Zeina Azmeh
email: azmeh@lirmm.fr

Maha Driss
email: mdriss@irisa.fr

Marianne Huchard
email: huchard@lirmm.fr

Naouel Moha
email: moha@irisa.fr

Chouki Tibermacine
email: tibermacin@lirmm.fr

QoS-Driven Selection of Composable Web Services

Web Services are universally accessible software units that are advertised, discovered, and invoked over the internet. As web service technology is becoming widely adopted by organizations that need to integrate their information systems within and across organizational boundaries, it is important to identify automatically relevant composable services. In this paper, we propose an approach based on a variant of Formal Concept Analysis for the identification of composable services. It allows the classification of web services according to their QoS and composability levels and proposes a query mechanism that allows users to specify their required QoS and composability levels. In the case of multiple choices that satisfy users' requirements, we enhance our approach with a mechanism based on vectors for identifying the optimized choice. We validate our approach on a set of real-world web services obtained from Service-Finder.

Introduction

Service-Oriented Computing (SOC) is an emerging paradigm for developing lowcost, flexible, and scalable distributed applications based on web services [START_REF] Huhns | Service-oriented computing: Key concepts and principles[END_REF]. Web services are autonomous, reusable and independent software units that can be accessed through the internet. SOC is becoming broadly adopted and in particular by companies, which are more and more willing to open their information systems to their clients and partners over the Internet. The reason comes from the fact that SOC offers the ability to build efficiently and effectively addedvalue service-based applications by composing ready-made services. Web service composition addresses the situation when the functionality required by users cannot be satisfied by any available web service, but by assembling suitably existing web services [START_REF] Rao | A Survey of Automated Web Service Composition Methods[END_REF]. Discovering and selecting relevant services that closely fit users' functional and non-functional requirements is an important issue highly studied in the literature [START_REF] Zeng | Qosaware middleware for web services composition[END_REF][START_REF] Aggarwal | Constraint driven web service composition in meteor-s[END_REF][START_REF] Yu | Efficient algorithms for web services selection with end-to-end qos constraints[END_REF]. Functional requirements define functionalities provided by web services and non-functional requirements define Quality of Service (QoS) criteria such as availability, response time, security, and throughput, etc. [START_REF] Menascé | Qos issues in web services[END_REF]. However, discovering and selecting relevant composable services is another important issue that still need to be investigated, since few approches focused on service composability problem [START_REF] Medjahed | A multilevel composability model for semantic web services[END_REF][START_REF] Ernst | Detection of web service substitutability and composability[END_REF][START_REF] Lécue | Semantic and syntactic data flow in web service composition[END_REF]. Relevant composable services represent services minimize the amount of adaptation among them while best fitting requirements.

In this paper, we propose an approach for the identification of composable services that best fit QoS and adaptation requirements. This approach is based on the formal concept analysis (FCA) and its variant, the relational concept analysis (RCA). FCA has been successfully applied in the past as a formal framework for service substitution [START_REF] Peng | Management and retrieval of web services based on formal concept analysis[END_REF][START_REF] Aversano | Using concept lattices to support service selection[END_REF][START_REF] Azmeh | Wspab: A tool for automatic classification and selection of web services using formal concept analysis[END_REF][START_REF] Azmeh | Using concept lattices to support web service compositions with backup services[END_REF][START_REF] Chollet | Heterogeneous service selection based on formal concept analysis[END_REF]. Thus, we use FCA and RCA to classify services according to their QoS and composability level and suggest substitutable services and composable services. The approach is also based on a query mechanism that allows users to specify their required QoS and composability levels. In particular, users can specify their interests for identifying composable services that maximize QoS requirements and minimize their adaptation level. In the case of multiple choices that satisfy users' requirements, we enhance our approach with a mechanism based on vectors for identifying the optimized choice.

The paper is organized as follows. Section 2 describes our approach along with a motivating example. Section 3 describes the experiments performed on a real case study for validating our approach. The paper ends with the related work in Section 4 and the conclusion in Section 5.

Approach

We explain our approach along with an abstract orchestration of three sequential tasks. We try to identify the concrete services offering the needed functionalities, in order to instantiate the defined orchestration. Our objective is to select composable services with the highest affordable QoS values, and the least required adaptations. We have 3 sets of services: S 1i , S 2j and S 3k corresponding to the three tasks. For each service of the three sets, we assume certain values of QoS (for availability (A) and response time (RT)). We categorize the QoS values into 5 levels: very low, low, medium, high and very high, for each of the A and RT values. A service that offers a specific QoS level, does also offer QoS levels that are lower. For each pair of consecutive services (according to our defined orchestration), we assume three composability values: exact, partial and disjoint.

RCA-Based Classification. We base our classification on Formal Concept Analysis (FCA, [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF]), which is a data analysis method that aims at extracting concepts from entities described by attributes. The description of entities is encoded in a formal context. For example, in Fig. 1, the third table S 3k is a formal context where entities are services for the Task 3, and are described by the values of availability and response time (attributes). Concepts are maximal sets of entities (extent) sharing a maximal set of attributes (intent), and they are organized in a classification provided with a lattice structure. The lattice associated with the context S 3k is shown in Fig. 5. Each concept in this lattice inherits the attributes of its ascendants (super-concepts), and has lesser attributes than its descendants (sub-concepts). Reversely, each concept inherits the services of its descendants (sub-concepts). For example, the concept c 0 represents the services s 31 and s 33 , which covers the QoS values of the services in the upper concepts, and offers better ones (like: low A and low RT). The concept c 5 indicates that s 33 has very low RT and high A. The concept c 5 is a sub-concept of the concept c 0 , which shows that s 33 has better QoS values than s 31 . Since we also want to capture the composition relations, existing between pairs of services in an orchestration, we use a variant of FCA called Relational Concept Analysis (RCA), which includes relations in the attributes used for the concept mining [START_REF] Huchard | Relational concept discovery in structured datasets[END_REF]. RCA data are given in the form of a Relational Context Family (RCF). An RCF is a set of binary relationships (tables): some (non-relational) tables describe entities by attributes, while some (relational) tables describe relations between entities. The non-relational part of the RCF contains one table for each task: entities are services that can make the task, and attributes are QoS values. Thus, our RCF is composed of three non-relational contexts: S 1i * QoS, S 2j * QoS and S 3k * QoS, and two sets of three relational contexts: composition of S 1i * S 2j and composition of S 2j * S 3k , according to the three considered levels.

As we can see in Fig. 1 We run the RCA algorithm on the RCF, illustrated in Fig. 1. The RCA takes as input all the tables and iterates on two steps: (1) building a concept lattice on each non-relational context of services concatenated with the corresponding relational contexts that express composition, that is on S 1i * QoS concatenated with Exact 12 , P artial 12 and Disjoint 12 , on S 2j * QoS concatenated with Exact 23 , P artial 23 and Disjoint 23 and on S 3k * QoS; (2) transform the six relational contexts to integrate the concepts found at that current step (to use this knowledge in the next iteration). During this transformation, we use the existential scaling operator which is one of the scaling operators provided by RCA [START_REF] Huchard | Relational concept discovery in structured datasets[END_REF]. Services that form the columns of a composition context are replaced by concepts that group services. If (S xy , S zt) initially holds in a composition context (with composition level cl) and S zt is in the extent of a concept C at the current step, thus in the current version of the composition context we add (S xy , C). This can be interpreted as S xy can be composed with at least one service from the set of services grouped in C with the composition level cl. For example, since we have (s 13 , s 25) ∈ Exact 12 and since s 25 is in the extent of Concept c 1 (in lattice S 2j), the scaled Exact 12 table will contain (s 13 , c 1). By regarding the lattices in Fig. 2, we can find for example, that the service s 13 (in the leftmost lattice) has in its intent Exact 12 : c1. This means that it can be composed with services contained in the concept c1 (in the middle lattice). Thus, s 13 can be composed at least with s 25 . At a next step this will allow to group a set of services (implementing a first task) because they can be composed with services of another group of services (implementing another task). The process stops when no new concept emerge during the FCA analysis. At the end of the process, a concept lattice is generated for each set of services. In each lattice, services are classi-fied into concepts, showing their QoS levels as well as their composability levels with other services, according to the orchestration. Concept c 7 in the S 1i lattice groups services s 13 and s 11 , and indicates that they can be partially composed with services of concept c 3 of the S 2j lattice, which groups s 23 and s 25 . Navigation by Query Integration. We define a query mechanism that enables us to navigate into a lattice, in order to choose a combination of services that satisfies the aimed orchestration, with our aimed levels of QoS and composability. A query determines the required QoS for each requested task, as well as, the needed composability level (required adaptations) between the services. We define a QoS query as a new line (a new entity), integrated into the corresponding service*QoS binary context, specifying the least expected QoS level.

In our example, we perform three QoS queries: query 1 , query 2 and query 3 on S 1i * QoS, S 2j * QoS and S 3k * QoS respectively. They are as follows: query 1 looks for a service from S 1i , with a low A and a low RT; query 2 tries to retrieve a service from S 2j , with a high A and a low RT; query 3 demands a service from S 3k , with a high A and a medium RT. In order to select services that satisfy a specific composability level, we merge the relational contexts that express levels equal or greater than the requested level. In other words, if a partial composability level can be accepted, this means that if we find an exact level, it is even better. In this example, we demand an "exact" composability level between S 1i and S 2j , and a "partial" level between S 2j and S 3k . This gives us a variation of our RCF that includes queries, where the relational context compose1 is the context exact12 and compose2 is the fusion of exact23 and partial23, as shown in Fig. 3. This latter RCF generates three lattices, from which we can extract the services combinations that meet our requested QoS and composability. These lattices are illustrated in Fig. 4, from which we can identify the services that satisfy the QoS queries, which appear in the sub-concepts of the concept where a query n appears, and are as follows: services s 13 and s 14 for query 1 ; services s 23 , s 24 and s 25 for query 2 ; services s 32 and s 33 for query 3 . The Optimal Services Composition. From the extracted services, we can have several combinations that satisfy our desired orchestration. If we are searching for an optimized selection, this means that we have to find the set of services that meet the optimal compromise of QoS levels and composability. Thus, services that can be coupled according to our acceptable levels of required adaptations and QoS. In order to meet this issue, we propose to represent the services by vectors. A vector per set of services, on which, services are ordered according to their QoS. We also define a vector for composability levels. Each composition can be regarded as a triangle, having a head corresponding to the composability level, and the two other heads corresponding to the pair of services to be composed, as shown in Fig. 6. The optimized choice would be the triangle that has the minimal area, in case of a two services composition. Otherwise, it will be the minimal sum of the services triangles according to an orchestration. Thus in our example, by regarding the triangles in Fig. 6, we notice that the triangle (E, s 25 , s 33) represents an optimized composition between S 2j and S 3k (corresponding to Task2 and Task3, respectively). Accordingly, if we consider the triangle (E, s 13 , s 25) that shares an edge with the previous triangle, it represents a composition between S 1i and S 2j (corresponding to Task1 and Task2, respectively). These two triangles together may be an optimized combination for the required orchestration, after comparing them with all the existing triangles4 .

Experiments

This section describes data and results of the experiments that we have conducted.

Experiments Data

To validate our approach, we consider an orchestration composed of three sequential tasks. The first task IPToCity returns the city name for a given IP address. The second task CityToZipCode returns the zip code for a given city name. The third task ZipCodeToWeather returns the weather information for a given zip code.

We discover a set of WSs that reply to each of these tasks by querying Service-Finder [START_REF] Valle | Realizing service-finder, web service discovery at web scale[END_REF] [19]. Service-Finder is a Web 2.0 platform for WSs discovery that indexes almost 25.000 WSs. For example, we use keywords 'IP + City' to search WSs that achieve the first task. Service-Finder returns a result set of 36 WSs5 .

To reduce this set, we process three-step filtration. In the first step, we eliminate repeated WSs (i.e., WSs that offer exactly the same operations). This first filtration generates a new reduced set that contains 29 WSs. These WSs are passed to a second filtration step, in which we check whether the endpoint URI exists or not. This produces a new reduced set that contains 21 WSs. These WSs are passed to a third filtration step which leaves only services offering operations that satisfy the IPToCity task. This is done by parsing every service WSDL in order to check if the required operation exists or not. Finally, we obtain a set of 5 WSs. Table 1 gives for the three tasks, the keywords used to query Service-Finder, the number of WSs returned by it, and the number of the obtained WSs after each filtration step. The total number of WSs that reply to the three tasks is 21 WSs6 . Table 2 is a synopsis of the 21 WSs used in our experiments, their operations, inputs, and outputs. For the sake of simplicity, we use the abbreviated notation 'S11' to refer to the service '1' that replies to the task '1' and 'Op11a' to refer to the operation 'a' from the service '1' that replies to the task '1', and so on. We consider 2 QoS properties to characterize WSs: availability (A) and response time (RT). Real time monitoring information of service availability and response time are provided by Service-Finder. To spread out availability and response time values, we use the boxplot statistical technique [START_REF] Chambers | Graphical methods for data analysis[END_REF].

Tasks

Table 3 gives availability and response time values for the 21 WSs. To characterize the composability between two WSs, for example S11 and S21, we compute the semantic and structural similarity between the output and input parameters of their operations. We obtained values (Sim) ∈ [0,1]. Then, we used a standard reasoning inferences [START_REF] Paolucci | Semantic matching of web services capabilities[END_REF], common in semantic web services: Exact(Sim = 1), Plugin (2/3 <= Sim <1), Subsume (1/3 <= Sim < 2/3), Intersection (0 < Sim < 1/3), and Disjoint (Sim = 0). Computation of semantic and structural similarity between parameter names is done using the Java WordNet Similarity Library (JWSL) [START_REF] Pirró | Design, implementation and evaluation of a new semantic similarity metric combining features and intrinsic information content[END_REF]. Due to the limited paper space, we show in Table 4 the obtained similarity values between Op11a of the service S11 and operations of the services that reply to CityToZipCode task.

Experiments Results

We use the previously obtained data in building an RCF, as described in Section 2. Thus, our non-relational contexts are composed of the obtained services together with their QoS values, illustrated in Table 3 constructed using the composability values in Table 4. Having two composable services, means that the first service contains at least one operation that can be composed with one or more operations from the second one. The maximal level of composability between the operations belonging to the two services, is used as the level of composability of the two services. For example, from the Table 4, we can see that the service s 11 has two values of composability with service s 29 , which are "Exact" and "Plugin". Accordingly, we consider the composability level between s 11 and s 29 to be "Exact". After building the RCF, the next step is to integrate queries, in order to specify the required QoS of the service corresponding to each task in the orchestration. We define the following queries: query1 demands services from S1i having a "Low A"and a "High RT"; query2 demands services from S2j having a "High A" and a "Medium RT"; query3 demands services from S3k having a "High A" and a "Low RT". We also specify the minimal accepted composability level, we set it to be "Plugin". Thus, the relational contexts become one single context, which is the fusion of the "Exact" and "Plugin" contexts for the two sets of relational contexts (S 1i ,S 2j) and (S 2j ,S 3k). Executing RCA on the built RCF gives us the relational concept lattices (RCL) in Fig. 7, in which, we have composable services with a "Plugin" composability level (or "Exact"), and having the expected QoS levels. By looking to query3 in L3, we notice that it asks for services having a "Medium RT" and "Medium A". While the original query3, requests a "High A" and a "Low RT", as indicated above. Since there were no matches for the original query, it switches to the next best level of QoS. The services returned by the queries are as follows: query1 returns s 12 in c3, and s 14 in c5 (lattice L1); query2 returns s 23 , s 26 in c13, s 28 in c21, and s 212 in c8 (lattice L2); query3 returns s 31 in c0 and s 34 in c4 (lattice L3).

In order to clarify the results obtained by the RCL, we show the composability values between the returned services in Table 5. We notice that, the services s 12 and s 14 have a "Plugin" composability with the services s 23 ,s 26 , and s 28 . Thus, s 12 and s 14 must have the concepts c13 and c21 in their attributes sets. By regarding the lattice L1 in Fig. 7, we notice that c3 and c5 inherits Compose(L2) : c13 and Compose(L2) : c21 from c2. This means that s 12 and s 14 are composable with s 23 ,s 26 , and s 28 , which is true. In the same way, we notice that s 23 ,s 26 , and s 28 are composable with s 31 , and s 34 in lattice L3. On the other hand, we can also notice s 212 in L2, which can be composed with s 31 , and s 34 , but can not be composed with neither s 12 nor s 14 . This explains the absence of Compose(L2) : c8 as an attribute for c3 and c5 in L1.

Related Work

The related work can be organized in three categories:

Web Service Composability and Substituability. Many works in the literature addressed the composability and substituability of web services. Ernst et al. [START_REF] Ernst | Detection of web service substitutability and composability[END_REF] present a method based on syntactic descriptions of Web services. This Table 5. Composability values between the services of query1 and query2, then services of query2 and query3.

approach analyzes multiple invocations of these services. The input and output parameter values are compared and matchings are deduced. Contrarily to our approach, this work is based on the experimental usage of Web services, and is perfectly complementary to ours. In this research area, much work has been done on semantic web services [START_REF] Sycara | Automated discovery, interaction and composition of semantic web services[END_REF][START_REF] Medjahed | Composing web services on the semantic web[END_REF][START_REF] Medjahed | A multilevel composability model for semantic web services[END_REF][START_REF] Lécue | Semantic and syntactic data flow in web service composition[END_REF]. In [START_REF] Medjahed | Composing web services on the semantic web[END_REF] and [START_REF] Medjahed | A multilevel composability model for semantic web services[END_REF], the authors present a model for checking the composability of semantic web services at different levels: syntactic, semantic and quality of service. They first proposed a model for describing the static (non-computational) and dynamic (business) semantics of web services. Then, they formalized a set of rules that allow the computation of a composability degree.This work deals with two kinds of composability: horizontal (normal composability) and vertical (substituability). In our approach, web service semantics are extracted from service's signatures and documentation. We use tools (based on WordNet) to compute the similarity between names or documentation keywords of different web services. This allowed us to deduce the composaibility of services. We do not use a high-level model of web service semantics as in [START_REF] Medjahed | A multilevel composability model for semantic web services[END_REF]. In addition, in our work we experimented the approach on real-world (not semantic) web services obtained from Service-Finder. The authors of [START_REF] Medjahed | A multilevel composability model for semantic web services[END_REF] made however a simulation-based experimental study. In [START_REF] Medjahed | Composing web services on the semantic web[END_REF], the same authors deal with three quality attributes: fees, security and privacy.

In our approach, we focus on other web service qualities, which are availabil-Fig. 7. The RCL corresponding to the services listed in Table 2.

ity and efficiency (response time). In [START_REF] Lécue | Semantic and syntactic data flow in web service composition[END_REF], the authors present a method which combines semantic and static analysis of messages in semantic Web services. Data types (XML schemas) and semantic description (domain ontologies and SA-WSDL [START_REF] Sivashanmugam | Adding semantics to web service standards[END_REF] specifications) of parameters (parts of web service messages) are used to deduce mappings. These mappings are then transformed into adapters (XSL documents). In our work, we concentrated on the selection of services which offer maximal QoS and which require, when composed, minimal adaptations. The two approaches are complementary. defines the problem as a multi-dimension multi-choice knapsack problem and the graph model defines the problem as a multi-constrained optimal path problem. A heuristic algorithm is introduced for each model. Despite the significant improvement of these algorithms compared to exact solutions [START_REF] Zeng | Qosaware middleware for web services composition[END_REF] [1], both algo-rithms are not suitable for large service-based systems. This type of systems (i.e., composed of a large number of services) may be composed easily and efficiently using our approach.

Web Service Selection using Concept Lattices. Many works in the literature have addressed the classification of web services using concept lattices [START_REF] Azmeh | Wspab: A tool for automatic classification and selection of web services using formal concept analysis[END_REF][START_REF] Azmeh | Using concept lattices to support web service compositions with backup services[END_REF][START_REF] Aversano | Using concept lattices to support service selection[END_REF][START_REF] Peng | Management and retrieval of web services based on formal concept analysis[END_REF][START_REF] Chollet | Heterogeneous service selection based on formal concept analysis[END_REF].

In [START_REF] Azmeh | Wspab: A tool for automatic classification and selection of web services using formal concept analysis[END_REF], Azmeh et al. presented a tool which helps in classifying directories of web services from Seekda into concepts lattices. The classification is built upon contexts which associate services to operation signatures. In [START_REF] Azmeh | Using concept lattices to support web service compositions with backup services[END_REF], the used contexts formalize relations between services and keywords extracted from their documentation, and similarity between operations. In these works, the classification is not based on QoS (filtering in [START_REF] Azmeh | Wspab: A tool for automatic classification and selection of web services using formal concept analysis[END_REF] is done on only one quality attribute, availability). In addition, these approaches are based on FCA, and not on RCA, and don't base the classification on an orchestration. In [START_REF] Chollet | Heterogeneous service selection based on formal concept analysis[END_REF], the authors present an approach where formal contexts associate web services and functionalities provided by these services as well as their non-functional properties (security). This interesting work addresses a different kind of quality attributes (security) that is critical in pervasive computing. Besides, it does not deal with service composition, and uses FCA (not RCA).

Conclusion

We presented an approach for assisting the development of a web-service orchestration based on a workflow including interacting abstract tasks, and on readymade services from public registries. Relational Concept Analysis (RCA) helped us to take into account both QoS requirements and levels of composability in classifying candidate web services for implementing the tasks. The result is a set of web service lattices (one for each task), where the designer can see potentially collaborating services, as well as their QoS values. Inside each lattice, services are ordered by QoS and composability values. We have also proposed a querying mechanism that, given an expected level of QoS and composability, guides the designer in the lattices and highlights parts of the lattices where services should be chosen. We led an experiment on a sequential orchestration composed of three tasks. This illustrated and showed the feasibility of the approach. As a future work, we plan to lead other experiments and to study other encodings of the problem with RCA, to give complementary views. In addition, we intend to study more deeply other composability computation techniques (based on other semantic descriptions of web services). This will allow us to obtain more precise compositions.

Fig. 1 .

 1 Fig. 1. The relational contexts family (RCF) corresponding to the three sets of services.

 , the three relational contexts for composition of S xi * S yj are called Exact xy , P artial xy and Disjoint xy .

Fig. 2 .

 2 Fig. 2. The services lattices for Task 1 and Task 2.

Fig. 3 .

 3 Fig. 3. The RCF after integrating the QoS queries and specifying the composability level.

Fig. 4 .

 4 Fig. 4. The service lattices with the integrated queries.

Fig. 5 .Fig. 6 .

 56 Fig. 5. The lattice associated with the context S 3k of Task 3. Fig. 6. Optimizing the service selection.

Table 1 .

 1 Summary of the obtained sets of services.

		Keywords	# WSs	# WSs	# WSs	# WSs
		used to query returned by obtained by the obtained by the obtained by the
		Service-Finder Service-Finder	1 st step	2 nd step	3 rd step
				filtration	filtration	filtration
	IPToCity	'IP +	36	29	21	5
		city'				
	CityToZipCode	'City +	166	140	112	12
		Zip +				
		Code'				
	ZipCodeToWeather	'Zip +	9	9	7	4
		Code +				
		Weather'				
					Total	21

Table 2 .

 2 . They are S 1i * QoS, S 2j * QoS, and S 3k * QoS. The services inter-relation (relational) contexts are WSs used in our experiments.

	Tasks	WSs names	Operations names	# Inputs # Outputs
		&	&		
		identifiers	identifiers		
	IPToCity	IP	S11 GetCityNameByIP	Op11a 1	1
		DOTSGeoPinPoint	S12 GetLocationByIP	Op12a 2	9
			GetCountryByIP	Op12b 2	6
			GetLocationByIP V2	Op12c 2	12
		WsIp	S13 GetLocation	Op13a 1	3
		GeoCoder	S14 IPAddressLookup	Op14a 1	10
			PhysicalAddressLookup	Op14b 1	10
		XigniteHelp	S15 WhatsMyIP	Op15a 0	33
	CityToZipCode	GeoPlaces	S21 GetPlaceDetails	Op21a 2	12
		MediCareSupplier	S22 GetSupplierByCity	Op22a 1	14
		DOTSGeoCoder	S23 GetGeoLocationByCityState Op23a 3	5
			GetGeoLocationWorldWide	Op23b 4	5
		ClientScriptServices S24 GetZipCodeCompletionList Op24a 3	5
		FedAch	S25 GetAchByName	Op25a 3	5
		DOTSAddressValidate S26 ValidateCityStateZip	Op26a 4	4
			S26 ValidateAddressSingleLine Op26b 2	19
		ProMilesWebService S27 GeoCodeLocation	Op27a 6	6
			GetZipsInRadius	Op27b 2	4
			ValidateLocation	Op27c 4	4
		CityZip Service	S28 GetZipCode	Op28a 4	3
		USZip	S29 GetinfoByCity	Op29a 1	1
			GetInfoByState	Op29b 1	1
		DotSGeoCash	S210 GetATMLocationsByCityState Op210a 2	8
		LPWebService	S211 GetLocationCities	Op211a 2	1
			GetLocationStates	Op211b 1	1
			GetLocationByCity	Op211c 3	1
		GeoServiceWebService S212 GetZipCodesFromCityState Op212a 3	1
	ZipCodeToWeather DOTSFastWeather	S31 GetWeatherByZip	Op31a 2	18
			GetWarningsByZip	Op31b 2	11
			GetFiveDayForecastByZip	Op31c 2	8
			GetWeatherHistoricalByZip Op31c 4	18
		USWeather	S32 GetWeatherReport	Op32a 1	1
		WeatherForecast	S33 GetWeatherByZipCode	Op33a 1	13
		WeatherService	S34 GetWeatherData	Op34a 1	15

Table 3 .

 3 QoS values of the WSs used in our experiments.

	Task	Services	Availability Response time
	IPToCity	IP	High	Very high
		DOTSGeoPinPoint	Medium	Low
		WsIp	High	Very high
		GeoCoder	High	High
		XigniteHelp	Low	Medium
	CityToZipCode	GeoPlaces	High	Medium
		MediCareSupplier	Very low	High
		DOTSGeoCoder	High	Medium
		ClientScriptServices	High	High
		FedAch	Very low	Low
		DOTSAddressValidate	High	Medium
		ProMilesWebService	Medium	Medium
		CityZip Service	High	Medium
		USZip	Very low	Low
		DotSGeoCash	Medium	Medium
		LPWebService	High	Medium
		GeoServiceWebService	High	Low
	ZipCodeToWeather	DOTSFastWeather	High	Medium
		USWeather	Very low	Low
		WeatherForecast	Very Low	Low
		WeatherService	Medium	Medium

Table 4 .

 4 Similarity values and inferences between Op11a and operations achieving CityToZipCode task.

	Operation Operations achieving Similarity values
		CityToZipCode task	& inferences
	Op11a	Op21a	0.682	Plugin
		Op22a	1	Exact
		Op23a	0.802	Plugin
		Op23b	0.789	Plugin
		Op24a	0.291 Intersection
		Op25a	0.292 Intersection
		Op26a	0.699	Plugin
		Op26b	0.534 Subsume
		Op27a	0.460 Subsume
		Op27b	0.643 Subsume
		Op27c	0.424 Subsume
		Op28a	0.766	Plugin
		Op29a	1	Exact
		Op29b	0.710	Plugin
		Op210a	0.903	Plugin
		Op211a	0.599 Subsume
		Op211b	0.377 Subsume
		Op211c	0.772	Plugin
		Op212a	0.614 Subsume

 Web Service Selection wrt QoS. In[START_REF] Zeng | Qosaware middleware for web services composition[END_REF], Zeng et al. present a middleware platform that enables the quality-driven composition of web services. In this platform, the QoS is evaluated by means of an extensible multidimensional model, and the selection of web services is performed in such a way as to optimize the composite services QoS given a set of constraints and a set of candidate web services. Two service selection approaches for constructing composite services have been proposed: local optimization and global planning. Their study shows that global planning is better than local optimization. Aggarwal et al.[START_REF] Aggarwal | Constraint driven web service composition in meteor-s[END_REF] present a constraint driven web services composition tool that enables the selection and the composition of web services considering QoS constraints. Like Zeng et al.[START_REF] Zeng | Qosaware middleware for web services composition[END_REF], a linear integer programming approach is proposed for solving the optimization problem. In[START_REF] Yu | Efficient algorithms for web services selection with end-to-end qos constraints[END_REF],Yu et al. propose heuristic algorithms to find a near-to-optimal solution more efficiently than exact solutions. Yu et al. models the QoS-based service selection and composition problem in two ways: the combinatorial model

We haven't shown all the triangles in Fig.6, for the sake of simplicity.

The discovery result set is obtained on June 18 th , 2010.

The WSDL URLs are available on: http://www.lirmm.fr/∼azmeh/wise10/expe/wsdls.html