
HAL Id: lirmm-00558132
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00558132

Submitted on 21 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A First Practical Algorithm for High Levels of
Relational Consistency

Shant Karakashian, Robert J. Woodward, Christopher Reeson, Berthe Y.
Choueiry, Christian Bessiere

To cite this version:
Shant Karakashian, Robert J. Woodward, Christopher Reeson, Berthe Y. Choueiry, Christian Bessiere.
A First Practical Algorithm for High Levels of Relational Consistency. AAAI Conference on Artificial
Intelligence, Jul 2010, Atlanta, GA, United States. pp.101-107. �lirmm-00558132�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00558132
https://hal.archives-ouvertes.fr

A First Practical Algorithm for High Levels of Relational Consistency
Shant Karakashian1, Robert J. Woodward1, Christopher Reeson1,

Berthe Y. Choueiry1 and Christian Bessiere2

1Constraint Systems Laboratory, University of Nebraska-Lincoln, USA
{shantk|rwoodwar|creeson|choueiry}@cse.unl.edu

2LIRMM-CNRS, University of Montpellier, France
bessiere@lirmm.fr

Abstract
Consistency properties and algorithms for achieving them are
at the heart of the success of Constraint Programming. In this
paper, we study the relational consistency property R(∗,m)C,
which is equivalent to m-wise consistency proposed in rela-
tional databases. We also define wR(∗,m)C, a weaker variant
of this property. We propose an algorithm for enforcing these
properties on a Constraint Satisfaction Problem by tighten-
ing the existing relations and without introducing new ones.
We empirically show that wR(∗,m)C solves in a backtrack-
free manner all the instances of some CSP benchmark classes,
thus hinting at the tractability of those classes.

1. Introduction
Local consistency is at the heart of the success of Constraint
Programming and perhaps best distinguishes this field from
other scientific disciplines that study the same combinatorial
problems. In this paper, we study the relational consistency
property R(∗,m)C, present an algorithm for enforcing it, and
compare the impact of our approach on the performance of
problem solving with that of other consistency properties.

R(∗,m)C is a relational consistency property for non-
binary Constraint Satisfaction Problems (CSPs) equivalent
to m-wise consistency proposed in the area of Relational
Databases (Gyssens 1986). When enforced, every consis-
tent assignment of variables appearing in the scope of a con-
straint can be extended to a consistent assignment of the
variables in the scope of every (m − 1) other constraints.
Enforcing R(∗,m)C filters existing relations but does not add
any new constraint to the problem.

We borrow the notation ‘relational (i,m)-consistency’
from (Dechter and van Beek 1997; Dechter 2003), and ab-
breviate it to ‘R(∗,m)C’, where ‘∗’ indicates that the prop-
erty is concerned with only ‘the scopes of the m consid-
ered constraints whatever their sizes are.’ An obvious algo-
rithm for enforcing R(∗,m)C is joining every combination
of m constraints and projecting the result on their respective
scopes: ∀Ri ∈ {R1, · · · , Rm}, Ri = πscope(Ri)(onm

j=1 Rj).
The space complexity of this obvious algorithm is too pro-
hibitive to be useful in practice. We propose an alterna-
tive algorithm that overcomes that limitation. When en-
forcing R(∗,m)C on every combination of m relations in

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the problem, much of this work is redundant and could be
avoided. We introduce a weakened variant of R(∗,m)C,
which we call wR(∗,m)C and obtain by removing redun-
dant edges from the dual graph of the CSP (Dechter 2003;
Janssen et al. 1989).

The contributions of this work are as follows: (1) the in-
troduction and discussion of the relational consistency prop-
erties R(∗,m)C and wR(∗,m)C; (2) the design of a parame-
terized algorithm for enforcing those properties; (3) the de-
sign of a new data structure for locating tuples in large re-
lations; (4) the analysis of the worst-case complexity of the
new algorithm; and (5) the empirical evaluation of our ap-
proach on benchmark problems, demonstrating its ability to
solve, in backtrack-free manner, all the instances of some
classes of those benchmarks, suggesting that it uncovers the
tractability of those classes.

This paper is structured as follows. Section 2 defines non-
binary CSPs. Section 3 discusses R(∗,m)C. Section 4 intro-
duces a weakened variant of R(∗,m)C obtained by remov-
ing redundant edges from the dual graph. Section 5 presents
our algorithm for enforcing R(∗,m)C along with a new data
structure for facilitating its implementation. Section 6 dis-
cusses our experimental results. Section 7 reviews the state
of the art in relational consistency, and Section 8 lists future
work and our conclusions.

2. Background
A Constraint Satisfaction Problem (CSP) is defined by
(V,D, C) where V is a set of variables, D is a set of do-
mains, and C is a set of constraints or relations. We use the
terms constraint and relation interchangeably. Each variable
Vi∈V has a finite domain Di∈D, and is constrained by a
subset of the relations in C. In a relation R, tuple τ∈R is a
combination of allowed values for the variables in the scope
of R. A solution to the CSP is an assignment of a value to
each variable such that all the constraints are satisfied.

The dual graph of a CSP is a graph whose vertices rep-
resent the relations of the CSP, and whose edges connect
two vertices corresponding to relations whose scopes over-
lap. The ‘dual CSP’ is thus a binary CSP where the variables
are the relations of the original CSP, their domains are the tu-
ples of those relations, and the constraints enforce equalities
over the shared variables. We denote by ϕ a combination
of m constraints that induce a connected component in the

dual graph. We refer to the set of all such combinations of
size m in a given CSP by Φ. Finally, π and on denote the
relational operators project and join, respectively.

To reduce the severity of the combinatorial explosion,
CSPs are usually filtered by enforcing a given local consis-
tency property. One common such property is Generalized
Arc Consistency (GAC). A CSP is GAC iff for every con-
straint, any value in the domain of any variable in the scope
of the constraint can be extended to a tuple satisfying the
constraint. Using the terminology introduced in (Debruyne
and Bessière 1997), we say that a local consistency property
LC is stronger than another LC ′ if in any CSP where LC
holds, LC ′ also holds. Further, we say that LC is strictly
stronger than LC ′ if LC is stronger than the LC ′ and there
exists at least one CSP in which LC ′ holds but not LC. Sim-
ilarly to (Bessiere, Stergiou, and Walsh 2008), we say that
LC and LC ′ are equivalent when LC is stronger than LC ′
and vice versa. In practice, when a consistency property is
stronger (respectively, weaker) than another, enforcing the
former never yields less (respectively, more) pruning than
enforcing the latter on the same problem does.

3. R(∗,m)C
Below, we introduce and discuss R(∗,m)C, which we define
using the definition format of R(i,m)C in (Dechter 2003).
Definition 1 A set of m relations R = {R1, · · · , Rm}
with m≥2 is said to be R(∗,m)C iff every tuple in each
relation Ri ∈ R can be extended to the variables in⋃
Rj∈R scope(Rj) \ scope(Ri) in an assignment that sat-

isfies all the relations in R simultaneously. A network is
R(∗,m)C iff every set of m relations, m≥2, is R(∗,m)C.

Informally, in every given set ϕ ofm relations, every tuple τ
in every relationR ∈ ϕ can be extended to a tuple τ ′ in each
R′ ∈ ϕ \ {R} such that all those tuples form a consistent
solution to the relations in ϕ. R(∗,m)C can be enforced by
filtering the existing relations and without introducing any
new relations to the CSP as follows. We repeatedly apply
the following operation to all combinations of m relations
{R1, · · · , Rm} until quiescence:

∀Ri ∈ {R1, · · · , Rm}, Ri = πscope(Ri)(on
m
j=1 Rj) (1)

Expression (1) gives us an obvious algorithm for R(∗,m)C,
but the space requirement is prohibitive in practice.

After enforcing R(∗,m)C on a constraint network, vari-
able domains are filtered by projecting the filtered relations
on the domains of the variables. Interestingly, these domain
reductions do not break the R(∗,m)C property.
Theorem 1 If a network is R(∗,m)C, domain filtering by
GAC cannot enable further constraint filtering by R(∗,m)C.

Proof: The proof is by contradiction. Assume that filter-
ing the domains with GAC after enforcing R(∗,m)C removes
value x from the domain of variable Vi. Then, there exists a
relation Ra that applies to Vi where the value x for Vi does
not appear in any tuple in Ra. For GAC to enable further
constraint filtering by R(∗,m)C, there must exist at least one
constraint Rb that applies to Vi and the value x for Vi ap-
pears in some tuple in Rb. Thus, there must be a tuple in

Rb that cannot be extended to a tuple in Ra, which yields
contradiction because the problem is R(∗,m)C. �

Now we compare R(∗,m)C with RmC (Dechter and van
Beek 1997). For a given set {R1, · · · , Rm} of m relations
RmC requires the projection of the joined relations on all
subsets A ⊆

⋃m
i=1 scope(Ri). Hence, every subset intro-

duces a new constraint, except those that have the same
scope as existing constraints. In contrast, R(∗,m)C projects
the joined relations on the scope of each of its original rela-
tions, without adding any new constraints.

Theorem 2 RmC is strictly stronger than R(∗,m)C.

Proof: Consider a CSP P and let Prmc and Pr∗mc be
the problem obtained after enforcing RmC and R(∗,m)C
on P , respectively. Consider a partial assignment τ over
some of the variables of P , scope(τ), that is consistent with
the constraints of Prmc. We prove that τ must necessarily
be consistent with the constraints in Pr∗mc. Assume that
τ is not consistent with the constraints in Pr∗mc. Thus,
there must be at least one relation Rx∗ in Pr∗mc s.t. τ 6∈
πscope(τ)(Rx∗). For every relation R in P there is a re-
lation in Pr∗mc and another one in Prmc with the same
scope as R. Pr∗mc does not have any additional relations
but Prmc does. Thus, Prmc must have a relation Rx s.t.
scope(Rx∗)=scope(Rx). Since τ is a consistent partial solu-
tion in Prmc, then τ∈πscope(τ)(Rx). τ∈πscope(τ)(Rx) and
τ 6∈πscope(τ)(Rx∗) is impossible because joining more rela-
tions of Prmc and projecting them on the same scope cannot
possibly introduce more tuples. Thus, we reach a contradic-
tion and RmC is stronger than R(∗,m)C.

Below, we provide an example that is R(∗,m)C but not
RmC. Let P be the following Boolean CSP with the four
variables V1, V2, V3, and V4 and the four constraints:
CV1,V2 = CV2,V3 = CV3,V4 = CV4,V1 = {〈0, 0〉, 〈1, 1〉}.
Let Prmc and Pr∗mc be the problems after RmC and
R(∗,m)C are enforced onP , respectively. The partial assign-
ment 〈(V1, 0), (V3, 1)〉 is consistent in Pr∗mc because P has
no constraint between V1 and V3 and by definition, R(∗,m)C
does not add new constraints. However, this partial assign-
ment violates the constraint CV1,V3 = {〈0, 0〉, 〈1, 1〉} which
is added in Prmc by RmC. Thus, RmC is strictly stronger
than R(∗,m)C. �

4. Weakening R(∗,m)C
We propose wR(∗,m)C, a weakened version of R(∗,m)C,
which requires significantly less time and space than
R(∗,m)C while slightly reducing the amount of pruning.

In the dual graph, edges enforce the equality of the shared
variables of two adjacent vertices. Janssen et al. (1989) and
Dechter (2003) observed that an edge between two vertices
is redundant if there exists an alternate path between the two
vertices such that the shared variables appear in every vertex
in the path. Such redundant edges can be removed without
modifying the set of solutions. Janssen et al. (1989) intro-
duced an efficient algorithm for computing the minimal dual
graph by removing redundant edges. Many minimal graphs
may exist, but they are all guaranteed to have the same num-
ber of remaining edges. Figure 1 shows the dual graph of a
CSP, where the edges drawn in dashed lines are redundant.

Indeed, the same value for A is enforced between R1 and
R3 through R4, and that for C between R2 and R3 through
R5.

Figure 1: Dual graph.

To enforce the R(∗,m)C property on a CSP, we must con-
sider only combinations of relations that induce a connected
component in the dual graph because tuples can be triv-
ially extended to relations that do not share variables. For
wR(∗,m)C, instead of using the original dual graph to gener-
ate the combinations of m relations on which to enforce the
R(∗,m)C property, we propose to use the minimal dual graph
obtained using the algorithm of (Janssen et al. 1989). While
this operation reduces the number of combinations consid-
ered (and consequently the time needed to process them and
the space needed to store them), it may yield a weaker filter-
ing of the constraints.
Definition 2 wR(∗,m)C relative to a given minimal dual
graph of a CSP P is defined as the property of P where
all the combinations of m relations that induce connected
components in the minimal dual graph verify the R(*,m)C
consistency property. Note that m≥2.
Given that, in general, more than one possible minimal dual
network exists, the property obviously depends on the min-
imal dual graph chosen, and is always defined relatively to
that graph. For sake of simplicity however, the particular
minimal dual graph is not included in the notation.
Theorem 3 wR(∗,2)C on any minimal dual graph of a CSP
and R(∗,2)C are equivalent.
Proof: The case where m = 2 corresponds to pairwise con-
sistency and the proof is given in (Janssen et al. 1989). �

Theorem 4 ∀a, b∈N where a<b≤|C|, wR(∗,b)C is strictly
stronger than wR(∗,a)C on the same connected minimal dual
graph of the CSP.
Proof: Let Φa and Φb be the set of combinations of
wR(∗,a)C and wR(∗,b)C, respectively. For every ϕa∈Φa
there exists ϕb∈Φb such that ϕa⊂ϕb. wR(∗,b)C is stronger
than wR(∗,a)C.

Consider the Boolean CSP Pe with the three variables V1,
V2, and V3 and the three constraints: CV1,V2 = CV2,V3 =
CV1,V3 = {〈0, 1〉, 〈1, 0〉}. Clearly, Pe is wR(∗,2)C but not
wR(∗,3)C. �

Corollary 1 wR(∗,3)C is strictly stronger than R(∗,2)C on
any connected minimal dual graph of the CSP where |C|≥3.

Proof: By Theorem 3, R(∗,2)C is equivalent to wR(∗,2)C.
By Theorem 4, wR(∗,3)C is stronger than wR(∗,2)C. Fur-
ther, the CSP Pe used in the proof of Theorem 4 is R(∗,2)C
but not wR(∗,3)C. �

Theorem 5 ∀m>2, R(∗,m)C is strictly stronger than
wR(∗,m)C on any connected minimal dual graph of the CSP.
Proof: Every combination of relations considered by
wR(∗,m)C is also considered by R(∗,m)C. Hence, R(∗,m)C
is stronger than wR(∗,m)C.

Assume that wR(∗,m)C is stronger than R(∗,m)C and
that the CSP of Figure 1 is inconsistent because there is
no assignment for the variables A,B,D that simultaneously
satisfies relations {R1, R2, R3}. For example, assume that
πAB(R1) = πBC(R2) = {〈1, 1〉, 〈0, 0〉}, and πAC(R3) =
{〈0, 1〉, 〈1, 0〉}. For m=3, the combination {R1, R2, R3}
considered by R(∗,3)C uncovers the inconsistency. How-
ever, this combination is not considered by wR(∗,m)C on the
minimal dual graph obtained from removing the two dashed-
line edges because the combination induces a disconnected
sub-graph of that minimal dual graph. Therefore, wR(∗,m)C
fails to uncover the inconsistency uncovered by R(∗,m)C. �

5. An Algorithm for Enforcing R(∗,m)C
Expression (1) gives an obvious algorithm for enforcing
R(∗,m)C. However, this algorithm requires computing and
materializing the join of each combination of m relations,
which can be prohibitive in practice. Below we propose
PROCESSQUEUE, an algorithm that avoids computing and
storing the intermediate joins. First, we describe initializing
the queue on which PROCESSQUEUE operates, then we dis-
cuss PROCESSQUEUE. After that, we describe the search for
supports and the data structure we designed for this purpose.
Definition 3 The support of a tuple τ of a relation R in a
combination ϕ of relations, denoted Sτ,ϕ, is a set of tuples
that verifies the condition: ∀Ri∈ϕ\{R}∃τi∈Sτ,ϕ, τi∈Ri
and the tuples in Sτ,ϕ∪{τ} agree on all shared variables.

5.1 Initializing the queue
Given the dual graph (or a minimal dual graph) of a CSP, let
Φ be the set of all combinations of m relations that induce
connected components of the considered graph. We initial-
ize the queue, Q, over which our algorithm operates, to all
the combination-relations pairs 〈ϕ,R〉 such that ϕ∈Φ and
R∈ϕ. We have developed an algorithm, not reported here
for lack of space, that computes Φ while exploiting the topol-
ogy of the considered graph. The advantage of our algorithm
is that it enumerates each connected component once and
none of the non-connected components.

5.2 Processing the queue
PROCESSQUEUE takes as input Q and Φ, see Algorithm 1.
It filters the relations to enforce R(∗,m)C, and returns true if
it is successful and false otherwise. It proceeds by removing
a combination-relation pair 〈ϕ,R〉 from the queue (Line 2),
and searches a support in ϕ for each τ ∈ R (Line 5). A tu-
ple that does not have a support is deleted from R (Line 7).
When a relation loses its last tuple, the algorithm returns
false (Line 8). If, after processing all the tuples in R, any
tuples are deleted, the relations affected by the update of R
are added to the queue. The affected relations are those that
appear with R in a combination other than ϕ. Notice that
a relation R′ that appears in a combination with R needs to

Algorithm 1: PROCESSQUEUE enforces R(∗,m)C
Input: Q, Φ
Output: true if the problem is R(∗,m)C, false otherwise
while (Q 6= ∅) do1
〈ϕ,R〉 ← POP(Q)2
deleted← false3
foreach τ ∈ R do4

support←SEARCHSUPPORT(τ, ϕ)5
if support = false then6

DELETE(τ, R)7
if R = ∅ then return false8
deleted← true9

if deleted then foreach ϕ′ ∈ (Φ \ {ϕ}), R ∈ ϕ′ do10
foreach R′ ∈ (ϕ′ \ {R}) do11
Q ← Q∪ {〈ϕ′, R′〉}12

return true13

be checked only in those combinations in which it appears
along with R. Therefore, when added to the queue, an af-
fected relation R′ is paired with the combination ϕ′, other
than ϕ, that includes both R and R′ (Line 12).

5.3 Searching for a support
To find a support Sτ,ϕ for a tuple τ of a relation R in a com-
bination ϕ, SEARCHSUPPORT conducts a backtrack search
on the dual encoding of the CSP induced by ϕ. This dual
CSP is denoted PDϕ. The variables of PDϕ are the relations
in ϕ. Their domains are the tuples of the relations except for
the variable corresponding to R which is assigned the tuple
τ . The constraints in PDϕ are binary, and enforce the equal-
ity of the shared scope of the relations in ϕ. A solution to
PDϕ is Sτ,ϕ, the support set of τ in ϕ. The search stops at
the first solution and returns Sτ,ϕ. It returns false if no solu-
tion is found. The search process uses forward checking and
dynamic variable ordering with the domain/degree heuristic.

5.4 The index-tree data structure
In order to effectively implement the above mentioned
forward-checking, we need to locate all the tuples in a re-
lation Rj that are consistent with a tuple τi of a relation Ri.
For that purpose, we designed the new index-tree data struc-
ture, which we introduce below. We assume that the rela-
tions are implemented as tables of consistent tuples and that
the variables are in a canonical order. Each table includes a
column to indicate that the tuple is deleted (1) or not (0).

An index tree is built for each relation and each subset
of its scope that is shared with another relation in the prob-
lem. Given two relations Ri and Rj and Vs=scope(Ri) ∩
scope(Rj), the index tree ITRj ,Vs returns for τi∈Ri all tu-
ples τj∈Rj to which τi can be extended, that is πVs(τi) =
πVs(τj). An index tree ITRj ,Vs is a rooted tree, with a
dummy root, where all leaves are at height |Vs|. The level
of a node in the tree corresponds to a variable in Vs. The
nodes are labeled with values of the variables in Vs. Each
leaf node holds a list of pointers to tuples in Rj . Figure 2
shows an example of an index tree for the relation Rj and

Figure 2: ITRj ,{A,B,C}.

Vs={A,B,C}.
The tree is built as follows. The tuples of Rj are sequen-

tially inserted in the tree. For a given tuple τj∈Rj , we con-
sider πVs

(τj). Traversing ITRj ,Vs
from the root, we match

the value of a variable in πVs
(τj) with the label of a child

of the current node in the tree. If the two values match, we
move to that child node in the tree and to the value of the
next variable in πVs(τj). Otherwise, we add a new child
node with the value of the variable in πVs(τj). When the
variables in Vs are exhausted, we insert τj at the end of the
list at the leaf node.

When searching for the tuples in Rj that are consistent
with τi, we traverse the tree as explained above for πVs

(τi).
If, at a given level, no child to a tree node can be found,
we conclude that no such tuple exists and return null. Oth-
erwise, we return, from the list of pointers at the leaf, the
non-deleted matching tuples.

The complexity of building the index tree isO(|Vs|td) for
time andO(|Vs|t) for space, where t is the number of tuples
in the relation and d the largest domain size of the variables
in Vs. This bound is reached when each leaf node points to a
single tuple. The time complexity of a query isO(|Vs|d+t).

5.5 Improving the search for support
We propose two improvements to the search for support.

When Sτ,ϕ is found, it is stored for the tuple-combination
pair 〈τ, ϕ〉, and reused as long as every tuple in Sτ,ϕ remains
valid, similar to ACS-residue algorithm (Likitvivatanavong
et al. 2007). The importance of this improvement is further
discussed in the complexity analysis.

Further, once Sτ,ϕ is found, the support of every tuple
τ ′∈Sτ,ϕ can be directly set to be (Sτ,ϕ ∪ {τ}) \ {τ ′}, thus
saving SEARCHSUPPORT the effort of searching for sup-
ports for all τ ′. This mechanism is reminiscent of the multi-
directional support of (Lecoutre and Hemery 2007).

5.6 Complexity analysis
The time complexity of the algorithm is dominated by PRO-
CESSQUEUE, hence the initialization phase is omitted from
the analysis. Let t be the maximum number of tuples in a re-
lation. It is bounded byO(dk), where d is maximum domain
size and k is the maximum arity of the relations. The num-
ber of constraints is e and the maximum number of com-
binations is

(
e
m

)
and bounded by O(minimum(em, e

e
2)).

Below, we assume that m< e
2 .

PROCESSQUEUE has two nested loops. The outer loop it-
erates over the combination-relation pairs inQ. The number

of times that the outer loop iterates is the initial size of Q,
which is O(em), plus the number of times a combination-
relation pair is added to Q in Line 12. A relation can partic-
ipate at most in em−1 combinations. Therefore, whenever
a tuple is deleted O(em−1) pairs are queued in Line 12.
There are O(te) tuples and each tuple is deleted at most
once. Thus, Line 10 is executed at most O(te) times, each
time enqueuing O(em−1) pairs. Therefore, the outer loop
iterates at most O(tem) times. The inner iterates over the
tuples in a relation, O(t) times. When a support for a tuple
has been identified, SEARCHSUPPORT costsO(m) to verify
that every tuple in the support is still valid. When any tuple
in the support has been deleted, SEARCHSUPPORT executes
a backtrack search on PDϕ. PDϕ has m variables of max-
imum domain size t, and the first variable is instantiated.
Thus, the complexity of the backtrack search is O(tm−1),
and that of the inner loop is O(tm). Thus, PROCESSQUEUE
is O(tm+1em). The time complexity of PROCESSQUEUE is
not worse than that of the obvious algorithm based on Ex-
pression (1), which is O(tm+1em+1).

When intermediate joins are not stored, the space com-
plexity of the obvious algorithm is O(tm), and constitutes a
major bottleneck for its practical implementation. The space
complexity of PROCESSQUEUE is dominated by the space
for storing the O(e2) index trees, which is O(kte2).

Thus, our algorithm dramatically reduces the space com-
plexity while slightly improving the time complexity.

6. Experimental Results
To evaluate the performance of our algorithm for enforc-
ing wR(∗,m) (i.e., R(∗,m)C on the minimal dual graph),
we compare it against GAC2001 (Bessiere et al. 2005) and
maxRPWC (Bessiere, Stergiou, and Walsh 2008). All those
algorithms are integrated as full lookahead strategies in a
backtrack search procedure. After enforcing wR(∗,m) in the
lookahead schema, we filter the domains of the uninstanti-
ated variables by projecting the constraints on the variables.
The search procedure finds the first solution of the original
CSP using the domain/degree heuristic for dynamic variable
ordering. During search, we timestamp the deleted tuples by
the variable’s instantiation. Upon backtracking, we restore
all tuples that have the timestamp of the variable’s instantia-
tion.

The experiments are conducted on the benchmarks of the
CSP Solver Competition1 with a time limit of one hour per
instance. They compare wR(∗,2)C, wR(∗,3)C, wR(∗,4)C,
GAC, and maxRPWC. We split the benchmark problems
into three groups, discussed in Tables 1, 2 and 3 respec-
tively. The tables give the number of nodes visited (#Nodes),
the CPU time in seconds (Time), and the maximum time
(Max time) for the instances completed within a one-hour
time limit. They also give the number of instances com-
pleted (#C), the number of instances with the fastest running
time (#F), and the number of instances solved backtrack free
(#BF). Time out is denoted as ‘-’ and memory out as ‘mem.’
CPU time includes preprocessing. Importantly, the averages
of #Nodes, Time, and Max time are computed over only the

1http://www.cril.univ-artois.fr/CPAI08/

instances completed by all the compared algorithms, but al-
gorithms that do not complete any instance are not taken
into consideration. Thus, those values should be considered
in light of the number of completed instances.

Table 1: Results on the benchmark problems of the first group.

Algorithm #Nodes Time Max time #C #F #BF
modifiedRenault (instances: 50, vars: 111, dom: 42, rels: 147, arity: 10)

wR(∗,2)C 192.5 2.99 18.45 46 27 41
wR(∗,3)C 82.5 7.55 12.43 50 4 48
wR(∗,4)C 82.5 33.88 70.61 50 2 50

GAC 1,324,309.8 402.44 2,436.40 26 14 4
maxRPWC 2,110.8 305.37 2,886.63 31 3 19

rand-8-20-5 (instances: 20, vars: 20, dom: 5, rels: 18, arity: 8)
wR(∗,2)C 941.3 1,162.22 2,979.77 16 14 0
wR(∗,3)C - - - 0 0 0
wR(∗,4)C mem - - 0 0 0

GAC 30,501.7 1,795.26 3,480.93 9 2 0
maxRPWC - - - 0 0 0

rand-10-20-10 (instances: 20, vars: 20, dom: 10, rels: 5, arity: 10)
wR(∗,2)C 0.0 0.20 0.24 20 4 20
wR(∗,3)C 0.0 0.21 0.25 20 1 20
wR(∗,4)C 0.0 0.18 0.22 20 19 20

GAC 210.0 9.34 13.17 20 0 0
maxRPWC 0.0 2.45 6.81 20 0 20

dag-rand (instances: 25, vars: 23, dom: 3, rels: 16, arity: 15)
wR(∗,2)C 0.0 27.21 31.51 25 25 25
wR(∗,3)C 0.0 37.75 40.15 25 0 25
wR(∗,4)C mem - - 0 0 0

GAC - - - 0 0 0
maxRPWC - - - 0 0 0

aim-100 (instances: 24, vars: 100, dom: 2, rels: 154, arity: 3)
wR(∗,2)C 66,905.8 12.65 72.43 18 5 5
wR(∗,3)C 5,578.4 24.40 252.07 18 4 7
wR(∗,4)C 127.5 11.47 65.89 19 3 12

GAC 30,993,972.2 602.91 2,758.48 17 0 1
maxRPWC 11,408,274.4 298.69 1,348.66 17 7 1

aim-200 (instances: 24, vars: 200, dom: 2, rels: 315, arity: 3)
wR(∗,2)C 2,670.2 35.51 71.98 12 7 4
wR(∗,3)C 580.2 35.91 79.96 14 7 8
wR(∗,4)C 443.8 240.13 837.54 14 2 9

GAC 1,876,247.6 542.48 2,114.74 8 0 0
maxRPWC 842,488.8 414.05 1,583.34 8 1 0

The usefulness of stronger consistency is best illustrated
on the problems of Table 1. wR(∗,m)C is the fastest on
most instances, and able to solve more instances than GAC
or maxRPWC2. In many instances, GAC takes more than
100 times the CPU time of wR(∗,m)C. In particular, many
modifiedRenault instances are solved in a few seconds
with wR(∗,m)C, but not completed in one hour by GAC.
Moreover, wR(∗,m)C solves many more instances back-
track free than GAC and maxRPWC do. We emphasize that
all dag-rand and modifiedRenault are solved back-
track free by wR(∗,2)C and wR(∗,4)C, respectively. Thus,
wR(∗,m)C hints at the tractability of the corresponding CSP

2Bessiere et al. (2008) showed that pairwise consistency (i.e.,
R(*,2)C) followed by GAC is strictly stronger than maxRPWC,
which is strictly stronger than GAC.

Table 2: Results on the benchmark problems of the second group.

Algorithm #Nodes Time Max time #C #F #BF
lexVg (instances:63, vars:100, dom:26, rels: 20, arity:10)

wR(∗,2)C 51.3 3.97 57.77 51 0 27
wR(∗,3)C 51.3 61.61 611.4 43 0 27
wR(∗,4)C 4.5 260.77 2,871.45 39 0 35

GAC 50.5 0.43 8.77 63 43 26
maxRPWC 50.5 0.42 8.08 63 31 26

ogdVg (instances:65, vars:100, dom:26, rels: 20, arity:10)
wR(∗,2)C 10.1 1.23 4.81 25 0 9
wR(∗,3)C 10.1 213.35 825.43 14 0 9
wR(∗,4)C 9.4 889.49 2,811.22 9 0 9

GAC 10.6 0.16 0.77 35 19 11
maxRPWC 10.6 0.16 0.78 35 19 11

renault (instances:2, vars:101, dom:42, rels: 134, arity:10)
wR(∗,2)C 101.0 2.24 2.34 2 0 2
wR(∗,3)C 101.0 9.29 9.57 2 0 2
wR(∗,4)C 101.0 71.54 72.15 2 0 2

GAC 101.0 1.04 1.13 2 2 2
maxRPWC 101.0 370.68 377.54 2 0 2

ssa (instances:8, vars:435, dom:2, rels: 738, arity:5)
wR(∗,2)C 574.0 0.16 0.3 2 1 2
wR(∗,3)C 574.0 0.22 0.41 2 0 2
wR(∗,4)C 574.0 0.33 0.61 2 0 2

GAC 574.0 0.06 0.11 2 2 2
maxRPWC 574.0 0.07 0.12 2 1 2

Table 3: Results on the benchmark problems of the third group.

Algorithm #Nodes Time Max time #C #F #BF
rand-3-20-20 (instances:50, vars:20, dom:20, rels: 60, arity:3)

wR(∗,2)C 10,494.1 1,565.43 3,005.42 28 2 0
wR(∗,3)C - 0 0 1 0 0
wR(∗,4)C - 0 0 0 0 0

GAC 52,711.5 255.18 436.58 48 46 0
maxRPWC 52,331.5 1,945.08 3,560.47 23 0 0

rand-3-20-20-fcd (instances:50, vars:20, dom:20, rels: 60, arity:3)
wR(∗,2)C 6,498.5 1,107.93 2,769.95 35 1 0
wR(∗,3)C - 0 0 6 0 0
wR(∗,4)C - 0 0 0 0 0

GAC 31,627.5 171.73 418.1 49 48 0
maxRPWC 31,203.2 1,220.33 3,453.52 30 0 0

dubois (instances: 13, vars: 300, dom: 2, rels: 200, arity: 3)
wR(∗,2)C 34,172,289.7 259.05 454.45 5 0 0
wR(∗,3)C 34,172,289.7 850.92 1,474.69 4 0 0
wR(∗,4)C 7,381,321.7 955.42 1,640.00 3 0 0

GAC 26,352,376.3 92.04 160.57 7 6 0
maxRPWC 26,352,376.3 91.96 159.30 7 1 0

pret (instances: 8, vars: 150, dom: 2, rels: 100, arity: 3)
wR(∗,2)C 22,677,416.3 151.63 153.04 4 0 0
wR(∗,3)C 2,129,528.0 88.79 92.32 4 0 0
wR(∗,4)C 2,129,528.0 275.04 286.58 4 0 0

GAC 13,024,912.3 40.48 41.78 4 4 0
maxRPWC 13,024,912.3 40.93 43.00 4 0 0

class, and constitutes another step towards empowering con-
straint solvers to solve problems without search, a target
identified during the ModRef’09 Workshop. Stronger con-

sistency almost always consistently reduces the number of
nodes visited, but not the CPU time. When search with a
given consistency property visits relatively few nodes, en-
forcing a stronger property on the same instance may be
overkill and wasteful. This remark holds for wR(∗,2)C and
wR(∗,3)C on dag-rand, but not for rand-10-20-10
where wR(∗,4)C beats all tested algorithms.

Table 2 shows the results of the second group of bench-
marks. On these problems, all tested algorithms visit few
nodes. The time for enforcing wR(∗,m)C is wasted and
increases with the value of m. As for the third group in
Table 3, wR(∗,m)C visits fewer nodes than both GAC and
maxRPWC for most of the instances, but is not able to out-
perform them in terms of CPU time.

We do not report the results of R(∗,m)C for the following
reasons. For m = 2, R(∗,2)C and wR(∗,2)C are equivalent
and the latter is significantly cheaper than the former. In
general, wR(∗,m)C considers significantly fewer combina-
tions of constraints than R(∗,m)C: it scales better than and
outperforms R(∗,m)C.

The goal of our experiments is to evaluate different con-
sistency properties under similar conditions. Our solver does
not implement the advanced heuristics used in the Solver
Competition. Hence, we cannot compare the CPU time in
our experiments to that of the competition. Nevertheless,
we achieve better CPU time with wR(∗,2)C on dag-rand
than reported in the 2008 and 2009 competitions.

7. Related Work
Janssen et al. (1989) introduced pairwise consistency as a
special case of m-wise consistency, which was proposed
in the area of relational databases (Gyssens 1986). Pair-
wise consistency requires that every tuple in a relation can
be extended to a tuple in every other relation. Pairwise
consistency and R(∗,2)C are equivalent. The authors pro-
posed to enforce this consistency property by enforcing
arc-consistency on the dual CSP. Importantly, the authors
also described an algorithm for removing the redundant
edges from the dual CSP to avoid revising unnecessary re-
lation pairs. We use their redundancy removal algorithm
for wR(∗,m)C. While m-wise consistency is equivalent to
R(∗,m)C, to the best of our knowledge, our work is the first
to propose and evaluate an algorithm for enforcing it.

Jégou (1993) proposed hyper-k-consistency, which re-
quires the tuples in every (k-1) relations to be extendible
to every kth relation. Generalizing the early work on local
consistency for CSPs in (Montanari 1974; Mackworth 1977;
Jégou 1993), Dechter and van Beek (1997) formalized rela-
tional consistency for non-binary CSPs in terms of relational
m-consistency and relational (i,m)-consistency. Enforcing
any of the above listed properties may require the addition of
new constrains to the problem modifying its topology, which
we avoid doing in our approach.

None of the above-listed approaches evaluates practical
algorithms for enforcing the proposed properties.

Next, we describe more recent approaches to relational
consistency that specify and evaluate the corresponding
propagation algorithms.

Stergiou and Walsh (1999) studied arc consistency on
three different encodings of non-binary CSPs (i.e., the hid-
den variable, dual, and double encodings). Samaras and
Stergiou (2005) designed specialized arc-consistency algo-
rithms for those encodings. Their arc-consistency algorithm
for the dual encoding improves performance by grouping tu-
ples that have the same supports, but yields filtering equiva-
lent to pairwise consistency and R(∗,2)C. While it is special-
ized for pairs of relations, our proposed algorithm is param-
eterized and applies to any number of relations. Our algo-
rithm can benefit from the tuple grouping of (Samaras and
Stergiou 2005). Further, we avoid redundant checks as pro-
posed in (Janssen et al. 1989), which is an improvement
over the approach of (Samaras and Stergiou 2005).

Bessiere et al. (2008) provided detailed theoretical, algo-
rithmic, and empirical studies of domain filtering consisten-
cies for non-binary CSPs. The consistency properties that
they studied do not modify the topology of the constraint
network and are restricted to combinations of two relations.
Further, they are stronger than GAC (which is relational
(1,1)-consistency), but are weaker than pairwise consistency
followed by GAC. Our work complements and extends their
approach by considering combinations of an arbitrary num-
ber of constraints and updating the constraint definitions,
thus providing stronger consistency properties. In our ex-
periments, we compare our work against maxRPWC, which
exhibits the best performance in their study.

Finally, we mention the consistency properties Conserva-
tive Path Consistency introduced in (Debruyne 1997) and
the stronger property Conservative Dual Consistency intro-
duced in (Lecoutre, Cardon, and Vion 2007), which do not
alter the topology of the constraint graph. However, they
are both restricted to binary CSPs and consider only three
constraints at the same time.

8. Conclusions and Future Work

In this paper, we studied the relational consistency property
R(∗,m)C, proposed a weaker variant of it, wR(∗,m)C, and
presented a parameterized algorithm for enforcing it. Our
algorithm operates by tightening the existing constraints,
without adding new ones. To demonstrate its usefulness,
we evaluated it against algorithms for GAC and maxRPWC.
Our experiments showed that, by maintaining a stronger
consistency, the performance of search can be improved
by two orders of magnitude on many benchmark problems.
Several instances were solved in a backtrack-free manner,
hinting at the tractability of the corresponding problem class.

Our algorithm can be further improved by reducing re-
dundant consistency checks, for example by grouping tuples
(Samaras and Stergiou 2005) or exploiting complex resid-
ual supports (Likitvivatanavong et al. 2007; Lecoutre and
Hemery 2007; Lecoutre et al. 2008). Other interesting av-
enues for future work are to exploit the tightness of the con-
straints to avoid considering ineffective combinations of re-
lations and to design techniques that automatically identify
the level of consistency necessary for a given problem.

Acknowledgments
The authors acknowledge the help of Kostas Stergiou and
the feedback of anonymous reviewers. Experiments were
conducted on the equipment of the Holland Computing Cen-
ter at UNL. Shant Karakashian was partially supported by
NSF CAREER Award #0133568, and Robert Woodward by
an undergraduate research grant (UCARE) of the University
of Nebraska-Lincoln and by a B.M. Goldwater Scholarship.

References
Bessiere, C.; Régin, J.-C.; Yap, R. H.; and Zhang, Y. 2005.
An Optimal Coarse-Grained Arc Consistency Algorithm.
Artificial Intelligence 165(2):165–185.
Bessiere, C.; Stergiou, K.; and Walsh, T. 2008. Domain Fil-
tering Consistencies for Non-Binary Constraints. Artificial
Intelligence 172:800–822.
Debruyne, R., and Bessière, C. 1997. Some Practicable Fil-
tering Techniques for the Constraint Satisfaction Problem.
In Proc. of the 15 th IJCAI, 412–417.
Debruyne, R. 1997. A Strong Local Consistency for Con-
straint Satisfaction. In ICTAI 99, 202–209.
Dechter, R., and van Beek, P. 1997. Local and Global Rela-
tional Consistency. Theor. Comput. Sci. 173(1):283–308.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Gyssens, M. 1986. On the Complexity of Join Dependen-
cies. ACM Trans. Database Systems 11(1):81–108.
Janssen, P.; Jégou, P.; Nougier, B.; and Vilarem, M. 1989. A
Filtering Process for General Constraint-Satisfaction Prob-
lems: Achieving Pairwise-Consistency Using an Associated
Binary Representation. In IEEE WS on Tools for AI, 420–
427.
Jégou, P. 1993. On the Consistency of General Constraint-
Satisfaction Problems. In AAAI 1993, 114–119.
Lecoutre, C., and Hemery, F. 2007. A Study of Residual
Support in Arc Consistency. In IJCAI 07, 125–130.
Lecoutre, C.; Likitvivatanavong, C.; Shannon, S.; Yap, R.;
and Zhang, Y. 2008. Maintaining Arc Consistency with
Multiple Residues. Constraint Programming Letters 2:3–
19.
Lecoutre, C.; Cardon, S.; and Vion, J. 2007. Conservative
Dual Consistency. In AAAI 07, 237–242.
Likitvivatanavong, C.; Zhang, Y.; Shannon, S.; Bowen, J.;
and Freuder, E. C. 2007. Arc Consistency During Search.
In Proc. of the 20 th IJCAI, 137–142.
Mackworth, A. K. 1977. Consistency in Networks of Rela-
tions. Artificial Intelligence 8:99–118.
Montanari, U. 1974. Networks of Constraints: Fundamen-
tal Properties and Application to Picture Processing. Inf.
Sciences 7:95–132.
Samaras, N., and Stergiou, K. 2005. Binary Encodings of
Non-binary Constraint Satisfaction Problems: Algorithms
and Experimental Results. JAIR 24:641–684.
Stergiou, K., and Walsh, T. 1999. Encodings of Non-Binary
Constraint Satisfaction Problems. In AAAI 1999, 163–168.

