
HAL Id: lirmm-00565357
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00565357

Submitted on 11 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS-Driven Selection of Composable Web Services
Zeina Azmeh, Driss Maha, Marianne Huchard, Moha Naouel, Chouki

Tibermacine

To cite this version:
Zeina Azmeh, Driss Maha, Marianne Huchard, Moha Naouel, Chouki Tibermacine. QoS-Driven
Selection of Composable Web Services. RR-11005, 2010. �lirmm-00565357�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00565357
https://hal.archives-ouvertes.fr


QoS-Driven Selection of Composable Web
Services

Zeina Azmeh1, Maha Driss2,3,
Marianne Huchard1, Naouel Moha2, and Chouki Tibermacine1

1 LIRMM, CNRS and Montpellier University, France
{azmeh,huchard,tibermacin}@lirmm.fr

2 IRISA/INRIA,University of Rennes I, France
{mdriss,moha}@irisa.fr

3 RIADI-GDL Laboratory, University of Manouba, Tunisia

Abstract. Web Services are universally accessible software units that
are advertised, discovered, and invoked over the internet. As web ser-
vice technology is becoming widely adopted by organizations that need
to integrate their information systems within and across organizational
boundaries, it is important to identify automatically relevant composable
services. In this paper, we propose an approach based on a variant of
Formal Concept Analysis for the identification of composable services. It
allows the classification of web services according to their QoS and com-
posability levels and proposes a query mechanism that allows users to
specify their required QoS and composability levels. In the case of mul-
tiple choices that satisfy users’ requirements, we enhance our approach
with a mechanism based on vectors for identifying the optimized choice.
We validate our approach on a set of real-world web services obtained
from Service-Finder.

1 Introduction

Service-Oriented Computing (SOC) is an emerging paradigm for developing low-
cost, flexible, and scalable distributed applications based on web services [10].
Web services are autonomous, reusable and independent software units that can
be accessed through the internet. SOC is becoming broadly adopted and in par-
ticular by companies, which are more and more willing to open their information
systems to their clients and partners over the Internet. The reason comes from
the fact that SOC offers the ability to build efficiently and effectively added-
value service-based applications by composing ready-made services. Web service
composition addresses the situation when the functionality required by users
cannot be satisfied by any available web service, but by assembling suitably ex-
isting web services [18]. Discovering and selecting relevant services that closely fit
users’ functional and non-functional requirements is an important issue highly
studied in the literature [24,1,23]. Functional requirements define functionali-
ties provided by web services and non-functional requirements define Quality of
Service (QoS) criteria such as availability, response time, security, and through-
put, etc. [14]. However, discovering and selecting relevant composable services is



another important issue that still need to be investigated, since few approches
focused on service composability problem [12,7,11]. Relevant composable ser-
vices represent services minimize the amount of adaptation among them while
best fitting requirements.

In this paper, we propose an approach for the identification of composable ser-
vices that best fit QoS and adaptation requirements. This approach is based on
the formal concept analysis (FCA) and its variant, the relational concept analysis
(RCA). FCA has been successfully applied in the past as a formal framework for
service substitution [16,2,3,4,6]. Thus, we use FCA and RCA to classify services
according to their QoS and composability level and suggest substitutable ser-
vices and composable services. The approach is also based on a query mechanism
that allows users to specify their required QoS and composability levels. In par-
ticular, users can specify their interests for identifying composable services that
maximize QoS requirements and minimize their adaptation level. In the case of
multiple choices that satisfy users’ requirements, we enhance our approach with
a mechanism based on vectors for identifying the optimized choice.

The paper is organized as follows. Section 2 describes our approach along
with a motivating example. Section 3 describes the experiments performed on
a real case study for validating our approach. The paper ends with the related
work in Section 4 and the conclusion in Section 5.

2 Approach

We explain our approach along with an abstract orchestration of three sequential
tasks. We try to identify the concrete services offering the needed functionali-
ties, in order to instantiate the defined orchestration. Our objective is to select
composable services with the highest affordable QoS values, and the least re-
quired adaptations. We have 3 sets of services: S1i, S2j and S3k corresponding
to the three tasks. For each service of the three sets, we assume certain values of
QoS (for availability (A) and response time (RT)). We categorize the QoS values
into 5 levels: very low, low, medium, high and very high, for each of the A and
RT values. A service that offers a specific QoS level, does also offer QoS levels
that are lower. For each pair of consecutive services (according to our defined
orchestration), we assume three composability values: exact, partial and disjoint.

RCA-Based Classification. We base our classification on Formal Concept
Analysis (FCA, [8]), which is a data analysis method that aims at extracting
concepts from entities described by attributes. The description of entities is en-
coded in a formal context. For example, in Fig. 1, the third table S3k is a formal
context where entities are services for the Task 3, and are described by the val-
ues of availability and response time (attributes). Concepts are maximal sets of
entities (extent) sharing a maximal set of attributes (intent), and they are orga-
nized in a classification provided with a lattice structure. The lattice associated
with the context S3k is shown in Fig. 5. Each concept in this lattice inherits the
attributes of its ascendants (super-concepts), and has lesser attributes than its
descendants (sub-concepts). Reversely, each concept inherits the services of its



descendants (sub-concepts). For example, the concept c0 represents the services
s31 and s33, which covers the QoS values of the services in the upper concepts,
and offers better ones (like: low A and low RT). The concept c5 indicates that
s33 has very low RT and high A. The concept c5 is a sub-concept of the concept
c0, which shows that s33 has better QoS values than s31.

Fig. 1. The relational contexts family (RCF) corresponding to the three sets of services.

Since we also want to capture the composition relations, existing between
pairs of services in an orchestration, we use a variant of FCA called Relational
Concept Analysis (RCA), which includes relations in the attributes used for the
concept mining [9]. RCA data are given in the form of a Relational Context Fam-
ily (RCF). An RCF is a set of binary relationships (tables): some (non-relational)
tables describe entities by attributes, while some (relational) tables describe re-
lations between entities. The non-relational part of the RCF contains one table
for each task: entities are services that can make the task, and attributes are QoS
values. Thus, our RCF is composed of three non-relational contexts: S1i ∗QoS,
S2j ∗QoS and S3k ∗QoS, and two sets of three relational contexts: composition
of S1i∗S2j and composition of S2j ∗S3k, according to the three considered levels.



As we can see in Fig. 1, the three relational contexts for composition of Sxi ∗Syj

are called Exactxy, Partialxy and Disjointxy.

Fig. 2. The services lattices for Task 1 and Task 2.

We run the RCA algorithm on the RCF, illustrated in Fig. 1. The RCA takes
as input all the tables and iterates on two steps: (1) building a concept lattice on
each non-relational context of services concatenated with the corresponding rela-
tional contexts that express composition, that is on S1i ∗QoS concatenated with
Exact12, Partial12 and Disjoint12, on S2j ∗ QoS concatenated with Exact23,
Partial23 and Disjoint23 and on S3k ∗ QoS; (2) transform the six relational
contexts to integrate the concepts found at that current step (to use this knowl-
edge in the next iteration). During this transformation, we use the existential
scaling operator which is one of the scaling operators provided by RCA [9]. Ser-
vices that form the columns of a composition context are replaced by concepts
that group services. If (Sxy, Szt) initially holds in a composition context (with
composition level cl) and Szt is in the extent of a concept C at the current step,
thus in the current version of the composition context we add (Sxy, C). This can
be interpreted as Sxy can be composed with at least one service from the set
of services grouped in C with the composition level cl. For example, since we
have (s13, s25) ∈ Exact12 and since s25 is in the extent of Concept c1 (in lattice
S2j), the scaled Exact12 table will contain (s13, c1). By regarding the lattices
in Fig. 2, we can find for example, that the service s13 (in the leftmost lattice)
has in its intent Exact12 : c1. This means that it can be composed with services
contained in the concept c1 (in the middle lattice). Thus, s13 can be composed
at least with s25. At a next step this will allow to group a set of services (im-
plementing a first task) because they can be composed with services of another
group of services (implementing another task). The process stops when no new
concept emerge during the FCA analysis. At the end of the process, a concept
lattice is generated for each set of services. In each lattice, services are classi-



fied into concepts, showing their QoS levels as well as their composability levels
with other services, according to the orchestration. Concept c7 in the S1i lattice
groups services s13 and s11, and indicates that they can be partially composed
with services of concept c3 of the S2j lattice, which groups s23 and s25.

Fig. 3. The RCF after integrating the QoS queries and specifying the composability
level.

Navigation by Query Integration. We define a query mechanism that en-
ables us to navigate into a lattice, in order to choose a combination of services
that satisfies the aimed orchestration, with our aimed levels of QoS and com-
posability. A query determines the required QoS for each requested task, as well
as, the needed composability level (required adaptations) between the services.
We define a QoS query as a new line (a new entity), integrated into the corre-
sponding service*QoS binary context, specifying the least expected QoS level.
In our example, we perform three QoS queries: query1, query2 and query3 on
S1i ∗ QoS, S2j ∗ QoS and S3k ∗ QoS respectively. They are as follows: query1

looks for a service from S1i, with a low A and a low RT; query2 tries to retrieve
a service from S2j , with a high A and a low RT; query3 demands a service from
S3k, with a high A and a medium RT. In order to select services that satisfy a
specific composability level, we merge the relational contexts that express levels
equal or greater than the requested level. In other words, if a partial compos-
ability level can be accepted, this means that if we find an exact level, it is even
better. In this example, we demand an ”exact” composability level between S1i

and S2j , and a ”partial” level between S2j and S3k. This gives us a variation
of our RCF that includes queries, where the relational context compose1 is the



context exact12 and compose2 is the fusion of exact23 and partial23, as shown
in Fig. 3.

This latter RCF generates three lattices, from which we can extract the
services combinations that meet our requested QoS and composability. These
lattices are illustrated in Fig. 4, from which we can identify the services that
satisfy the QoS queries, which appear in the sub-concepts of the concept where
a queryn appears, and are as follows: services s13 and s14 for query1; services
s23, s24 and s25 for query2; services s32 and s33 for query3.

Fig. 4. The service lattices with the integrated queries.

The Optimal Services Composition. From the extracted services, we can
have several combinations that satisfy our desired orchestration. If we are search-
ing for an optimized selection, this means that we have to find the set of services
that meet the optimal compromise of QoS levels and composability. Thus, ser-
vices that can be coupled according to our acceptable levels of required adapta-
tions and QoS. In order to meet this issue, we propose to represent the services
by vectors. A vector per set of services, on which, services are ordered according
to their QoS. We also define a vector for composability levels. Each composition
can be regarded as a triangle, having a head corresponding to the composability
level, and the two other heads corresponding to the pair of services to be com-
posed, as shown in Fig. 6. The optimized choice would be the triangle that has
the minimal area, in case of a two services composition. Otherwise, it will be the
minimal sum of the services triangles according to an orchestration. Thus in our
example, by regarding the triangles in Fig. 6, we notice that the triangle (E, s25,
s33) represents an optimized composition between S2j and S3k (corresponding
to Task2 and Task3, respectively). Accordingly, if we consider the triangle (E,
s13, s25) that shares an edge with the previous triangle, it represents a compo-
sition between S1i and S2j (corresponding to Task1 and Task2, respectively).



Fig. 5. The lattice associated with the con-
text S3k of Task 3. Fig. 6. Optimizing the service selection.

These two triangles together may be an optimized combination for the required
orchestration, after comparing them with all the existing triangles4.

3 Experiments

This section describes data and results of the experiments that we have con-
ducted.

3.1 Experiments Data

To validate our approach, we consider an orchestration composed of three se-
quential tasks. The first task IPToCity returns the city name for a given IP
address. The second task CityToZipCode returns the zip code for a given city
name. The third task ZipCodeToWeather returns the weather information for a
given zip code.
We discover a set of WSs that reply to each of these tasks by querying Service-
Finder [22] [19]. Service-Finder is a Web 2.0 platform for WSs discovery that
indexes almost 25.000 WSs. For example, we use keywords ‘IP + City’ to search
WSs that achieve the first task. Service-Finder returns a result set of 36 WSs 5.
To reduce this set, we process three-step filtration. In the first step, we eliminate
repeated WSs (i.e., WSs that offer exactly the same operations). This first filtra-
tion generates a new reduced set that contains 29 WSs. These WSs are passed
to a second filtration step, in which we check whether the endpoint URI exists
or not. This produces a new reduced set that contains 21 WSs. These WSs are
passed to a third filtration step which leaves only services offering operations
that satisfy the IPToCity task. This is done by parsing every service WSDL in
order to check if the required operation exists or not. Finally, we obtain a set of

4 We haven’t shown all the triangles in Fig. 6, for the sake of simplicity.
5 The discovery result set is obtained on June 18th, 2010.



5 WSs. Table 1 gives for the three tasks, the keywords used to query Service-
Finder, the number of WSs returned by it, and the number of the obtained WSs
after each filtration step. The total number of WSs that reply to the three tasks
is 21 WSs6.

Tasks Keywords # WSs # WSs # WSs # WSs
used to query returned by obtained by the obtained by the obtained by the

Service-Finder Service-Finder 1st step 2nd step 3rd step
filtration filtration filtration

IPToCity ‘IP + 36 29 21 5
city’

CityToZipCode ‘City + 166 140 112 12
Zip +
Code’

ZipCodeToWeather ‘Zip + 9 9 7 4
Code +

Weather’
Total 21

Table 1. Summary of the obtained sets of services.

Table 2 is a synopsis of the 21 WSs used in our experiments, their operations,
inputs, and outputs. For the sake of simplicity, we use the abbreviated notation
‘S11’ to refer to the service ‘1’ that replies to the task ‘1’ and ‘Op11a’ to refer
to the operation ‘a’ from the service ‘1’ that replies to the task ‘1’, and so on.
We consider 2 QoS properties to characterize WSs: availability (A) and response
time (RT). Real time monitoring information of service availability and response
time are provided by Service-Finder. To spread out availability and response time
values, we use the boxplot statistical technique [5].

Table 3 gives availability and response time values for the 21 WSs.
To characterize the composability between two WSs, for example S11 and S21,
we compute the semantic and structural similarity between the output and input
parameters of their operations. We obtained values (Sim) ∈ [0,1]. Then, we used a
standard reasoning inferences [15], common in semantic web services: Exact(Sim
= 1), Plugin (2/3 <= Sim <1), Subsume (1/3 <= Sim < 2/3), Intersection (0
< Sim < 1/3), and Disjoint (Sim = 0). Computation of semantic and structural
similarity between parameter names is done using the Java WordNet Similarity
Library (JWSL) [17]. Due to the limited paper space, we show in Table 4 the
obtained similarity values between Op11a of the service S11 and operations of
the services that reply to CityToZipCode task.

3.2 Experiments Results

We use the previously obtained data in building an RCF, as described in Sec-
tion 2. Thus, our non-relational contexts are composed of the obtained ser-
vices together with their QoS values, illustrated in Table 3. They are S1i ∗QoS,
S2j ∗ QoS, and S3k ∗ QoS. The services inter-relation (relational) contexts are

6 The WSDL URLs are available on: http://www.lirmm.fr/∼azmeh/wise10/expe/wsdls.html



Tasks WSs names Operations names # Inputs # Outputs
& &

identifiers identifiers
IPToCity IP S11 GetCityNameByIP Op11a 1 1

DOTSGeoPinPoint S12 GetLocationByIP Op12a 2 9
GetCountryByIP Op12b 2 6
GetLocationByIP V2 Op12c 2 12

WsIp S13 GetLocation Op13a 1 3
GeoCoder S14 IPAddressLookup Op14a 1 10

PhysicalAddressLookup Op14b 1 10
XigniteHelp S15 WhatsMyIP Op15a 0 33

CityToZipCode GeoPlaces S21 GetPlaceDetails Op21a 2 12
MediCareSupplier S22 GetSupplierByCity Op22a 1 14
DOTSGeoCoder S23 GetGeoLocationByCityState Op23a 3 5

GetGeoLocationWorldWide Op23b 4 5
ClientScriptServices S24 GetZipCodeCompletionList Op24a 3 5
FedAch S25 GetAchByName Op25a 3 5
DOTSAddressValidate S26 ValidateCityStateZip Op26a 4 4

S26 ValidateAddressSingleLine Op26b 2 19
ProMilesWebService S27 GeoCodeLocation Op27a 6 6

GetZipsInRadius Op27b 2 4
ValidateLocation Op27c 4 4

CityZip Service S28 GetZipCode Op28a 4 3
USZip S29 GetinfoByCity Op29a 1 1

GetInfoByState Op29b 1 1
DotSGeoCash S210 GetATMLocationsByCityState Op210a 2 8
LPWebService S211 GetLocationCities Op211a 2 1

GetLocationStates Op211b 1 1
GetLocationByCity Op211c 3 1

GeoServiceWebService S212 GetZipCodesFromCityState Op212a 3 1
ZipCodeToWeather DOTSFastWeather S31 GetWeatherByZip Op31a 2 18

GetWarningsByZip Op31b 2 11
GetFiveDayForecastByZip Op31c 2 8
GetWeatherHistoricalByZip Op31c 4 18

USWeather S32 GetWeatherReport Op32a 1 1
WeatherForecast S33 GetWeatherByZipCode Op33a 1 13
WeatherService S34 GetWeatherData Op34a 1 15

Table 2. WSs used in our experiments.

constructed using the composability values in Table 4. Having two composable
services, means that the first service contains at least one operation that can be
composed with one or more operations from the second one. The maximal level
of composability between the operations belonging to the two services, is used
as the level of composability of the two services. For example, from the Table 4,
we can see that the service s11 has two values of composability with service s29,
which are ”Exact” and ”Plugin”. Accordingly, we consider the composability
level between s11 and s29 to be ”Exact”. After building the RCF, the next step
is to integrate queries, in order to specify the required QoS of the service cor-
responding to each task in the orchestration. We define the following queries:
query1 demands services from S1i having a ”Low A”and a ”High RT”; query2
demands services from S2j having a ”High A” and a ”Medium RT”; query3
demands services from S3k having a ”High A” and a ”Low RT”. We also spec-
ify the minimal accepted composability level, we set it to be ”Plugin”. Thus,
the relational contexts become one single context, which is the fusion of the
”Exact” and ”Plugin” contexts for the two sets of relational contexts (S1i,S2j)
and (S2j ,S3k). Executing RCA on the built RCF gives us the relational concept



Task Services Availability Response time
IPToCity IP High Very high

DOTSGeoPinPoint Medium Low
WsIp High Very high

GeoCoder High High
XigniteHelp Low Medium

CityToZipCode GeoPlaces High Medium
MediCareSupplier Very low High

DOTSGeoCoder High Medium
ClientScriptServices High High

FedAch Very low Low
DOTSAddressValidate High Medium
ProMilesWebService Medium Medium
CityZip Service High Medium

USZip Very low Low
DotSGeoCash Medium Medium
LPWebService High Medium

GeoServiceWebService High Low
ZipCodeToWeather DOTSFastWeather High Medium

USWeather Very low Low
WeatherForecast Very Low Low
WeatherService Medium Medium

Table 3. QoS values of the WSs used in our experiments.

lattices (RCL) in Fig. 7, in which, we have composable services with a ”Plugin”
composability level (or ”Exact”), and having the expected QoS levels.

By looking to query3 in L3, we notice that it asks for services having a
”Medium RT” and ”Medium A”. While the original query3, requests a ”High
A” and a ”Low RT”, as indicated above. Since there were no matches for the
original query, it switches to the next best level of QoS. The services returned
by the queries are as follows: query1 returns s12 in c3, and s14 in c5 (lattice L1);
query2 returns s23, s26 in c13, s28 in c21, and s212 in c8 (lattice L2); query3
returns s31 in c0 and s34 in c4 (lattice L3).

In order to clarify the results obtained by the RCL, we show the compos-
ability values between the returned services in Table 5. We notice that, the
services s12 and s14 have a ”Plugin” composability with the services s23,s26, and
s28. Thus, s12 and s14 must have the concepts c13 and c21 in their attributes
sets. By regarding the lattice L1 in Fig. 7, we notice that c3 and c5 inherits
Compose(L2) : c13 and Compose(L2) : c21 from c2. This means that s12 and
s14 are composable with s23,s26, and s28, which is true. In the same way, we
notice that s23,s26, and s28 are composable with s31, and s34 in lattice L3. On
the other hand, we can also notice s212 in L2, which can be composed with s31,
and s34, but can not be composed with neither s12 nor s14. This explains the
absence of Compose(L2) : c8 as an attribute for c3 and c5 in L1.

4 Related Work

The related work can be organized in three categories:

Web Service Composability and Substituability. Many works in the liter-
ature addressed the composability and substituability of web services. Ernst et
al. [7] present a method based on syntactic descriptions of Web services. This



Operation Operations achieving Similarity values
CityToZipCode task & inferences

Op11a Op21a 0.682 Plugin
Op22a 1 Exact
Op23a 0.802 Plugin
Op23b 0.789 Plugin
Op24a 0.291 Intersection
Op25a 0.292 Intersection
Op26a 0.699 Plugin
Op26b 0.534 Subsume
Op27a 0.460 Subsume
Op27b 0.643 Subsume
Op27c 0.424 Subsume
Op28a 0.766 Plugin
Op29a 1 Exact
Op29b 0.710 Plugin
Op210a 0.903 Plugin
Op211a 0.599 Subsume
Op211b 0.377 Subsume
Op211c 0.772 Plugin
Op212a 0.614 Subsume

Table 4. Similarity values and inferences between Op11a and operations achieving
CityToZipCode task.

s23 s26 s28 s212
s12 Partial Partial Partial Subsume
s14 Partial Partial Partial Subsume

s31 s34
s23 Partial Subsume
s26 Partial Intersection
s28 Partial Partial
s212 Exact Partial

Table 5. Composability values between the services of query1 and query2, then ser-
vices of query2 and query3.

approach analyzes multiple invocations of these services. The input and output
parameter values are compared and matchings are deduced. Contrarily to our
approach, this work is based on the experimental usage of Web services, and
is perfectly complementary to ours. In this research area, much work has been
done on semantic web services [21,13,12,11]. In [13] and [12], the authors present
a model for checking the composability of semantic web services at different lev-
els: syntactic, semantic and quality of service. They first proposed a model for
describing the static (non-computational) and dynamic (business) semantics of
web services. Then, they formalized a set of rules that allow the computation
of a composability degree.This work deals with two kinds of composability: hor-
izontal (normal composability) and vertical (substituability). In our approach,
web service semantics are extracted from service’s signatures and documenta-
tion. We use tools (based on WordNet) to compute the similarity between names
or documentation keywords of different web services. This allowed us to deduce
the composaibility of services. We do not use a high-level model of web service
semantics as in [12]. In addition, in our work we experimented the approach
on real-world (not semantic) web services obtained from Service-Finder. The
authors of [12] made however a simulation-based experimental study. In [13],
the same authors deal with three quality attributes: fees, security and privacy.
In our approach, we focus on other web service qualities, which are availabil-



Fig. 7. The RCL corresponding to the services listed in Table 2.

ity and efficiency (response time). In [11], the authors present a method which
combines semantic and static analysis of messages in semantic Web services.
Data types (XML schemas) and semantic description (domain ontologies and
SA-WSDL [20] specifications) of parameters (parts of web service messages) are
used to deduce mappings. These mappings are then transformed into adapters
(XSL documents). In our work, we concentrated on the selection of services
which offer maximal QoS and which require, when composed, minimal adapta-
tions. The two approaches are complementary.

Web Service Selection wrt QoS. In [24], Zeng et al. present a middleware
platform that enables the quality-driven composition of web services. In this plat-
form, the QoS is evaluated by means of an extensible multidimensional model,
and the selection of web services is performed in such a way as to optimize the
composite services QoS given a set of constraints and a set of candidate web
services. Two service selection approaches for constructing composite services
have been proposed: local optimization and global planning. Their study shows
that global planning is better than local optimization. Aggarwal et al. [1] present
a constraint driven web services composition tool that enables the selection and
the composition of web services considering QoS constraints. Like Zeng et al. [24],
a linear integer programming approach is proposed for solving the optimization
problem. In [23], Yu et al. propose heuristic algorithms to find a near-to-optimal
solution more efficiently than exact solutions. Yu et al. models the QoS-based
service selection and composition problem in two ways: the combinatorial model
defines the problem as a multi-dimension multi-choice knapsack problem and
the graph model defines the problem as a multi-constrained optimal path prob-
lem. A heuristic algorithm is introduced for each model. Despite the significant
improvement of these algorithms compared to exact solutions [24] [1], both algo-



rithms are not suitable for large service-based systems. This type of systems (i.e.,
composed of a large number of services) may be composed easily and efficiently
using our approach.

Web Service Selection using Concept Lattices. Many works in the litera-
ture have addressed the classification of web services using concept lattices [3,4,2,16,6].
In [3], Azmeh et al. presented a tool which helps in classifying directories of web
services from Seekda into concepts lattices. The classification is built upon con-
texts which associate services to operation signatures. In [4], the used contexts
formalize relations between services and keywords extracted from their docu-
mentation, and similarity between operations. In these works, the classification
is not based on QoS (filtering in [3] is done on only one quality attribute, avail-
ability). In addition, these approaches are based on FCA, and not on RCA,
and don’t base the classification on an orchestration. In [6], the authors present
an approach where formal contexts associate web services and functionalities
provided by these services as well as their non-functional properties (security).
This interesting work addresses a different kind of quality attributes (security)
that is critical in pervasive computing. Besides, it does not deal with service
composition, and uses FCA (not RCA).

5 Conclusion

We presented an approach for assisting the development of a web-service orches-
tration based on a workflow including interacting abstract tasks, and on ready-
made services from public registries. Relational Concept Analysis (RCA) helped
us to take into account both QoS requirements and levels of composability in
classifying candidate web services for implementing the tasks. The result is a set
of web service lattices (one for each task), where the designer can see potentially
collaborating services, as well as their QoS values. Inside each lattice, services
are ordered by QoS and composability values. We have also proposed a querying
mechanism that, given an expected level of QoS and composability, guides the
designer in the lattices and highlights parts of the lattices where services should
be chosen. We led an experiment on a sequential orchestration composed of three
tasks. This illustrated and showed the feasibility of the approach.

As a future work, we plan to lead other experiments and to study other en-
codings of the problem with RCA, to give complementary views. In addition, we
intend to study more deeply other composability computation techniques (based
on other semantic descriptions of web services). This will allow us to obtain more
precise compositions.

References

1. Aggarwal, R., Verma, K., Miller, J., Milnor, W.: Constraint driven web service
composition in meteor-s. In: SCC ’04. pp. 23–30 (2004)

2. Aversano, L., Bruno, M., Canfora, G., Di Penta, M., Distante, D.: Using concept
lattices to support service selection. Int. J. of Web Serv. Res. 3(4), 32–51 (2006)



3. Azmeh, Z., Huchard, M., Tibermacine, C., Urtado, C., Vauttier, S.: Wspab: A
tool for automatic classification and selection of web services using formal concept
analysis. In: Proc. of ECOWS’08 (2008)

4. Azmeh, Z., Huchard, M., Tibermacine, C., Urtado, C., Vauttier, S.: Using concept
lattices to support web service compositions with backup services. In: Proc. of
ICIW’10 (2010)

5. Chambers, J.M., Clevelmd, W.S., Kleiner, B., Tukey, P.A.: Graphical methods for
data analysis. Wadsworth & Brooks / Cole (1983)

6. Chollet, S., Lestideau, V., Lalanda, P., Colomb, P., Moreno, D.: Heterogeneous
service selection based on formal concept analysis. In: Proc of Int. W. on Net-
Centric Service Enterprises: Theory and Application (NCSE2010) (2010)

7. Ernst, M.D., Lencevicius, R., Perkins, J.H.: Detection of web service substitutabil-
ity and composability. In: Int. W. on Web Services — Modeling and Testing (WS-
MaTe 2006). pp. 123–135 (2006)

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer Verlag (1999)

9. Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery
in structured datasets. Ann. Math. Artif. Intell. 49(1-4), 39–76 (2007)

10. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and princi-
ples. IEEE Internet Computing 9(1), 75–81 (2005)

11. Lécue, F., Salibi, S., Bron, P., Moreau, A.: Semantic and syntactic data flow in
web service composition. In: Proc. of the ICWS’08. pp. 211–218 (2008)

12. Medjahed, B., Bouguettaya, A.: A multilevel composability model for semantic
web services. IEEE Trans. on Knowledge and Data Eng. 17(7), 954–968 (2005)

13. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on
the semantic web. The VLDB Journal 12, 2003 (2003)

14. Menascé, D.A.: Qos issues in web services. IEEE Internet Comp. 6(6), 72–75 (2002)
15. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web

services capabilities. In: In proc. of ISWC ’02. pp. 333–347 (2002)
16. Peng, D., Huang, S., Wang, X., Zhou, A.: Management and retrieval of web services

based on formal concept analysis. In: Proc. of CIT’05. pp. 269–275 (2005)
17. Pirró, G., Seco, N.: Design, implementation and evaluation of a new semantic sim-

ilarity metric combining features and intrinsic information content. In: ODBASE
2008. pp. 1271–1288 (2008)

18. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. LNCS,
Springer, Heidelberg (2005)

19. Service-Finder: http://www.service-finder.eu/
20. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding semantics to web

service standards. In: Proc. of ICWS’03. pp. 395–401 (2003)
21. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, in-

teraction and composition of semantic web services. Journal of Web Semantics,
Elsevier 1, 27–46 (2003)

22. Valle, E.D., Cerizza, D., Celino, I., Lausen, H., Steinmetz, N., Erdmann, M.,
Schoch, W., Funk, A.: Realizing service-finder, web service discovery at web scale.
In: ESTC ’08 (2008)

23. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Transactions on the Web 1(1), 6 (2007)

24. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)


