
HAL Id: lirmm-00558917
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00558917

Submitted on 24 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Web Service Registry for an Assisted-SOA
Zeina Azmeh

To cite this version:

Zeina Azmeh. A Web Service Registry for an Assisted-SOA. RR-11003, 2010, pp.25. �lirmm-00558917�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00558917
https://hal.archives-ouvertes.fr

A Web Service Registry for an Assisted-SOA

�Research Report�

Zeina Azmeh

October 15, 2010

Contents

1 Introduction 1
1.1 Web Service Challenges . 2
1.2 A Web Service Registry Proposition 2
1.3 Organization of this report . 3

2 Automatic Web Service Tagging 4

3 FCA-Based Web Service Classification 5
3.1 Case study . 5
3.2 The keywords lattice . 7
3.3 The similarity lattice . 8

4 QoS-Based Web Service Ordering 13

5 Web Service Composition 15
5.1 RCA-Based Web Service Classification 15
5.2 Web Service Triangles Approach 18

6 Perspectives 21
6.1 Enhancing Coma++ with WordNet 21
6.2 WordNet for a WSDL’s domain of functionality 21
6.3 Modelling abstract business processes 22

1 Introduction

A web service-based application in SOA vision can be built by discovering and
composing sets of interoperable services, according to some specified function-
ality. A developer has to specify the pieces of functionality needed inside an
aimed application, and each piece of functionality is defined as a set of parallel
and sequential consecutive tasks. In other words, a piece of functionality inside
an application is defined as a workflow of operations, offered by one or more
services. This means that for each specified task the developer must discover a
web service that offers an operation satisfying this task. This poses a number of
challenges because a developer might not have enough knowledge about all of the
existing service providers where he can find the required services. On the other
hand, if many providers offering a needed service were found, a time-consuming
comparison will be required in order to choose the provider offering the most
suitable service. Many aspects must be taken into consideration while select-
ing a service to fulfill a task in the composition. This includes the functional
aspect, the non-functional (QoS) and the needed adaptations to compose this
service with other ones in the composition. Composing two consecutive services
in a workflow implies the composition of two operations, an operation of each
service. This necessitates the assignment of certain output parameters of the
first operation with certain input parameters of the second one. This output-
input assignment may not always be accomplished directly, because there may
be some differences between the parameters and their data types that requires
performing some adaptations. Thus, constructing a web service-based compos-
ite application can have variable levels of complexity, regarding the needed time
and effort to build each part of functionality, consisting of finding and com-
posing the required services, with performing the necessary adaptations. The
situation may become more complicated if one or more of the composed ser-
vices becomes no more usable. This will necessitate the replacement of these
services with functionally similar services that can fulfill the left functional gap.
Hence, finding services’ substitutes, modifying services’ proxies and performing
new adaptations.

So briefly, the process of constructing a web service-based application con-
sists of:

• Specifying the needed pieces of functionality inside the application, ex.
billing, payment and shipping;

• Each piece of functionality is a workflow of tasks;

• Each task is an operation offered by a web service;

• To satisfy each needed piece of functionality, a search for services must be
carried out for each specified task

• Service providers must be found and in case of multiple similar services,
a compromise between functional and non-functional aspects of a service
must be done, in order to choose the most suitable service, in addition to
minimizing the required adaptations when composing the services;

• Services offering the needed tasks must be composed together, taking into
consideration the needed adaptations;

1

• After the long process of discovering and composing the needed services,
if a service becomes no more usable after a while, it must be replaced by
another one that can fulfill the functional gap, after performing the needed
modifications and adaptations.

1.1 Web Service Challenges

Web services face several challenging issues coming from several factors. Since,
they are offered by various providers, remotely accessed, and sometimes pro-
vided for free, there is no guarantee of a continuous execution. An available
functioning web service may crash and become unavailable at any time, which
necessitates finding an equivalent one to replace it. Unfortunately, this can be
hard to achieve since there is a lack of WSDL organizing facilities, especially
after the deficiency of the UDDI1 registries: ”UDDI did not achieve its goal of
becoming the registry for all Web Services metadata and did not become useful
in a majority of Web Services interactions over the Web”2.

1.2 A Web Service Registry Proposition

We propose a web service registry, a broker that mediates between service
providers and service consumers, considering that a service consumer is a de-
veloper of web service-based composite applications. This registry enables
providers of publishing their well-described documented services, and provid-
ing their estimated QoS information related to these services. It adapts two
classifying techniques: Formal Concept Analysis (FCA) and Relational Con-
cept Analysis (RCA).

The published services are organized into domains of functionality and in
each domain similar services are classified in order to reveal replaceable services.
We build our classification using FCA, which is a method of data analysis that
takes as input a set of objects and a set of attributes with the relation between
them indicating which objects have which attributes. After analyzing the input
data, it clusters the objects into concepts depending on their attributes, and
reveals the relationships between these concepts, thus, the relationships between
the objects. The concepts can then be ordered in a lattice structure for a
better browsing and navigation of objects and relationships among them. We
adapt this method for classifying web services by considering that the set of
objects is a set of web services, and the set of attributes is the set of the offered
operations. The resulting classification is represented as a concept lattice for
web services, from which we can easily select a needed service by browsing its
offered operations, and we can also find the possible substitutes of a selected
service. Using this method, services are also classified according to their QoS
attributes specified by the providers. This enables services consumer of finding
an aimed service depending on its functional and non-functional aspects, as well
as finding its possible substitutes. A service consumer may either query the
registry for services offering a specific operation, or he can design an abstract
business process that describes his aimed composite application, in which he
specify the set of needed tasks ordered in a workflow. The registry will analyze

1http://www.uddi.org/pubs/uddi v3.htm
2E. Newcomer and G. Lomow, Understanding SOA with Web Services (Independent Tech-

nology Guides). Addison-Wesley Professional, 2004.

2

the specified abstract process and finds the set of web services that can fulfill
each task, by querying the corresponding service lattice. After discovering the
sets of services that can fulfill the tasks in order to satisfy the functionality
required by the abstract process, another classification is built that reveals the
composable services according to each pair of consecutive tasks. This second
classification is based on an extension of FCA called RCA.

Inside the registry there are techniques to:

• Infer the domain of functionality for each published service, with the help
of the WordNet ontology;

• Building FCA-based classifications for the similar services taking into con-
sideration their QoS values, in order to have a better browsing of func-
tionality and the substitutability relations;

• Designing and analyzing abstract business processes, then finding the can-
didate services that can fulfill the needed tasks, depending on the func-
tional, non-functional aspects, and the preferences provided by the con-
sumer;

• Building RCA-based classifications for the discovered services, in order
to classify them by their composability levels according to each pair of
consecutive tasks;

• Selecting the optimal set of composable services, by doing a compromise
of QoS and adaptations levels, according to the consumer preferences;

• Keeping track of consumers and their service compositions, and notify
them in case of a service failure with possible backups;

• By keeping track of service compositions, the registry acquires knowledge
about the new resultant composite functionality;

• Consumers can combine several operations while designing their composi-
tion, under a new operation name, like this the registry learns the possible
operation composition to realize a requested operation.

1.3 Organization of this report

The organization of this report represents the sequence of ideas of our work. Our
first step is to extract the tags (keywords) in each WSDL file, which is explained
in section 2. These keywords are used afterwards to classify the services into
lattices using FCA, as we will see in section 3. We then explain in section 4
how to order a set of services according to their various QoS aspects. After
classifying the services by their similar functionality, and their QoS aspects, we
need to find a set of composable services, according to their QoS values and
composability levels, illustrated in section 5. We present our future work in
section 6.

3

2 Automatic Web Service Tagging

We propose an approach that automatically extracts a set of relevant tags from
a WSDL [5]. We used a corpus of user-tagged services to learn how to ex-
tract relevant tags from untagged service descriptions. This approach adapts
techniques from text mining in order to extract candidate tags out of a descrip-
tion, and techniques from machine learning to select relevant tags among these
candidates.

We model the tag extraction problem as the following classification problem:
classifying a word into one of the two tag and no tag classes. Our overall process
is divided into two phases: a training phase and a tag extraction phase.

WSDL + Tags
Corpus

word 1 + features + class
word 2 + features + class
word n + features + class

Already classified
words

Trained
classifier

Figure 1: The training phase.

Figure 1 summarizes the behavior of the training phase. In this phase we
have a corpus of WSDL files and associated tags, extracted from Seekda. From
this training corpus, we first extract a list of candidate words by using text-
mining techniques. Then several features (metrics) are computed on every can-
didate. A feature is a common term in the machine learning field. As an
example, it may be the frequency of the words in their WSDL file. Finally,
since manual tags are assigned to those WSDL files, we use them to classify
the candidate words coming from our WSDL files. Using this set of candidate
words, computed features and assigned classes, we train a classifier.

New WSDL
file

word 1 + features
word 2 + features
word n + features

Unclassified
candidate words

Trained
classifier

+
tag 1
tag 2
tag k

Tags

Figure 2: The tag extraction phase

Figure 2 describes the tag extraction phase. First, like in the training phase,
a list of candidate words is extracted from an untagged WSDL file and the same
features are computed. The only difference with the training phase is that we
do not know in advance which of those candidates are true tags. Therefore we
use the previously trained classifier to automatically perform this classification.
Finally the tags extracted from the WSDL file are the words that have been
classified in the tag class.

We have used a corpus of 146 user-tagged web services extracted from Seekda
for experiment. The obtained results demonstrated the efficiency of the de-
scribed approach.

The extracted keywords are used to classify web services, using Formal Con-
cept Analysis, as explained in the next section.

4

3 FCA-Based Web Service Classification

We propose an approach based on Formal Concept Analysis (FCA) [1], [3] for
classifying web services into a lattice structure, which facilitates their browsing
and selection [6]. A service lattice reveals the relations between the services,
easing the discovery of a needed service as well as the identification of its possible
alternatives. This helps in the construction of service compositions and ensuring
a continuous functionality by supporting them with backup services. In figure
3, we can see a general overview of the main steps of our approach, in which,
two service lattices are built:

• a lattice for indexing the services by keywords extracted from their WS-
DLs, using the automatic tag extraction approach, described in Section 2,

• a lattice for similar service classification, which is build from a many-
valued context that contains the similarity values that are calculated be-
tween operations offered by each pair of services.

Figure 3: The main steps of our approach.

We explain our approach along with a case study described in the next
section.

3.1 Case study

Let us consider the following travel scenario: a traveller needs to reserve a plane
ticket to a desired city. Supposing that this traveller lives in a small city that has
no airport, then, he should also travel to the city where the airport is located,
in order to take the plane he reserved. Thus, he must also reserve a train ticket,
from his home city to the airport city, taking into consideration the flight exact
time with the time needed to travel between the two cities. This scenario can
be achieved by a travel composite service (TCS), in which 3 functionalities must
be satisfied:

• reserve a flight from home city, or airport city, towards a desired city,

5

• if a train reservation is needed (in case that the home city is not the airport
city), then calculate the needed time (duration) to travel between the two
cities by train,

• reserve a train ticket, regarding the exact flight time and the calculated
duration.

The TCS can be realized by discovering services offering the described func-
tionalities and composing them. It may look like the composition in Figure 4. In
this orchestration, if the service TrainWS crashes, for example, an equivalent
service offering at least the two used operations calcDuration() and resTrain()
must be searched and discovered, in order to recover the missing functionality,
and ensure the continuity of the composition.

Figure 4: The travel composite service (TCS).

In the following we explain the construction of the keywords lattice, and
the similarity lattice. We conclude by showing how to construct this composite
travel service, and support it with backup services.

6

3.2 The keywords lattice

The extracted keywords in section 2 are used to generate the first lattice, which
represents an indexation of services by keywords. Supposing a set of random
web services for travel facilities, the corresponding lattice may resemble the
lattice in Figure 5.

Figure 5: The concept lattice for a set of services and their keywords.

From this lattice, we can retrieve services in a certain domain by enquir-
ing the lattice using keywords. Such a query returns a sub-lattice of services
sharing the specified set of keywords, which are highly probable to provide sim-
ilar functionalities. We perform a query on a lattice by expressing the set of
keywords as a new line, added to the context service × keyword. This results
in a new concept in the lattice, labelled query. The services that answer the
specified query are represented by the sub-concepts of the query concept. In
our scenario, we perform two keyword queries: query1 = {reserve, plane} and
query2 = {reserve, train, duration}. This results in the lattice shown in Fig-
ure 6, in which, we extract the services answering the two queries and they
are:

• for query1: ws1, ws2, ws3, ws4, ws9 and ws10,

• for query2: ws5, ws6, ws8, ws9, ws10.

We further analyse the two sets of services corresponding to the two queries.
We apply a similarity measure on the operations according to each set and we
identify the groups of similar operations. For example, an operation labelled
reserveF in the lattice, represents a group of similar operations for performing
a flight reservation. This way, we can build a new context of service×operation
for each set of services.

7

Figure 6: Queries as concepts in the service× keyword lattice.

We explain next how to build a many-valued context of similarity values,
which are calculated between pairs of operations provided by different services.

3.3 The similarity lattice

For clarity sake, we illustrate our approach using an imaginary set of Web
services for performing calculations. Each service from this set is parsed by a
WSDL parser to extract its signatures. The set of services with their signatures
are given unique identifiers, as listed in Table 1.

Table 1: A set of calculation services with their operations.
Services Id Operations Id

Calculator1 ws1 add(a,b) op11
sub(a,b) op12

Calculator2 ws2 add(a,b,c) op21

Calculator3 ws3 add(a,b,c,d) op31
sub(a,b,c) op32
mult(a,b) op33
add(a,b,c) op34

Next, a similarity measure must be chosen, and the operations signatures
extracted from the WSDL files will be used by this similarity measure, accord-
ing to its input format. Several similarity measures for web services exist in the
literature. They evaluate the similarity according to the syntactic and semantic
levels.The similarity is assessed in the form of values in the range [0,1]. If two

8

operations are sufficiently similar, the similarity value will approach 1, or else
it will approach 0. The similarity measure is applied on pairs of operations
provided by different services. We do not consider the similarity between oper-
ations provided by the same service (it is equal to 0), because when a service
becomes dysfunctional, all of its operations become dysfunctional too.

A similarity measure (Sim) can be defined as follows:

Sim : O×O→ [0, 1]
∀ opij ∈ O =⇒ Sim(opij , opij) = 1

(an operation with itself)
∀ opij , opik ∈ O =⇒ Sim(opij , opik) = 0

(operations in the same service)
∀ opij , opnm ∈ O =⇒ Sim(opij , opnm) ∈ [0, 1]

(operations in different services)

The calculated similarity values can be presented by a symmetric square
matrix that we will call SimMat, as shown in Table 2. This matrix is of size
n = |O|, and its diagonal elements are all equal to 1, since we consider that the
similarity of an operation with itself is equal to 1 as declared above.

Table 2: The similarity matrix (SimMat).
op11 op12 op21 op31 op32 op33 op34

op11 1 0 0.75 0.5 0 0 1
op12 0 1 0 0 0.75 0 0
op21 0.75 0 1 0.75 0 0 0.75
op31 0.5 0 0.75 1 0 0 0
op32 0 0.75 0 0 1 0 0
op33 0 0 0 0 0 1 0
op34 1 0 0.75 0 0 0 1

From the similarity matrix SimMat, we can extract several binary contexts,
by specifying threshold values θ ∈]0, 1]. Thus, the values of SimMat that are
greater or equal to the chosen threshold θ are scaled to 1, while other values
are scaled to 0. The binary context that corresponds to θ = 0.75 is shown in
Table 3, we call it SimCxt.

Table 3: The binary context (SimCxt) for θ = 0.75.
op11 op12 op21 op31 op32 op33 op34

op11 x x x
op12 x x
op21 x x x x
op31 x x
op32 x x
op33 x
op34 x x x

The SimCxt context is a triple (O,O, RSimθ), where RSimθ is a binary
relation indicating whether an operation is similar to another operation or not.

(opij , opnm) ∈ RSimθ ⇐⇒ Sim(opij , opnm) ≥ θ

We use the SimCxt context to generate a lattice of operations, B(O,O, RSimθ).
This lattice helps in discovering groups of similar operations, which are used
later on to construct the services lattice.

9

In the resulting operation lattice, groups of mutually similar operations can
be identified by the concepts having equal extent and intent sets. We call such
concepts as square concepts, because they form square gatherings on the binary
context matrix. We define a group Gop of mutually similar operations OpSim
as:

Gop = {OpSim | (OpSim, OpSim) ∈ B(O,O, RSimθ)}

The notion of square concepts can be better recognized by performing a mutual
column-line interchange in the SimCxt, the resulting interchanged context is
shown in Table 4.

Table 4: The interchanged (SimCxt) context.
op11 op34 op21 op31 op12 op32 op33

op11 x x x
op34 x x x
op21 x x x x
op31 x x
op12 x x
op32 x x
op33 x

From the lattice in Figure 7 as from the interchanged context in Table 4, we
can identify the groups of similar operations, and they are the following:

• {op11, op34, op21}

• {op21, op31}

• {op12, op32}

• {op33}

Figure 7: The generated lattice for (SimCxt) shown in Table 3.

The groups of similar operations, denoted as G, are used to define the final
binary context. This context is a triple (W,G, R), in which the relation R
indicates whether or not a service offers the functionality represented by the
corresponding group of similar operations.

10

We will represent each group of operations by an identifier that corresponds
to the indices of the operations. The new context is shown in Table 5: From the

Table 5: The final services × groups context.
(11,34,21) (21,31) (12,32) (33)

ws1 x x
ws2 x x
ws3 x x x x

final binary context, we can generate the corresponding service lattice, which
is shown in Fig 8. From the final generated lattice, shown in Figure 8, we can

Figure 8: The final service lattice with possible backups.

notice the following:

• ws1, ws2, and ws3 offer the functionality denoted by (11, 34, 21), so they
can replace each other for this specific functionality

• ws3 can replace ws1 and ws2, and it offers an additional functionality (33)

We can also infer immediately which services offer a specific functionality (de-
noted by a specific label), by regarding the indices in the label.

We return to our scenario after having generated two similarity lattices, cor-
responding to query1 = {reserve, plane} and query2 = {reserve, train, duration}.

The lattice that corresponds to query1 is shown in Figure 9 (top), and the
one corresponding to query2 in Figure 9 (bottom).

Using these two lattices, the selection of services offering required operations
is straightforward. In our scenario, we need three tasks: flight reservation, train
reservation (if needed), and calculating the duration needed to travel by train to
the aimed destination. By regarding the lattice in Figure 9 (top), we notice that
all of the services offer an operation for plane reservation. In this case, a service
selection might be done regarding the extra operations that the services provide,
like for example the operation rentCar. When we select a certain service, we
can immediately extract the set of backup services that are able to replace it
if it fails. In the same way, we can select a service for train reservation with
obtaining the duration information. Thus, the composition in Figure 4 can be
easily achieved and supported with backups, as in Figure 9. Supposing that
we selected the service ws4 named PlaneWS, and used its operation resF light
(which is grouped with other similar operations under the name reserveF in
the lattice). We can notice that for the operation resF light, any other service

11

Figure 9: The TCS composition with its corresponding backups.

in the lattice can be a backup for ws4. In case where all of the operations of ws4
were used, we notice that only ws10 and ws1 can be backups for ws4. Similarly,
we selected the service ws6, named TrainWS, and used two of its provided
operations: calcDuration and resTrain. We notice that ws6 can be replaced
by the services ws10, ws8 and ws5. Thus, we have discovered immediate backups
for the service TrainWS as we did for the service PlaneWS. We can notice
that the service ws10 exists in the two lattices, as a backup for both TrainWS
and PlaneWS. In this case, if both of these services crash, we can replace
them both by a single service, which is ws10. This service provides the same
functionalities of the two services, with three extra operations that are priceT ,
rentCar and durationF as can be seen in the lattices in Figure 9.

Our approach has enabled us of an easy service discovery and selection, in
order to build our aimed scenario. It has also facilitated the discovery of backup
services to support service composition and ensure its continuous functionality.

In the following section, we will include QoS aspect to our web service clas-
sification, in order to select a service with the best available QoS values.

12

4 QoS-Based Web Service Ordering

Web services have many QoS aspects such as availability, response time, relia-
bility, etc. Selecting a service from a set of services offering different values of
QoS may not be a straightforward task.

Supposing a set of services {a,b,c,d,e,f,..} with different values of availability
and performance time as in figure 10. In such case, we need to select the service
that makes the best compromise between the aspects of QoS supposing than the
value 1 is the best and 10 is the worst. In the literature, we can find a similar
problem about finding skylines objects3. Using the skyline operator, an object
is determined to be interesting if it is not dominated by any other object. In
this view, we can observe that the interesting service are a, i, and k.

Figure 10: Services with availability and performance time values.

We applied the FCA classification on services with their QoS values, in order
to have this kind of service ordering. We considered that a service that has a
certain QoS value, has also all the values that are lower. In figure 11, we can see
the binary context corresponding to services and QoS values shown in figure 10.
The resulting lattice of the context in figure 11 is illustrated in the figure 12.

Figure 11: Binary context of services in figure 10 with their QoS values.

In this lattice, we can notice that the skylines services appear at the bottom.
They are also the services a, i, and k as given by the skyline operator.

3S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings of the
17th International Conference on Data Engineering (ICDE), pages 421-431, 2001.

13

Figure 12: The service lattice for the context in figure 11.

We can also observe that to choose a service that makes the optimal com-
promise between the QoS values (availability and response time), we have to
select a service that dominates a greater number of services. For example, the
service i would be the best choice because it dominates more services than any
other service in the lattice. On the other hand, the service e, which is located
at the top of the lattice can be considered as the worst choice because it does
not dominate any service. We can check the correction of these conclusions by
returning to the actual values of each service. Service i has the values (a=3,
rt=2), which is probably the best compromise among all the other values, while
service e has the values (a=10, rt=10), which is definitely the worst compromise
ever.

The generated lattice has so many empty concepts which can be eliminated
using the Galois Sub-Hierarchy (GSH) algorithms4.

4Arevalo G., Berry A., Huchard M., Perrot G., Sigayret A.: Performances of Galois Sub-
hierarchy-building algorithms. ICFCA 2007, LNCS/LNAI 4390, pp166-180, Springer Verlag.

14

5 Web Service Composition

We propose an approach based on a variant of FCA called Relational Concept
Analysis (RCA) [2] for the identification of composable services. It allows the
classification of web services according to their QoS and composability levels
and proposes a query mechanism that allows users to specify their required
QoS and composability levels. In the case of multiple choices that satisfy users’
requirements, we enhance our approach with a mechanism based on vectors for
identifying the optimized choice.

5.1 RCA-Based Web Service Classification

We explain our approach along with an abstract composition of three sequential
tasks, as in figure 13. We try to identify the concrete services offering the needed
functionalities, in order to instantiate the defined orchestration. Our objective
is to select composable services with the highest affordable QoS values, and the
least required adaptations.

Figure 13: An abstract composition of three sequential tasks.

We have 3 sets of services: S1i, S2j and S3k corresponding to the three tasks.
For each service of the three sets, we assume certain values of QoS (for avail-
ability (A) and response time (RT)). We categorize the QoS values into 5 levels:
very low, low, medium, high and very high, for each of the A and RT values. A
service that offers a specific QoS level, does also offer QoS levels that are lower.
For each pair of consecutive services (according to our defined orchestration),
we assume three composability values: exact, partial and disjoint. We base
our classification on Formal Concept Analysis (FCA), which is a data analysis
method that aims at extracting concepts from entities described by attributes.
The description of entities is encoded in a formal context. For example, in
Fig. 14, the third table S3k is a formal context where entities are services for
the Task 3, and are described by the values of availability and response time
(attributes). Concepts are maximal sets of entities (extent) sharing a maximal
set of attributes (intent), and they are organized in a classification provided
with a lattice structure. The lattice associated with the context S3k is shown
in Fig. 18. Each concept in this lattice inherits the attributes of its ascendants
(super-concepts), and has lesser attributes than its descendants (sub-concepts).
Reversely, each concept inherits the services of its descendants (sub-concepts).
For example, the concept c0 represents the services s31 and s33, which covers
the QoS values of the services in the upper concepts, and offers better ones (like:
low A and low RT). The concept c5 indicates that s33 has very low RT and high
A. The concept c5 is a sub-concept of the concept c0, which shows that s33 has
better QoS values than s31.

Since we also want to capture the composition relations, existing between
pairs of services in an orchestration, we use a variant of FCA called Relational
Concept Analysis (RCA), which includes relations in the attributes used for the
concept mining. RCA data are given in the form of a Relational Context Family

15

Figure 14: The relational contexts family (RCF) corresponding to the three sets
of services.

(RCF). An RCF is a set of binary relationships (tables): some (non-relational)
tables describe entities by attributes, while some (relational) tables describe
relations between entities. The non-relational part of the RCF contains one table
for each task: entities are services that can make the task, and attributes are QoS
values. Thus, our RCF is composed of three non-relational contexts: S1i ∗QoS,
S2j∗QoS and S3k∗QoS, and two sets of three relational contexts: composition of
S1i∗S2j and composition of S2j∗S3k, according to the three considered levels. As
we can see in Fig. 14, the three relational contexts for composition of Sxi∗Syj are
called Exactxy, Partialxy and Disjointxy. We run the RCA algorithm on the
RCF, illustrated in Fig. 14. The RCA takes as input all the tables and iterates
on two steps: (1) building a concept lattice on each non-relational context of
services concatenated with the corresponding relational contexts that express
composition, that is on S1i ∗ QoS concatenated with Exact12, Partial12 and
Disjoint12, on S2j ∗QoS concatenated with Exact23, Partial23 and Disjoint23
and on S3k ∗ QoS; (2) transform the six relational contexts to integrate the
concepts found at that current step (to use this knowledge in the next iteration).
During this transformation, we use the existential scaling operator which is one
of the scaling operators provided by RCA. Services that form the columns of a
composition context are replaced by concepts that group services. If (Sxy, Szt)
initially holds in a composition context (with composition level cl) and Szt is in

16

Figure 15: The services lattices for Task 1 and Task 2.

the extent of a concept C at the current step, thus in the current version of the
composition context we add (Sxy, C). This can be interpreted as Sxy can be
composed with at least one service from the set of services grouped in C with the
composition level cl. For example, since we have (s13, s25) ∈ Exact12 and since
s25 is in the extent of Concept c1 (in lattice S2j), the scaled Exact12 table will
contain (s13, c1). By regarding the lattices in Fig. 15, we can find for example,
that the service s13 (in the leftmost lattice) has in its intent Exact12 : c1. This
means that it can be composed with services contained in the concept c1 (in
the middle lattice). Thus, s13 can be composed at least with s25. At a next
step this will allow to group a set of services (implementing a first task) because
they can be composed with services of another group of services (implementing
another task). The process stops when no new concept emerge during the FCA
analysis. At the end of the process, a concept lattice is generated for each set
of services. In each lattice, services are classified into concepts, showing their
QoS levels as well as their composability levels with other services, according
to the orchestration. Concept c7 in the S1i lattice groups services s13 and s11,
and indicates that they can be partially composed with services of concept c3
of the S2j lattice, which groups s23 and s25.

Navigation by Query Integration. We define a query mechanism that
enables us to navigate into a lattice, in order to choose a combination of services
that satisfies the aimed orchestration, with our aimed levels of QoS and com-
posability. A query determines the required QoS for each requested task, as well
as, the needed composability level (required adaptations) between the services.
We define a QoS query as a new line (a new entity), integrated into the corre-
sponding service*QoS binary context, specifying the least expected QoS level.
In our example, we perform three QoS queries: query1, query2 and query3 on
S1i ∗QoS, S2j ∗QoS and S3k ∗QoS respectively. They are as follows:

• query1 looks for a service from S1i, with a low A and a low RT;

• query2 tries to retrieve a service from S2j , with a high A and a low RT;

17

Figure 16: The RCF after integrating the QoS queries and specifying the com-
posability level.

• query3 demands a service from S3k, with a high A and a medium RT.

In order to select services that satisfy a specific composability level, we merge
the relational contexts that express levels equal or greater than the requested
level. In other words, if a partial composability level can be accepted, this means
that if we find an exact level, it is even better. In this example, we demand an
”exact” composability level between S1i and S2j , and a ”partial” level between
S2j and S3k. This gives us a variation of our RCF that includes queries, where
the relational context compose1 is the context exact12 and compose2 is the
fusion of exact23 and partial23, as shown in Fig. 16.

This latter RCF generates three lattices, from which we can extract the
services combinations that meet our requested QoS and composability. These
lattices are illustrated in Fig. 17, from which we can identify the services that
satisfy the QoS queries, which appear in the sub-concepts of the concept where
a queryn appears, and are as follows:

• services s13 and s14 for query1;

• services s23, s24 and s25 for query2;

• services s32 and s33 for query3.

5.2 Web Service Triangles Approach

We can have several service combinations that satisfy our desired orchestration.
If we are searching for an optimized selection, this means that we have to find
the set of services that meet the optimal compromise of QoS levels and compos-
ability. Thus, services that can be coupled according to our acceptable levels of

18

Figure 17: The service lattices with the integrated queries.

required adaptations and QoS. In order to meet this issue, we propose to repre-
sent the services by vectors. A vector per set of services, on which, services are
ordered according to their QoS. We also define a vector for composability levels.
Each composition can be regarded as a triangle, having a head corresponding
to the composability level, and the two other heads corresponding to the pair
of services to be composed, as shown in Fig. 19.

Figure 18: The lattice associated with the context S3k of Task 3.

The optimized choice would be the triangle that has the minimal area, in
case of a two services composition. Otherwise, it will be the minimal sum of the
services triangles according to an orchestration. Thus in our example, by regard-
ing the triangles in Fig. 19, we notice that the triangle (E, s25, s33) represents
an optimized composition between S2j and S3k (corresponding to Task2 and
Task3, respectively). Accordingly, if we consider the triangle (E, s13, s25) that
shares an edge with the previous triangle, it represents a composition between
S1i and S2j (corresponding to Task1 and Task2, respectively). These two trian-
gles together may be an optimized combination for the required orchestration,
after comparing them with all the existing triangles5.

5We haven’t shown all the triangles in Fig. 19, for the sake of simplicity.

19

Figure 19: Optimizing the service selection.

20

6 Perspectives

We have many ideas to improve and complete our works. In the following, we
present some of them.

6.1 Enhancing Coma++ with WordNet

Coma++ 6 gives us a primary matching of WSDL which can be improved using
WordNet 7 together with the service functionality domain, in order to match the
fields semantically. After doing so, we can annotate the fields with a WordNet
concept to have a semantic service.

By matching the fields using Coma++ with the semantic enrichment, we can
find the similar fields and thus, the similar functionalities (operations). This will
also help us in the identification of the adaptations, i.e. the extra fields (inputs)
in an operation that has a similar functionality of another one that doesn’t
contain these fields.
How can we judge if two operations have a similar functionality or
not?

The two services must have the same domain and the two operations must
have similar names and common fields (inputs and outputs).

Steps:
1. Extract the domain of functionality for each WSDL interface;
2. Using the Coma++ API to automate the matching process between all

the pairs of a WSDL interfaces collection having the same domain;
3. Two operations have a similar functionality, if they have similar names,

a similar input, and a similar output;
4. For each domain, there must exist a domain ontology, which can be used

to annotate the corresponding services;
5. According to the similarity of inputs-inputs and for inputs-outputs, we can

continue our classification based on FCA for finding Web services’ substitutes,
and RCA for finding composable Web services.

6.2 WordNet for a WSDL’s domain of functionality

We want to divide the WSDL interfaces into their functionality domains. This
categorization can be done with the help of WordNet. In figure 20, we can see
the steps that are needed to annotate the WSDL file with the WordNet ontology.
Every WSDL will be parsed by a TreeTagger, which is a tool for annotating text
with part-of-speech and lemma information. Terms of this annotated text will
be mapped onto the WordNet ontology. This gives us a set of WordNet concepts
for each WSDL file. In order to find out the domain, we search for the branch
in WordNet that contains all the concepts for a certain WSDL file.

Similarity may be calculated afterwards between the set of WordNet concepts
retrieved for each WSDL file, in order to find similar operations.

6http://dbs.uni-leipzig.de/Research/coma.html
7http://wordnet.princeton.edu/

21

Figure 20: WSDL categorization into functionality domains using WordNet.

6.3 Modelling abstract business processes

An abstract business process 8 is a partially specified process that is not intended
to be executed. It may hide some of the required concrete operational details,
and may have a descriptive role of the observable process behavior and template.

• A user defines his orchestrations as abstract business processes;

• for each orchestration he defines a list of user-input-variables;

• for each task inside the orchestration, a domain is specified, in order to
identify the set of services offering this needed task;

• the composability level can be determined regarding the user indicated
output-input that must be coupled together.

References

[1] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Founda-
tions. Springer-Verlag New York, Inc., Heidelberg, 1999.

[2] M. Huchard, M.R. Hacene, C. Roume, and P. Valtchev. Relational con-
cept discovery in structured datasets. Annals of Mathematics and Artificial
Intelligence, 49(1-4):39–76, 2007.

[3] R. Wille. Restructuring lattice theory: an approach based on hierarchies of
concepts. Ordered Sets, 83:445–470, September 1982.

8http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

22

[4] Z. Azmeh, M. Huchard, C. Tibermacine, C. Urtado, and S. Vauttier. WS-
PAB: A tool for automatic classification & selection of web services using
formal concept analysis. In Proc. of (ECOWS 2008), pages 31–40, Dublin,
Ireland. IEEE Computer Society.

[5] J.R. Falleri, Z. Azmeh, M. Huchard, and C. Tibermacine. Automatic Tag
Identification in Web Service Descriptions. In Proc. of (WEBIST 2010),
pages 40–47, Valencia, Spain.

[6] Z. Azmeh, M. Huchard, C. Tibermacine, C. Urtado, and S. Vauttier. Us-
ing Concept Lattices to Support Web Service Compositions with Backup
Services. In Proc. of (ICIW 2010), pages 363–368, Barcelona, Spain. IEEE
Computer Society.

23

