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Abstract—This article presents a new method for estimating
the pose of para-catadioptric vision systems. It is based on the
estimation of vanishing points associated with vertical edges of
the environment. However, unlike classical approaches no feature
(line, circle) extraction and/or identification is needed. A sampled
domain of possible vanishing points is tested and histograms are
build to characterize the soundness of these points. A specificity
index allows to find the more relevant histogram and the pose of
the sensor. This method has been tested on simulated and real
images giving very promising results (maximum angular error
of 0.18 degree).

I. INTRODUCTION

Pose estimation is a classical issue in many robotics appli-

cations such as drone navigation and humanoid robotics. This

topic is usually addressed using proprioceptive sensors such

as inertial sensors: gyroscope and/or inclinometers, or extero-

ceptive sensors such as cameras. The main issue introduced

by proprioceptive sensors is the bias drift of the measures

it provides. This bias is due to the fact that pose estimation

is achieved by integrating a noisy signal, which leads to an

unbounded error growth.

Solutions have been proposed to partially cope with this

bias drift. For example, in [1], the authors introduce a state

estimation algorithm for rejecting noise and tracking bias of

inertial measurement when the motion is intermittent. Another

major drawback of inertial measurement is the precision of the

pose measurement. Usually, classical performances of such

devices are about one to five degree [2][3][4]. A more precise

estimation may be useful, especially when the safety of the

robot is engaged.

Using exteroceptive sensors, like perspective cameras, is a

way to overcome this bias. In that case, the pose is estimated

using 3D environment features at each frame and no inte-

gration process is needed. However, classical cameras often

suffer from a limited field of view, which low their efficiency

especially when features: lines, corners, have to be tracked

all along a sequence. Solutions using non-conventional cam-

eras (e.g. parabolic catadioptric cameras) have already been

proposed to overcome this limited field of view matter [5].

These methods are usually based on tracking and identifying

particular geometrical features such as lines in the omnidirec-

tional image [6]. Such features may be difficult to track due to

strong radial deformation brought by projections on the mirror

and occlusions. The track can also be affected by the irregular

resolution due to anamorphosis on the omnidirectional image.

This paper presents a new approach based on the pose es-

timation proposed in [7]. It consists in estimating the position

of the two vanishing points associated to a set of vertical

lines. In opposition to traditional approach, this method does

not need any feature extraction. It is based on associating a

particular histogram to each possible pose of the sensor. The

property used here is the following: the more specific is the

histogram, the more likely is the pose estimation. Thus the

method consists in finding, in a set of possible orientations

of the sensor, the one that is associated to the most specific

histogram. Experiments on synthetic and real images are

presented to illustrate the good performances we obtain with

this method, i.e. a precision about 0.1 degree.

This article is organized as follows: the first section deals

with the catadioptric sensor model we use and the relation

between pose and vanishing points. The second section details

the way histograms are build and the specificity indices we

use to select the most probable orientation. The third section

presents a synthetic and a real experiment.

II. OMNIDIRECTIONAL CATADIOPTRIC VISION

A. Central Catadioptric Model

Geyer and Daniilidis [8] have shown that an omnidirectional

image is equivalent to a spherical image if the sensor satisfies

the single view point constraint. The construction of this

spherical image is depicted in Fig. 1. The projection of

any point P of the 3D environment of the sensor can be

decomposed into two projections: first P projects on the mirror

(Pm) then this projection is projected on the image plane (Pi)

via the optical device. Such a projection is equivalent to first

projecting P on a unitary sphere centered on the mirror focus

F (Ps is this projection), then projecting Ps on the image

plane in Pi from the point Os. Such an equivalent projection

needs the catadioptric camera to be fully calibrated (i.e. know

the intrinsic parameters of the projection and the parameters

ξ = |OsF | and ψ = |OiF |). Then, the image can be fully

represented by the projection of all the points of the image

plane on the equivalence sphere. This is what we call ”the

spherical equivalent image”. This kind of model allows the

use of the usual projective geometry defined for perspective

cameras while using catadioptric cameras.



Fig. 1. Equivalence between catadioptric omnidirectional projection and
two-step mapping via the sphere

B. Relation between Pose and Omnidirectional Image

As proved in [8], a set of lines having the same direction
−→u projects on the sphere into circles that intersect in two

antipodal points V P1 and V P2 in the sphere, that corresponds

to the vanishing directions. Demonceaux et al. [7] have proved

that the direction of the vector
−−−−−−→
V P1V P2 is parallel to −→u ,

and used this property to recover the 3D direction −→u of

an unknown set of parallel lines (via a voting Hough-like

process). Let us consider the set of all projections on the sphere

of a set of points belonging to a 3D line. Then, each plane

passing through one point of this set, the focus F and one of

the antipodal points V P have exactly the same orientation θ

(Fig. 2). They also contain the other antipodal point. Thus,

if the environment is composed of a set of parallel lines,

then a histogram of the orientations of the planes generated

with every edge point of the image, F and V P1 (or V P2)

is composed of peaks, each peak corresponding to a line

direction. The reference plane is arbitrarily chosen and has

no influence on the algorithm as we are only interested in its

specificity, not on the location of peaks. If the environment

is not composed only of parallel lines but also of a minority

of other points, then these points will generate noise on the

histogram.

III. A POLLING PROCESS FOR POSE ESTIMATION

A. Principle of the method

The idea that underlies our method is the following: as in

indoors environment vertical edges are the most frequent, we

will use their high density compared to other edge points to

estimate the pose of the device. In fact, if the direction of the

catadioptric device is known, so is known the position of the

two antipodal points V P1 and V P2. Thus, the histogram of all

the directions of planes passing through every edge point of

the spherical image, F and V P1 will be very specific. Indeed,

the histogram will be composed of as many peaks as vertical
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Fig. 2. Parallel lines projections on a spherical image. Each line produces a
plane passing through the line, F and V P1.

edges of the environment and of a random noise due to other

points not belonging to vertical edges (Fig. 3 (a)). A wrong

orientation of the device will lead to mispositioning the two

antipodal points V P1 and V P2. This mispositioning will alter

the histogram and lower its specificity (Fig. 3 (b)). Thus, if

the direction of the catadioptric device is unknown, then one

can seek for this direction by constructing such a histogram

for each possible direction. What rises from the geometrical

properties of the spherical projection is that the more specific

the histogram is, the more likely is its associated direction to

be the true one (see Fig. 3).
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Fig. 3. Good and bad camera pose estimation leading respectively to a highly
specific (a) and sparse (b) histogram of planes orientation.
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Fig. 4. Definition of the pitch and yaw angles for the camera orientation.

B. Construction of a histogram associated to each angle

position

The overall method can be set as follow. First, the pose

of the omnidirectional vision device is characterized by two

angles α and β (e.g. pitch and yaw, see Fig. 4). We then

define a sampled domain of all possible values of (α, β) and

associate with each sampled ordered pair (α, β) a histogram.

This histogram is built by computing the orientation of all

the planes obtained by the triplet (−→u (α,β), PE , F ), where
−→u (α,β) is the orientation vector and PE an edge point. After

this construction, we chose for the pose, the value of (α, β)
associated to the most specific histogram.

C. Specificity index of a histogram

In probability theory, it is instrumental to be able to or-

der probability distributions from the point of view of their

dispersion [9]. Numerous indices can be used to achieve this

goal that are originally defined to make an information-based

comparison between two distributions. The most popular of

those indices are the Shannon entropy [10] and the Simpson

index [11]. More recently, a specificity index has been redis-

covered due to Birnbaum under the name of peakedness index

[9] that is closely related to the Gini index. Due to the fact

that a histogram can be seen as a density distribution estimator,

such an ordering can also be used to compare two histograms

from the point of view of their relative dispersion.

In this article, we consider the Shannon entropy and Simpson

indices and the Birnbaum peakedness. Let H = {hk}k=1...p

be the set of values of a histogram built on a partition

made of p bins with n observations (n =
∑p

k=1 hk). The

Shannon entropy Φ(H), Simpson index S(H) and Birnbaum

peakedness index B(H) are defined by:

Φ(H) = log(n) −
1

n

p
∑

k=1

hk.log(hk), (1)

S(H) =

∑p

k=1 hk.(hk − 1)

n.(n− 1)
, (2)

B(H) =
1

n

p
∑

l=1

p
∑

k=l

h(k), (3)
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Fig. 5. Shannon (a), Simpson (b) and Birnbaum (c) indices for each ordered
pair α and β of the [pitch, yaw] sampled space. The angles are in degrees

(.) being a permutation that sorts the {hk}k=1...p in as-

cending order, i.e. h(1) ≤ · · · ≤ h(p). Note that S(H) and

B(H) are specificity indices while Φ(H) is a dispersion

index. Therefore, finding the most peaked histogram will lead

to maximize S(H) and B(H) and minimize Φ(H). Fig. 5

illustrates this property by plotting the three indices Shannon,

Simpson and Birnbaum for all the possible pitch and yaw

angles.
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Fig. 6. (a) Synthesized catadioptric image. (b) Exemple of real image tested.

IV. EXPERIMENTATIONS

A. Experiment with Synthetic Images

The first experiment has been carried out with a synthetic

image sequence. This sequence has been obtained by simulat-

ing, with the PovRay software, an environment made of seven

black piles (Fig. 6(a)), and rotating the omnidirectional device

around an axis perpendicular to its symmetry axis with a step

of ∆θ = 0.1o. In this experiment, since the omnidirectional

vision sensor has been simulated, the projection and mirror

parameters are perfectly known and thus the experimental

results will not be altered by an ill calibration of the sensor.

Table I presents the result obtained with smoothed and non

smoothed specificity indices.

B. Experiment with Real Images

The second experiment has been carried out with a sequence

of real images obtained by rotating a para-catadioptric sensor

with a step motor with an accuracy of 0.001o. As can be

remarked on Fig. 6(b), the image is not made only of vertical

lines. In this experiments, all edge points of the image have

been used. Due to this fact, the obtained histograms are very

noisy, so are the indices. Thus, it can be appropriate to smooth

the indices before the sought for extrema: for example a 2D

exponential smoothing filter (4) can be used. γ was set to 0.1
for the experiments, which is almost equivalent to a ±10 pixels

horizon filter.

H(x, y) = Keγ(|x|+|y|) (4)

Table II presents the results obtained with smoothed and non

smoothed specificity indices. The angular step of the rotation

is also ∆θ = 0.1o.

C. Experimental results

For both real and simulated experiments, the angular his-

togram has been built on a high specific partition made of 1800

bins (i.e. the bin width equals 0.2o). To characterize the accu-

racy of the method, three dispersion indices have been used:

the standard deviation, σ =
√

1
N

∑N
k=1(α

measured
k − αtrue

k )2,

the mean absolute error, |E| = 1
N

∑N
k=1 |α

measured
k − αtrue

k |
and the maximal error Emax = maxN

k=1 |α
measured
k − αtrue

k |.
The simulated experiments shows that any specificity index

can be used to achieve the sought for orientation since the

obtained errors are comparable. This is illustrated in Fig. 7.

As the yaw angle β remains constant during these experiments,

and to ease the comparison, we only represent a cut of the three

indices in the plane β = 0. All indices have been smoothed

and normalized to be compared. Shannon index has also been

inverted to ease the comparison. As we can see on Fig. 7,

the Birnbaum index is a little more noisy than the two others.

However, the extrema of each index are almost localized at

the same place.
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Fig. 7. Comparison of the three cuts of specificity indices in the plane β = 0.

Errors obtained on simulated sequences are mainly due to

sampling noise introduced by image or histogram sampling.

Within the real experiments, it appears that the Shannon and

Simpson indices are less sensitive to the noise induced by

minority edges than the Birnbaum index. When comparing the

results obtained with and without a preliminary smoothing, it

appears clearly that smoothing induces a gain in accuracy:

it can go up to 0.18o when using the Simpson index. This

accuracy is also strongly related to the sampling step of the

(α, β) space. The smaller the sampling step is, the better

the accuracy is. For example the mean absolute error drops

down from 0.11o to 0.08o with the Shannon index when

the step on (α, β) goes from 0.1o to 0.05o. Nevertheless,

the computing time increases with the size of the discretized

(α, β) space. Under 0.05o the accuracy seems to stabilize.

These results are to compare with those presented in [6], where

the mean error in orientation is about 0.1 and the maximum

error less than 2. However, the scene is mainly composed of

two calibrating patterns and presents a lot of parallel lines.

This highly facilitates the pose estimation. In [7], the authors

have no available ground truth to estimate errors. However, for

a horizontal sensor they measured errors less than 2 degrees in

both directions. So our algorithm seems to be more accurate.

Obviously, comparisons of algorithms with similar conditions

and sequences should be performed.

V. CONCLUSION

In this paper, we have proposed a new method for omnidi-

rectional camera pose estimation. The main characteristic of

this method is that it does not need any feature identification

like lines or circles. It is based on estimating the orientation

of the catadioptric device by exploring a sampled space of

different possible orientations and associating a histogram

to each orientation. The histogram construction is based on



TABLE I
ESTIMATION ERROR: EXPERIMENTATION WITH THE SIMULATED IMAGES

WITH A (α, β) DOMAIN SAMPLING STEP OF 0.05o

Sp. Index smoothed |E| σ Emax

Shannon no 0.056o 0.075o 0.20o

Simpson no 0.063o 0.082o 0.20o

Birnbaum no 0.063o 0.080o 0.20o

Shannon yes 0.050o 0.068o 0.20o

Simpson yes 0.057o 0.075o 0.20o

Birnbaum yes 0.060o 0.076o 0.20o

TABLE II
ESTIMATION ERROR: EXPERIMENTATION WITH THE REAL IMAGES WITH A

(α, β) DOMAIN SAMPLING STEP OF 0.05o

Sp. Index smoothed |E| σ Emax

Shannon no 0.082o 0.106o 0.25o

Simpson no 0.080o 0.111o 0.40o

Birnbaum no 0.134o 0.182o 0.60o

Shannon yes 0.059o 0.081o 0.20o

Simpson yes 0.053o 0.073o 0.20o

Birnbaum yes 0.075o 0.120o 0.45o

the particular geometrical properties of single viewpoint cata-

dioptric cameras. Due to these properties, the specificity of

the histogram reflects the soundness of the orientation it is

associated with. Different specificity indices have been tested.

From these tests, it appears that, in this context, the well

known Shannon entropy provides the best results. Within both

simulated and real image based experiment, this method can

provide a pose estimation with a mean resolution of 0.06
degree. The resolution of the estimation is naturally highly

linked to both sampling of the orientation space and noise in

the images.

The test we achieved prove both feasibility and efficiency

of this approach. However, a major drawback remains: the

computation time can be quite long: about 19 seconds on

a 2.13 GHz processor for a 640x480 image, 2600 sample

of the orientation space and 1800 bins for each histogram.

First of all optimizing the implementation can improve the

overall performances. Second, we consider using histograms

built upon fuzzy partition rather than binary ones [12] in order

to reduce the number of histogram’s bins without reducing the

precision of the specificity index. Third, we propose to use the

gradient orientation to remove, from the set of edge pixels,

any point having an orientation that is too far away from a

radial orientation (which should be the orientation of vertical

edges). This third modification should drastically reduce the

computation time and the noise in histograms. Finally, we

propose to dynamically define the sampled orientation domain

by using a Kalman filtering-based approach. It can allow a

higher precision in the exploration domain and reduce also

the computation time.
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