} and C_{T} to represent bounds on the number of variables from $S \setminus T$, $T \setminus S$ and $S \cap T$ that may take values in the interval $[l, u]$. We introduce the following set of constraints for $1 \leq i \leq n, 1 \leq l \leq u \leq d$ and $u - l < n$:

\begin{align}
 b_{i} = 1 & \iff X_{i} \leq l \\
 a_{i, u} = 1 & \iff (b_{(i-1)} = 0 \land b_{i} = 1) \\
 C_{ST}^u = \sum_{i \in T \setminus S} a_{i, u} \\
 C_{ST}^S = \sum_{i \in S \setminus T} a_{i, u} \\
 C_{ST}^T = \sum_{i \in T \cap S} a_{i, u} \\
 C_{ST}^u = C_{ST}^u + C_{ST}^u \\
 C_{ST}^u + C_{ST}^u \leq u - l + 1 \\
 C_{ST}^u + C_{ST}^u \leq u - l + 1
\end{align}

We also introduce a dummy variable $C_{ST}^0 = 0$ to simplify the following lemma and theorems.

\textbf{Lemma 1. Consider a sequence of values v_1, v_2, \ldots, v_k. Enforcing \textsc{BC} on (8) ensures $ub(C_{ST}^{V_i-1}) \leq \sum_{v_i < v_{i+1}} ub(C_{ST}^{V_i-1}) - \sum_{v_i > v_{i+1}} lb(C_{ST}^{V_i-1})$.}

\textbf{Proof.} For every i such that $v_i < v_{i+1}$, constraint (8) ensures that $ub(C_{ST}^{V_i-1}) \leq ub(C_{ST}^{V_i-1}) + ub(C_{ST}^{V_i-1})$. For every i such that $v_i > v_{i+1}$ constraint (8) ensures that $ub(C_{ST}^{V_i-1}) \leq ub(C_{ST}^{V_i-1}) - lb(C_{ST}^{V_i-1})$. The left side of each inequality can be substituted into the right side of another inequality until one obtains $ub(C_{ST}^{V_i-1}) \leq \sum_{v_i < v_{i+1}} ub(C_{ST}^{V_i-1}) - \sum_{v_i > v_{i+1}} lb(C_{ST}^{V_i-1})$. \hfill \Box

\textbf{Theorem 4. Enforcing \textsc{BC} on (3)-(10) detects bound entailment of \textsc{OverlappingAllDifferent} in $O(nd^2)$ time but does not enforce \textsc{BC} on \textsc{OverlappingAllDifferent}.}

\textbf{Proof.} First we derive useful upper bounds for the variables C_{ST}^u. Consider a set P and an interval $[a, b]$ such that $N(P) = [a, b]$. Let $\{c_1, d_1\} \cup \ldots \cup \{c_k, d_k\}$ be a set of intervals that tightly contain variables from P_S so that $\forall i, (c_i, d_i) \in N(P_S), [e_1, f_1] \ldots \cup [e_m, f_m]$ be a set of intervals that tightly contain variables from P_T so that $\forall i, (e_i, f_i) \in N(P_T)$, and $I_1 \ldots \cup I_p$ are intersection intervals between intervals $\{c_i, d_i\}$ and $[e_i, f_i]$, i.e., $\forall i, I_i \in N(P_S) \cap N(P_T)$. We first remove all intervals $[c_i, d_i]$ from $\{e_i, f_i\}$ that are completely inside an interval $[e_i, f_i] \{c_i, d_i\}$. For any of these intervals $[c_i, d_i]$ (e_i, f_i) is similar there exists an intersection interval I_j such that $I_j = [c_i, d_i]$. We denote the set of removed intervals \bar{R}. The remaining intervals are $\{[c_1, d_1], \ldots, [c_k, d_k]\}, [e_1, f_1], \ldots, [e_m, f_m]\}$ and I_1, \ldots, I_p. For any interval $[c_i, d_i]$, (9) ensures that $ub(C_{ST}^{c_i, d_i}) \leq d_i - c_i + 1 - lb(C_{ST}^{c_i, f_i})$. Similarly for an interval $[e_i, f_i]$, we have $ub(C_{ST}^{e_i, f_i}) \leq f_i - e_i + 1 - lb(C_{ST}^{e_i, f_i})$.

We sort the union of remaining intervals \([c_i, d_i]\) by their lower bounds and list them as semi-open intervals \([g_1, g_2), (g_3, g_4), \ldots, (g^k+m-1, g^k+m)\). Using the sequence \(a, (g_1, g_2, \ldots, g^k+m, b + 1, a)\)
where \((x) \) indicates a repetition of \(x \) times the same sequence. Lemma 1 provides the inequality
\[ub(CST_{ia-1}) \leq ub(CST_{ia-1}) + x(ub(CST_{ia-1}) + ub(CST_{ia-1} + b) + \sum_{i=1}^{k} lb(CST_{a,i}) + \sum_{i=1}^{m} lb(CST_{a,i} - lb(CST_{a,i})). \]
Substituting the inequalities that we already defined, we obtain
\[ub(CST_{ia-1}) \leq a + x(b - a + 1 + \sum_{i=1}^{k} lb(CST_{a,i}) - \sum_{i=1}^{m} lb(CST_{a,i}) + p_{i} - \sum_{i=1}^{m} lb(CST_{a,i} - lb(CST_{a,i})). \]
For any removed interval \(I_i \in RI \) we have \(|I_i| - lb(CST_{min(I_i)max(I_i)}) \geq 0 \) or \(|I_i| - lb(CST_{min(I_i)max(I_i)}) \leq 0 \).
We reintegrate all removed intervals into the inequality to get \(ub(CST_{ia-1}) \leq a + x(b - a + 1 - \sum_{i=1}^{k} lb(CST_{a,i}) - \sum_{i=1}^{m} lb(CST_{a,i}) + p_{i} - \sum_{i=1}^{m} lb(CST_{a,i} - lb(CST_{a,i})). \)
Note that \(|I_i| = |N(P^S) \cap N(P^T)|, lb(CST_{ab}) = \sum_{i=1}^{k} lb(CST_{a,i}) + \sum_{i=1}^{m} lb(CST_{a,i} - lb(CST_{a,i})). \)
Hence
\[ub(CST_{ia-1}) \leq a + x(b - a + 1 - \sum_{i=1}^{k} lb(CST_{a,i}) - \sum_{i=1}^{m} lb(CST_{a,i} - lb(CST_{a,i})). \]
\[+ |N(P^S) \cap N(P^T)| - lb(CST_{ab}) \]
\[(*) \]

Bound disentailment. Suppose, for the purpose of contradiction, that OVERLAPPINGALLDIFF is bound disentailed and that constraints (3)-(10) are bound consistent. Then, there exists a set \(P \), such that \(N(P) \) is an interval and \(|N(P)| + |N(P^S) \cap N(P^T)| < |P| \). As \(P \) fails \textsc{sim-hc}, it holds that \(lb(CST_{ab}) + lb(CST_{ab}) + lb(CST_{ab}) \geq |P| > |N(P)| + |N(P^S) \cap N(P^T)| = b - a + 1 + |N(P^S) \cap N(P^T)| \) or \(lb(CST_{ab}) \geq b - a + 2 - lb(CST_{ab}) - lb(CST_{ab}) + |N(P^S) \cap N(P^T)| \) by substituting the last inequality in (*) gives \(ub(CST_{ia-1}) \leq a - 1 - x \). Choosing a large enough value for \(x \) (say \(a \)) gives the contradiction \(ub(CST_{ia-1}) < 0 \).

Bound consistency. To show that this decomposition does not enforce \textsc{bc}, consider the conjunction of \textsc{alldifferent}(\(X_1, X_2, X_3, X_4\)) and \textsc{alldifferent}(\(X_2, X_3, X_4\)) with \(D(X_1) = [2, 3], D(X_2) = [2, 4], D(X_3) = [1, 3], D(X_4) = [1, 2] \). Enforcing \textsc{bc} on (3)-(10) does not remove the bound inconsistent value \(X_2 = 2 \).

Complexity. There are \(O(nd) \) constraints (3) that can be invoked \(O(d) \) times at most. There are \(O(nd^2) \) constraints (4) that can be invoked \(O(1) \) times. There are \(O(d^2) \) constraints (8) that can be invoked \(O(n) \) times. There are \(O(d^2) \) constraints (5)-(7) that can be propagated in \(O(n) \). The remaining constraints take \(O(nd^2) \) to propagate. The total time complexity is \(O(nd^2) \).

It follows immediately that the simultaneous matching problem is polynomial on bipartite convex graphs.

Theorem 5. A simultaneous matching can be found in polynomial time on an overlapping convex bipartite graph.

Next, we present an algorithm to enforce \textsc{bc}. We show that constraints (3)-(10) together with the following two constraints enforce all but one of the rules from Theorem 3.
\[CST_{1u}^T = CST_{1u}^T + CST_{(i+1)u} 1 \leq l \leq u \leq d \quad (11) \]
\[CST_{1u}^S = CST_{1u}^S + CST_{(i+1)u} 1 \leq l \leq u \leq d \quad (12) \]

Theorem 6. Constraints (3)-(12) enforce Rules 2a-2d.

Proof Sketch. Based on Lemma 1, similar to the proof of Theorem 4, we show that all intervals that contain variables from a \textsc{sim-hallset} \(P \) become saturated intervals, so that the lower bounds of the corresponding variables \(CST^T, CST^S \) and \(CST \) equal to their upper bounds. Hence, these values are pruned from domains of variables outside the set \(P \).

Theorem 7. Suppose constraints (3)-(12) together with \(CST_{iu} = CST_{(i+1)u} 2 \leq l \leq k \leq u \leq d \) have reached their fixpoint. Rule 3a can now be enforced in \(O(nd^3) \) time.

Proof Sketch. Let \(P \) is an A-\textsc{sim-hallset}, \(N(P) = [a, b] \). Similar to the proof of Theorem 4, we can obtain that \(lb(CST_{ab}^T) + 1 \geq ub(CST_{ab}^T) \). Hence, we can identify intervals, that might contain an A-\textsc{sim-hallset} \(P \). Next, we observe that if we add a dummy variable \(Z, D(Z) = [a, b] \) to the set \(P \) so that \(P' = P \cup \{Z\}, Z \in P^T \) then \(P' \) is a \textsc{sim-hallset}. This allows us to identify the set \(N(P^S) \cap N(P^T) \) by simulating constraints (3)-(12) inside the interval \([a, b]\) taking into account the variable \(Z \). There are \(O(d^2) \) intervals. Finding \(N(P^S) \cap N(P^T) \) takes \(O(nd) \) time inside an interval. Enforcing the rule takes \(O(nd) \) time. Hence, the total time complexity is \(O(nd^3) \).

From Theorems 6 and 7 it follows that

Theorem 8. BC on OVERLAPPINGALLDIFF can be enforced in \(O(nd^3) \) time.

Running example. We demonstrate the action of constraints (3)-(12). The interval [1, 4] contains a \textsc{sim-hallset} \(P = \{X_2, X_3, X_4, X_6\} \). Rule 2d.
\[lb(CST_{12}) \geq 1 \quad \text{and} \quad ub(CST_{23}) \geq 1 \Rightarrow (9), (10) \Rightarrow ub(CST_{12}) \leq 1 \quad \text{and} \quad ub(CST_{23}) \leq 1 \Rightarrow (8) \Rightarrow ub(CST_{13}) \leq 2 \].

The interval [1, 3] is saturated, as \(lb(CST_{13}) = 2 \Rightarrow (9) \Rightarrow ub(CST_{13}) \leq 12 \Rightarrow ub(CST_{13}) \leq 1 \). The interval [1, 2] is saturated, as \(lb(CST_{12}) = ub(CST_{12}) \). Hence, by (3)-(5), [1, 3] is removed from \(D(X_3) \). Rules 2b,2c.

As \(lb(CST_{13}) = 2 \Rightarrow (9) \Rightarrow ub(CST_{13}) \leq 12 \Rightarrow ub(CST_{13}) \leq 1 \). The interval [1, 2] is removed from \(D(X_3) \). Similarly, [2, 3] is removed from \(D(X_2) \). Rule 2a.

This is satisfied as 2 is removed from all variables outside \(P \).

Exponential separation. We now give a pathological problem on which our new propagator does exponentially less work than existing methods.

Theorem 9. There exists a class of problems such that enforcing BC on OVERLAPPINGALLDIFF immediately detects unsatisfiability while a search method that enforces \textsc{bc} on the decomposition into ALLDIFFERENT constraints explores an exponential search tree regardless of branching.

Proof. The instance \(I_n \) is defined as follows \(I_n \) is \textsc{alldifferent}([\(X \cup Y\)] \& \textsc{alldifferent}([\(Y \cup Z\)]), \(D(X_i) = [1, 2n - 1], i = 1, \ldots, n \), \(D(Y_i) = [1, 4n - 1], i = 1, \ldots, 2n \) and \(D(Z_i) = [2n, 4n - 1], i = 1, \ldots, n \). OVERLAPPINGALLDIFF. Consider the interval \([1, 4n - 1]\), \([P = 4n], |N(P)| = 4n - 1\) and \(|N(P^S) \cap N(P^T)| = 0 \). By Theorem 2, we detect unsatisfiability.
Decomposition. Consider any ALLDIFFERENT constraint. A subset of \(n \) or fewer variables has at least \(2n - 1 \) values in their domains and a subset of \(n + 1 \) to \(3n \) variables has \(4n - 1 \) values in their domains. Thus, to obtain a Hall set and prune, we must instantiate at least \(n - 1 \) variables.

Experimental results

To evaluate the performance of our decomposition we carried out an experiment on random problems. We used Ilog 6.2 on an Intel Xeon 4 CPU, 2.0 GHz, 4GB RAM. We compare the performance of the \(DC \), \(BC \) (Lopez-Ortiz et al. 2003) propagators and our decomposition into constraints (3)-(12) for the OVERLAPPINGALLDIFF constraint (oBC). We use randomly generated problems with three global constraints: ALLDIFFERENT(\(X \cup W \)), ALLDIFFERENT(\(Y \cup W \)) and ALLDIFFERENT(\(Z \cup W \)), and a linear number of binary ordering relations between variables in \(X \), \(Y \) and \(Z \). We use a random variable ordering and run each instance with 50 different seeds. As Table 1 shows, our decomposition reduces the search space significantly, is much faster and solves more instances overall.

Table 1: Random problems. \(n \) is the size of \(X \), \(Y \) and \(Z \), \(o \) is the size of \(W \), \(d \) is the size of variable domains. Number of instances solved in 300 sec out of 50 runs / average backtracks/average time to solve.

<table>
<thead>
<tr>
<th>(n,d,o)</th>
<th>(BC)</th>
<th>(DC)</th>
<th>oBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4,15,10)</td>
<td>14/249411/61.8</td>
<td>41/1491341/52.1</td>
<td>42/17240/32.5</td>
</tr>
<tr>
<td>(4,16,11)</td>
<td>6/5531047/153.7</td>
<td>22/1745160/67.9</td>
<td>31/18421/19.5</td>
</tr>
<tr>
<td>(4,17,12)</td>
<td>1/17/0</td>
<td>6/2590427/100.9</td>
<td>24/18185/21.5</td>
</tr>
<tr>
<td>(5,16,11)</td>
<td>11/3052298/82.0</td>
<td>37/1434903/58.2</td>
<td>42/20482/48.5</td>
</tr>
<tr>
<td>(5,17,11)</td>
<td>2/3309113/94.5</td>
<td>19/2593819/114.6</td>
<td>26/4374/15.8</td>
</tr>
<tr>
<td>(5,18,12)</td>
<td>1/17/0</td>
<td>4/2566556/133.1</td>
<td>22/3132/12.2</td>
</tr>
<tr>
<td>(6,17,11)</td>
<td>11/2845367/79.1</td>
<td>31/1431671/66.3</td>
<td>40/6796/21.9</td>
</tr>
<tr>
<td>(6,18,11)</td>
<td>4/199357/66.6</td>
<td>16/1498128/80.2</td>
<td>31/4494/17.5</td>
</tr>
<tr>
<td>(6,19,12)</td>
<td>4/3183946/110.0</td>
<td>5/1035126/66.2</td>
<td>27/3302/15.5</td>
</tr>
<tr>
<td>TOTALS</td>
<td>54/450</td>
<td>181/450</td>
<td>285/450</td>
</tr>
<tr>
<td>sol/total</td>
<td>78.072</td>
<td>70.551</td>
<td>24.689</td>
</tr>
<tr>
<td>avg time for sol</td>
<td>2818926</td>
<td>166568</td>
<td>9561</td>
</tr>
</tbody>
</table>

Conclusions

We have generalized Hall’s theorem to simultaneous matchings in a bipartite graph. This generalization suggests a polynomial time algorithm to find a simultaneous matching in a convex bipartite graph. We applied this to a problem in constraint programming of propagating conjunctions of ALLDIFFERENT constraints. Initial experimental results suggest that reasoning about such conjunctions can significantly reduce the size of the explored search space. There are several avenues for future research. For example, the algorithmic techniques proposed in (Puget 1998) and (Lopez-Ortiz et al. 2003) may be generalizable to simultaneous bipartite matchings, giving more efficient propagators. Further, matchings are used to propagate other constraints such as NVALUE (Bessiere et al. 2006). It may be possible to apply similar insights to develop propagators for conjunctions of other global constraints, or to improve existing propagators for global constraints that decompose into overlapping constraints like SEQUENCE (Brand et al. 2005). Finally, we may be able to develop polynomial time propagators for otherwise intractable cases if certain parameters are fixed (Bessiere et al. 2008).

Acknowledgments

This research is supported by ANR UNLOC project (ANR 08-BLAN-0289-01), the Australian Government’s Department of Broadband, Communications and the Digital Economy and the ARC.

References

Diestel, R. 2006. Graph Theory. Springer.