N
N

N

HAL

open science

A General Label Search to Investigate Classical Graph
Search Algorithms

Genevieve Simonet, Anne Berry, Richard Krueger

» To cite this version:

Genevieve Simonet, Anne Berry, Richard Krueger.
Classical Graph Search Algorithms. Discrete Applied Mathematics, 2011, 159, pp.128-142.
10.1016/j.dam.2010.02.011 . lirmm-00565874

HAL Id: lirmm-00565874
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00565874
Submitted on 14 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

A General Label Search to Investigate

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00565874
https://hal.archives-ouvertes.fr

Discrete Applied Mathematics 159 (2011) 128-142

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

A General Label Search to investigate classical graph search algorithms

R. Krueger?, G. Simonet bx A, Berry €

2 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 3G4
b LIRMM, Univ. Montpellier 2, CNRS, 161, Rue Ada, F-34392 Montpellier, France
€ LIMOS, Ensemble scientifique des Cézeaux, F-63177 Aubiére, France

ARTICLE INFO ABSTRACT

Artic{e history: Many graph search algorithms use a labeling of the vertices to compute an ordering of the
Received 26 June 2008 vertices. We generalize this idea by devising a general vertex labeling algorithmic process
Received in revised form 17 February 2010 called General Label Search (GLS), which uses a labeling structure which, when specified,

Accepted 27 February 2010

Available online 18 November 2010 defines specific algorithms.

We characterize the vertex orderings computable by the basic types of searches in
terms of properties of their associated labeling structures. We then consider performing
graph searches in the complement without computing it, and provide characterizations for
some searches, but show that for some searches such as the basic Depth-First Search, no

Keywords:
Graph search algorithm
Graph labeling algorithm

Breadth First Search algorithm of the GLS family can exactly find all the orderings of the complement. Finally,
Depth First Search we present some implementations and complexity results of GLS on a graph and on its
LexBFS complement.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Graph search algorithms are fundamental in computer science. The well-known Breadth-First Search (BFS) and Depth-
First Search (DFS) algorithms are commonly used by algorithms as a simple method for systematically visiting all the vertices
or all the edges of a graph. More specialized searches, including Lexicographic Breadth-First Search (LexBFS), are widely used
for tasks such as the recognition of various graph classes.

Graph Search computes an ordering of the vertices of a graph G in the following manner, as described by Tarjan [11].
We pick an arbitrary vertex and select one of its incident edges to follow. Traversing this edge leads to a new vertex. We
continue, at each step selecting an untraversed edge leading from a vertex already reached. Traversing this edge leads either
to a new vertex or to one previously reached. Whenever we run out of edges leading from old vertices, we choose some
new unreached vertex and begin again from there. Each edge is traversed exactly once, and we eventually reach all vertices
in the graph. The way in which we choose the next edge to traverse determines what kind of search is performed (such as
whether it is a BFS or DFS).

Corneil and Krueger [5] unified the basic paradigms of graph search by deriving characterizations of the vertex orderings
each algorithm may produce. The previously known characterization of LexBFS orderings [8,2,3] has become extremely
important in devising and proving LexBFS-based algorithms in a variety of areas [4]. Such a characterization has proven
valuable for devising multi-sweep search algorithms, where several graph searches are performed in sequence, with each
sweep possibly using information gathered in the previous sweep(s). The new characterizations of [5] permit the same

* Corresponding author. Fax: +33 467144176.
E-mail addresses: krueger@cs.toronto.edu (R. Krueger), simonet@iutmontp.univ-montp2.fr, simonet@lirmm.fr (G. Simonet), berry@isima.fr (A. Berry).

0166-218X/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2010.02.011

http://dx.doi.org/10.1016/j.dam.2010.02.011
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:krueger@cs.toronto.edu
mailto:simonet@iutmontp.univ-montp2.fr
mailto:simonet@lirmm.fr
mailto:berry@isima.fr
http://dx.doi.org/10.1016/j.dam.2010.02.011

R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142 129

techniques currently exploited for LexBFS to be expanded to all other basic searches, allowing the full power of graph search
to be applied to new areas.

Recently, Berry, Krueger and Simonet [1] studied graph search in the context of computing minimal triangulations, and
introduced an algorithm, called MLS, to capture all graph searches that compute a perfect elimination ordering (peo) when
run on a chordal graph.

In this paper, we present a more general search paradigm, which we call GLS for General Label Search. We extend the
results of [1] by deriving a more general form of MLS where there is no condition on the function which is used to modify
the labels. GLS thus captures a much wider variety of graph algorithms, since we do not require that a peo be computed
when the algorithms are applied to chordal graphs. We thus present labeling structure properties and use them in new
characterizations of the vertex orderings computable by the different types of search. We find that GLS can also express
some algorithms other than a search of the input graph. We characterize labeling structures that yield certain types of graph
search orderings of the complement of the graph, which are found without computing the complement. We also show that
no algorithm of the GLS family can find precisely the general graph search orderings nor the depth-first search orderings of
the complement of a graph. Finally, we discuss some efficient implementations of GLS.

The paper is organized as follows: after this introduction, we give some preliminary notions in Section 2. Section 3
presents algorithmic paradigm GLS, Section 4 shows that seven classical graph search algorithms are instances of GLS.
Section 5 studies the relationship between some properties of labeling structures and the type of vertex ordering computed
by GLS. Section 6 shows how to use GLS to perform different types of search in the complement of a graph, and Section 7
presents some implementations of GLS and complexity results.

2. Preliminaries

We consider simple undirected graphs G = (V,E) withn = |V| and m = |E|. The neighborhood of a vertex v in G
is denoted by N;(v), or simply N(v) if G is understood. An ordering of V (or of G) is a bijection o from {1,...,n} to V.
We use shorthand ¢ = (vy,...,v;) to mean o (i) = v; for 1 < i < n. When speaking of orderings computed by an
algorithm, v is the first vertex which is visited (i.e. the first vertex to receive its number) and v, is the last vertex to be
visited; some other papers in the literature generate orderings in the reverse order, i.e. the first vertex visited receives
number n and the last vertex visited receives number 1[1,9,12]. This is the case in particular for algorithms which compute
perfect elimination orderings, as the last visited vertex will be the first to be eliminated in the corresponding elimination
ordering. We denote by NT the set of positive integers {1, 2, 3, ...} and for any integer i > 0, we denote by N;r the set
of positive integers which are smaller or equal to i, i.e. {1, 2, 3, ..., i}. The power set of a set X is the set of subsets of X.
A chordal graph is a graph with no chordless cycle of length greater or equal to 4. A partial order, or simply order, on a set
X is a reflexive, antisymmetric and transitive binary relation on X. An order < on X is total if Vx,y € X, x < yory =< x.
A linear extension of an order is a total super-order of this order. A strict order on X is an irreflexive, antisymmetric and
transitive binary relation on X. With each order < on X is associated a strict order < on X defined by: Vx,y € X,x < y
iff (x < y and x # y). The dual (or reverse) of an order < on X is the order <, on X defined by: Vx,y € X, x =<,y iff
y=x

3. GLS, a generic graph search algorithm

All basic graph search algorithms proceed in a standard manner: iteratively visiting a new vertex that is adjacent to a
previously visited vertex whenever possible. Once a vertex is visited, any of its unvisited neighbors becomes eligible for
being visited next, though the exact selection criteria varies according to the type of search which is used.

When performing a search of some graph, we consider that each unvisited vertex is associated with some label indicating
its “priority” for being visited next. For example, a vertex with no visited neighbors would have lower priority than a vertex
with a visited neighbor, and hence have a lower-valued label. As additional neighbors of a vertex are visited, its priority may
be increased (or even decreased) for some search paradigms. When the next vertex is chosen to be visited, there is no other
unvisited vertex with higher priority.

We proceed to formalize this concept as a generic algorithm. First we precisely specify the “label” of a vertex, I(v), as
being a member of some set L. The label of a vertex may change many times during the execution of the search. The “priority”
of a vertex for being visited next is expressed mathematically as a partial order on L. If this order is not total, there may be
many different labels which may be chosen at any point in the search.

Once a vertex is chosen, the unexplored vertices in its neighborhood may become more desirable to choose next.
Algorithmically, we define a function UPLAB(I, i) that will update the label | = [(v) of an unvisited vertex v when one
of its neighbors has been chosen as the ith vertex. The UPLAB(I, i) function will be used to update I(v) to a new element in L
(which may depend on i) to reflect the new priority of choosing v in our search.

Each vertex must initially have some starting label associated with it. We choose some element of L for this purpose, and
call this initial label Iy.

We combine these four concepts into a labeling structure that, once specified, can be used to develop an algorithm for
various types of graph search.

130 R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142

1
(@)

2 3 6
(1) @0 (C8))
5 4
2 3)

Fig. 1. An example of execution of GLS.

Definition 3.1. A labeling structure is a four-tuple (L, <, Iy, UPLAB) where L is a set of labels (which are used to label the
vertices), < is a partial order on L which is used to choose a maximal label, [y is an element of L (which is the initial label
given to all vertices), and UPLAB is a function from L x N* to L (which is used to update the labels). < denotes the strict order
associated with <.

This definition of a labeling structure is more general than the definition given in [1], as here there is no constraint
on function UPLAB, whereas to compute peos an ‘inclusion condition’ is required, ensuring that if the set of numbered
neighbors of a vertex x is included in the set of numbered neighbors of a vertex y, then the label of x is smaller than the label
of y.

Algorithm GLS (General Label Search)

input :Agraph G = (V, E) and a labeling structure (L, <, ly, UPLAB).
output : An ordering o of V.

Initialize all labels to Iy;
fori < 1tondo
Pick an unnumbered vertex v whose label is maximal under < ;
o (i) < v (assigns to v the number i);
foreach unnumbered vertex w adjacent to v do
| l(w) <= UPLAB(l(w), i);

Notation 3.2. When we shall restrict our attention to a particular labeling structure S, we shall call the algorithm S-GLS. If
o is an ordering of G found by GLS using a labeling structure S, i.e. found by S-GLS, we say that o is an S-GLS ordering
of G.

Iterating i of the for i < 1 to n loop in an execution of GLS or S-GLS will be referred to as iteration i of this execution. In the
subsequent notations, subscript i means: at the end of iteration i of the considered execution. Thus we will use subscript i — 1 to
refer to the state of variables at the beginning of iteration i, and subscript 0 to refer to the state of variables just before entering
the loop for the first time.

Example 3.3. Let us consider for example labeling structure S = (L, <, ly, UPLAB), which will be associated with Algorithm
LexDFS: L is the set of strings over the alphabet N*, < is lexicographic order <, Iy is the empty string €, UPLAB(I, i) is
digit i prepended to string [(i.e. i is added at the beginning of string I). An execution of S-GLS on a graph G is shown
in Fig. 1. In this figure, two informations are given on each vertex x of G: the number i received by x in this execution,
i.e. such that o(i) = x, and the label of x at the beginning of iteration i (which will no longer be updated in this
execution). For instance, vertex o (3) has label (2, 1) at the beginning of iteration 3, which is maximal at that time since
the labels of the other unnumbered vertices o (4), o(5) and o (6) are respectively the empty list, (2) and (1) at that
time.

At iteration i of the algorithm, in order to choose a new vertex with maximal label, which can be numbered next, we
need to know the labels of each unnumbered vertex v; this label depends solely on the set of neighbors of v which are
already numbered, or rather on the set I of numbers of the visited neighbors of v. At each iteration i, the label of each
neighbor v of the vertex o (i) currently being visited changes from [to UPLAB(I, i). During the execution of the search,
the label of each vertex is thus the result of successive applications of the UPLAB function from Iy with increasing values
of i.

We will use the following notations throughout this paper:

Notation 3.4. For any labeling structure S = (L, <, ly, UPLAB) and any subset I of NV, let labs(I), (or lab(I) if S is clear from
the context), be the label of L defined by:

labs(I) (or lab(I)) = UPLAB(...(UPLAB(UPLAB(ly, i1), i2), . . .), ix), where I = {iy, i3, ..., ik} withi; < i < --- < i}.

For any integer i > 0, the set Ls ; (or simply L;), is defined by:

Ls; = {labs(I), I € N{"}.

R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142 131

For instance, if S is the labeling structure given in Example 3.3, labs(I) is the string of the integers in I in decreasing
order.

Thus the label of an unnumbered vertex at any point of an execution of S-GLS is equal to labs(I) where I is the set
of numbers of its numbered neighbors, and Lg ; is the set of possible labels at the end of iteration i of an execution of
S-GLS.

For each vertex, we need to know the set of numbers assigned to its numbered neighbors.

Notation 3.5. For any graph G, any ordering o of V, any integer i from 0 to n and any vertex v of G, NumSet¢ ;(v) denotes the
set of integers k < i such that o (k) is adjacent to v in G.

Thus the set of numbers of the numbered neighbors of a vertex v of a graph G at the end of iteration i of an execution of
S-GLS computing ordering o is NumSet¢ ;(v), and the label of v at this point is labs (NumSet¢ ;(v)).

For instance, in Example 3.3, the label of o (3) at the beginning of iteration 3, i.e. at the end of iteration 2, is
labs(NumSetg ,(0'(3))) = labs({1,2}) = (2, 1).

Now, an ordering o of a graph G can be computed by S-GLS if and only if for each integer i from 1 to n, the label
of o (i) is maximal among the labels of unnumbered vertices in an execution of S-GLS having numbered successively
o(1),0(),...,0(@ — 1) so far. We immediately obtain the following characteristic property of an S-GLS ordering of
a graph, which will be useful in subsequent proofs, as it separates what depends on S (labs) from what depends on o
(NumSetg;_,).

Remark 3.6. For any labeling structure S, any graph G and any ordering o of V, o is an S-GLS ordering of G if and only if for
any integers i, jsuch that 1 < i <j < n, labs(NumSet(; (o (i))) # labs(NumSetZ; (o (j))).

4. Seven classical graph search algorithms

In this paper we consider a number of graph search algorithms. Every such algorithm computes an ordering of the vertices
of the input graph by successively visiting (and numbering with the next number) an unnumbered vertex until all vertices
are visited.

We will present seven classical or basic search algorithms, namely the general graph search (GGS), Breadth-First
Search (BFS), Depth-First Search (DFS), Lexicographic Breadth-First Search (LexBFS), Maximum Cardinality Search (MCS),
Lexicographic Depth-First Search (LexDFS), and Maximal Neighborhood search (MNS). In order to make notations easier,
we will call BasicAlg the set of these seven algorithms, and often refer to an arbitrary one of these algorithms as X.
For any algorithm X in BasicAlg, the X orderings of a graph are the orderings of this graph that can be computed by
algorithm X.

To illustrate how Algorithm GLS can describe various graph searches, we exhibit labeling structures that correspond to
each of these well-known graph search paradigms. More accurately, we define for each algorithm X in BasicAlg a labeling
structure So(X) such that X and So(X)-GLS compute the same orderings on every graph. Note that So(X) is not the only
labeling structure S such that S-GLS computes the same orderings as X. We will study later in this paper some conditions
on S for S-GLS to compute only X orderings, or exactly the X orderings of every graph.

Graph Search, called GGS in this paper, as discussed in Section 1, chooses at each step whenever possible a vertex having
a visited neighbor.

Algorithm GGS (General Graph Search)

input :Agraph G = (V,E).
output : An ordering o of V.

Initialize set Reached as the empty set;
fori < 1tondo
if Reached is empty then
| Pick any unnumbered vertex v;
else
| Pick and remove a vertex v from Reached;
o (i) < v (assigns to v the number i);
foreach unnumbered vertex w adjacent to v do
| add w to the set Reached;

In this search, the only constraint is that any unnumbered vertex belonging to the set Reached, i.e. having at least one
numbered neighbor, has priority on any unnumbered vertex having no numbered neighbor. This can be done by giving
label 1 to the vertices having at least one numbered neighbor and label 0 to the other vertices; all labels are initialized as 0,
and each time a vertex is numbered, its unnumbered neighbors receive label 1.
Thus GGS computes the same orderings as So(GGS)-GLS, where Sy (GGS) is the labeling structure defined by:
= {0, 1}, <X is the natural order < on integers, lp = 0, UPLAB(l, i) = 1.

132 R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142

It follows that lab(I) = 0if I = ¢ and 1 otherwise. Thus the label of each vertex v is a Boolean indicating whether the
vertex is adjacent to an already visited vertex.

Breadth-First Search (BFS) chooses at each step as a priority a vertex having a least recently visited neighbor. It uses a queue
to store the vertices to be visited next in appropriate order.

Algorithm BFS (Breadth-First Search)

input :AgraphG= (V,E).
output : An ordering o of V.

Initialize queue Q as the empty queue;
fori < 1tondo
if Q is empty then

| Pick any unnumbered vertex v;
else

| Pick and remove the first vertex v from Q ;
o (i) < v (assigns to v the number i);
foreach unnumbered vertex w adjacent to v do

L if w is not already in Q then

| add w to the end of Q;

At each iteration i of BFS, the priority relation among unnumbered vertices is modified as follows. The priority of
the unnumbered vertices having o (i) as first numbered neighbor is increased: it becomes higher than the priority of
unnumbered vertices having no numbered neighbor, but remains lower than the priorities of unnumbered vertices
having a neighbor numbered at some previous iteration. The priority relation among other unnumbered vertices remains
unchanged.

Thus BFS computes the same orderings as Sy (BFS)-GLS, where Sy (BFS) is the labeling structure defined by:

L = NT U {oo}, < is the natural order > on integers, [y = oo, UPLAB(l,i) equals i if | = oo and equals I
otherwise.

It follows that lab(I) = oo if I = ¥ and min(I) otherwise (min for usual order < on integers). Thus the label is the number
assigned to the first (least recently) visited neighbor if it exists.

Depth-First Search (DFS) chooses at each step as a priority a vertex having a most recently visited neighbor. It uses a
stack to store the vertices to be visited next in appropriate order.

Algorithm DFS (Depth-First Search)

input :AgraphG= (V,E).
output : An ordering o of V.

Initialize stack S as the empty stack;
fori < 1tondo
while there is a numbered vertex at the top of S do
| Pop the vertex from top of S;
if S is empty then
| Pick any unnumbered vertex v;
else
| Pop the vertex v from top of S;
o (i) < v (assigns to v the number i);
foreach unnumbered vertex w adjacent to v do
| push w on top of S;

At each iteration i of DFS, the priority relation among unnumbered vertices is modified as follows. The priority of
every unnumbered neighbor of o (i) is increased: it becomes the highest at that time. The priority relation among other
unnumbered vertices remains unchanged.

Thus DFS computes the same orderings as So(DFS)-GLS, where Sy (DFS) is the labeling structure defined as follows:
L = {0} UNT, < is the natural order < on integers, [y = 0, UPLAB(l, i) = i.

It follows that lab(I) = 0ifI = ¥} and max(I) otherwise. Thus the label is the number assigned to the last (most recently)
visited neighbor if it exists.

Lexicographic Breadth-First Search (LexBFS) is a restricted version of BFS introduced by Rose, Tarjan and Lueker [9] to
compute a peo of a chordal graph and thereby recognize chordal graphs. It assigns labels to vertices and uses a lexicographic
order to choose the next vertex to visit. Algorithm LexBFS as defined in [9] numbers vertices from n down to 1 in order to

R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142 133

compute a peo of a chordal graph, and compares labels under the usual lexicographic order on integer strings. As our search
algorithms numbers the vertices from 1 to n, labels are compared under the lexicographic order on integer strings where
the order on integers is reversed : i is considered larger than j when i < j.

Algorithm LexBFS (Lexicographic Breadth-First Search)

input :AgraphG = (V,E).
output : An ordering o of V.

Initialize all labels as the empty string;
fori < 1tondo

Pick an unnumbered vertex v whose label is maximal under lexicographic order (where integers are compared in
reverse order of the usual one);

o (i) < v (assigns to v the number i);
foreach unnumbered vertex w adjacent to v do
| appendito [(w);

Thus LexBFS is exactly algorithm Sy (LexBFS)-GLS, where Sy (LexBFS) is the labeling structure defined as follows:
L is the set of strings over the alphabet N*, < is the lexicographic order on L in which digit i is considered larger than
digit j wheni < j, Iy is the empty string €, UPLAB(I, i) is digit i appended to string I.

It follows that lab(I) is the string of integers in I in increasing order (for the usual order <).

Maximum Cardinality Search (MCS) was introduced by Tarjan and Yannakakis [12] as a simplification of LexBFS. MCS
iteratively chooses a vertex that is adjacent to the maximum number of previously chosen vertices. As is the case for LexBFS,

MCS as defined in [12] numbers vertices from n down to 1 to compute a peo of a chordal graph. Here again we number form
1ton.

Algorithm MCS (Maximal Cardinality Search)

input :AgraphG= (V,E).

output : An ordering o of V.

Initialize all labels as 0O;

fori < 1tondo
Pick an unnumbered vertex v whose label is maximal under <;
o (i) < v (assigns to v the number i);

foreach unnumbered vertex w adjacent to v do
L l(w) < l(w) +1;

Thus MCS is exactly algorithm Sq(MCS)-GLS, where So(MCS) is the labeling structure defined as follows:
L = {0} UNT, < is the natural order < on integers, [y = 0, UPLAB(l, i) = [+ 1.
It follows that lab(I) = |I|. The label is the number of visited neighbors.

Lexicographic Depth-First Search (LexDFS) is a depth-first analog of LexBFS introduced by Corneil and Krueger [5].

Algorithm LexDFS (Lexicographic Depth-First Search)

input :AgraphG = (V,E).
output : An ordering o of V.

Initialize all labels as the empty string;
fori < 1tondo
Pick an unnumbered vertex v whose label is maximal under the usual lexicographic order;
o (i) < v (assigns to v the number i);
foreach unnumbered vertex w adjacent to v do
| prependitol(w);

Thus LexDFS is exactly algorithm Sy (LexDFS)-GLS, where So(LexDFS) is the labeling structure defined as follows:

L is the set of strings over the alphabet N*, < is the usual lexicographic order <, Iy is the empty string €, UPLAB(I, i) is
digit i prepended to string I.

Therefore lab(I) is the string of integers of I in decreasing order.

Maximal Neighborhood Search (MNS) is a generalization of both LexBFS and MCS, and was also introduced by Corneil and
Krueger [5].

134 R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142

Algorithm MNS (Maximal Neighborhood Search)

input :AgraphG= (V,E).
output : An ordering o of V.

Initialize all labels as the empty set;
fori < 1tondo
Pick an unnumbered vertex v whose label is maximal under inclusion;
o (i) < v (assigns number i to v);
foreach unnumbered vertex w adjacent to v do
L l(w) < l(w) U {i};
Thus MNS is exactly algorithm Sy (MNS)-GLS, where So(MNS) is the labeling structure defined as follows:
L is the power set of NT, < is set inclusion C, I, is the empty set, UPLAB(l, i) = 1 U {i}.
It follows that lab(I) = I. The label is the set of numbers of visited neighbors.
Let us also mention algorithms MEC and MCC, as defined by Shier [10]. MCC is a more general variant of MCS and MEC is
a more general variant of MNS: the condition of maximality to choose a vertex is required in the connected component of
the remaining graph containing this vertex instead of the whole remaining graph. Contrary to the seven basic algorithms,
there is no labeling structure S such that S-GLS computes the same orderings as MCC or MEC on every graph: as GLS chooses
the next vertex to visit only from the sets of numbers of the visited neighbors of the remaining vertices, it cannot take the
structure of the residual graph, here its connected components, into account.

5. Characterizing structures for the 7 classical graph searches

Let us now consider a labeling structure S along with one of our classical search algorithms, which we will call X. We ask
the following questions:

Q1: Does S-GLS compute only X orderings?
Q: Is the set of S-GLS orderings equal to the set of X orderings?
As the X orderings of G are exactly the So(X)-GLS orderings of G as given in the previous section, questions Q; and Q, are
special cases of the more general question Qs:
Qs: Given two labeling structures S and S, is every S-GLS ordering an S’-GLS ordering for every graph G?

We prove a necessary and sufficient condition for Q; to be answered as positive with the help of the following lemma.

Lemma 5.1. For any labeling structure S, any integer p > 1 and any subsets I and J of N; ,if lab(I) # lab(J) then there exist a
graph G and an S-GLS ordering o of G such that NumSet¢ ,(o (p + 1)) = I and NumSet? ,(o (p + 2)) = .

Proof. Let G = (V,E), withV = {(z1,25,....,zpp}and E = {zz; | 1 < k < i < pandifiab(I N N,t]) <
lab(J N Nf_l) thenk € Jelsek € I} U {zp11zx | k € I} U {zp40zc | k € J}. Leto = (21,22, ..., Zp42). By definition
of E and o, for any integers i,j such that 1 < i < j < p + 2, NumSet; (o (j)) is either equal to I N Nitl or to

Jjn N,.t], with lab(NumSet¢; (o (i))) # lab(NumSetZ; (o (j))). By Remark 3.6 o is an S-GLS ordering, and we have
NumSetl; ,(o(p+ 1)) =Iand NumSet;; ;(oc(jp+2))=]. O

Theorem 5.2. For any labeling structures S and S’ with partial orders <5 and <y resp., every S-GLS ordering is an S’-GLS ordering
for every graph G if and only if the following property Sub(S, S") holds,

Sub(S, S') : for any subsetsl and J of N™, if labg (I) <g labs (J) then labs(I) < labs(J).

Proof. Sub(S,S’) is a sufficient condition as a direct consequence of Remark 3.6 by the following argument. Let G
be a graph and o be an S-GLS ordering of G. By Remark 3.6, for any integers i,j such that 1 < i < j < n,
labs (NumSetZ ; (o (i))) As labs(NumSetZ ; (o (j))), so by Sub(S, S labg (NumSetg ;_(o (i) A labs:(NumSet¢ ;_ (o (j))).
By Remark 3.6 again o is an S’-GLS ordering of G.

Let us now assume that Sub(S, S”) does not hold. Let us show that there are a graph G and an S-GLS ordering that is not an
S’-GLS ordering. Let I and] be two subsets of N* such that labs/ (I) < labs (J), but labs(I) £ labs(J), and let p = max(I UJ).
By Lemma 5.1, there are a graph G and an S-GLS ordering o such that NumSetg_p(a (p+1)) =Iand NumSetg_p(o (r+2)) =].
It follows that labg/ (NumSetg‘p(a (p + 1)) = labs (I) <g labs (J) = labs/ (NumSetg,p(a (p + 2))), and by Remark 3.6 ¢ is not
an §’-GLS ordering. O

Let us now go back to answering questions Q; and Q,:

Theorem 5.3. For any labeling structure S and any X in BasicAlg,

(A1) S-GLS computes only X orderings of G for every graph G if and only if Sub(S, So(X)) holds,

(A2) the set of S-GLS orderings of G is equal to the set of X orderings of G for every graph G if and only if both Sub(S, So(X)) and
Sub(Sp(X), S) hold.

R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142 135

It turns out that for X in {LexBFS, LexDFS}, questions Q; and Q, are equivalent. This will come as a corollary of the following
proposition.

Proposition 5.4. Let S’ be a labeling structure with partial order <. Every labeling structure S satisfying Sub(S,S’) also
satisfies Sub(S’, S) if and only if <y is a total order on the set {labs/(I), I € N*} and for any distinct subsets I and | of N,
labs/ (I) # Iabs/ (])

Proof. We suppose that < is a total order on the set {labsy'(I), I € N*} and for any distinct subsets I and J of N*,
labs (I) # labs (J). Let S be a labeling structure satisfying Sub(S, S’). Let us show that Sub(S’, S) holds. Let I and J be subsets
of N such that labs(I) <s labs(J). It follows that I and J are distinct, so labs/(I) # labg (J), and that labs(J) 4 labs(I), so
labs/(J) #4 labs (1) since Sub(S, S'). As <y is a total order on {labs/(I), I € N*}, labs/ (I) < labs (J) with labs (I) # labs (J),
so labs/ (I) < labs (J).

Conversely, suppose that <¢ is not a total order on the set {labs(I), I C N} or that there are distinct subsets I and J of
N* such that laby (I) = labs (J). Let us show that there is a labeling structure S satisfying Sub(S, S’), but not Sub(S’, S). In
the first case it is sufficient to take S obtained from S’ by replacing <y by one of its linear extensions. In the second case let
I and I, be distinct subsets of N* such that labg (I;) = labs (I,) with the smallest possible |I;]. Let |; = labs (I;) = labs (I5),
i, = max(l;) and I, = labs (I; — {iz}). We define S from S’ such that labs(I,) <s labs(I3). S is obtained from S’ by adding a
new label [, such that Iy < L, redefining UPLAB(l}, i) as I, (instead of I;) and making [, behave as I; with respect to UPLAB
(UPLAB(ly, i) = UPLAB(l,, i)) and to <s when compared to the other labels. Thus for any subset I of N*, if max(I) = i, and
labg (I — {i}) = L, then labs/(I) = |, and labs(I) = I, otherwise labs/(I) = labs(I). It follows that Sub(S, S’) holds. It is
impossible that max(l;) = i, and labg (I — {i,}) = I, (otherwise labs/ (I —{i>}) = labs (I, —{i}) which would contradict the
choice of I; and I, with the smallest possible |I;|). Therefore labs(I;) = l; <s I, = labs(I3), so Sub(S’, S) does not hold. O

It follows that among our seven classical graph search algorithms, LexBFS and LexDFS are the only ones for which
questions Q; and Q, are equivalent: <guns) iS not a total order on the set {labs(I), I < N*} and for any X in
{GGS, BFS, DFS, MCS}, there are distinct subsets I and J of N* such that labsyx) (1) = labs,x)(]).

Corollary 5.5. For any labeling structure S, if S-GLS only computes LexBFS (resp. LexDFS) orderings of G for every graph G then
the set of S-GLS orderings of G is equal to the set of LexBFS (resp. LexDFS) orderings for every graph G.

We will use characteristic property Sub(S, So(X)) to define some sufficient (and necessary in some cases) conditions on
S for S-GLS to compute only X orderings for every graph G, i.e. for a positive answer to question Q; (and to question Q, for
LexBFS and LexDFS by Corollary 5.5).

We first define some properties on labeling structures. We recall that L;_; is the set {lab(I), I C NL}, i.e. the set of
possible labels of vertices at the beginning of iteration i of an execution of GLS.

Definition 5.6. For a labeling structure S = (L, <, Iy, UPLAB), we define the following properties:

(L) minimum initial label: [y < UPLAB(l, i) foralli > 1Tand !l € L;_;.

(L,) monotonic non-decreasing: | < UPLAB(l, i), foralli > 1Tand!l € L;_4.

(L3) monotonic strictly increasing: | < UPLAB(l, i), foralli > 1and ! € L;_4.

(Lg) stability: if | < I' then UPLAB(l, i) < UPLAB(l',i),foralli > 1and ,I' € L;_;.

(Ls) breadth-firstness: if | < I' then UPLAB(l,i) < I'foralli > 1andl,I' € L;i_;.

(Lg) depth-firstness: | < UPLAB(l',i) foralli > 1and [, I' € L;_;.

(L;) independence: UPLAB(I, i) = UPLAB(l, i") for alli, i with1 <i < i and alll € L;_;.

Definition 5.7. For any X in BasicAlg and any labeling structure S, Propy (S) is the property on S defined as the conjunction
of the properties from L to L; marked with a check mark on line X of Table 1; asterisks on line X indicate properties implied
by this conjunction; That is to say:

. Propges(S) = Ly,

. Propges(S) = Ly A Ly A Ls, which implies Ly,

. Proppes(S) = Lg, which implies Lq, L, and Ls,

. Propyns(S) = L3 A Ly, which implies L; and L,

. Propiexsrs (S) = L3 A Ls, which implies Ly, L, and Ly,
. Propiexprs(S) = Ly A Lg, which implies Ly, L, and L3,
. Propycs(S) = L3 A Ly, which implies Ly, L, and Ly.

NO U AN WN =

The following lemma is easy to verify.

Lemma 5.8. For any X in BasicAlg, property Propx (So(X)) holds.

We now come to our sufficient (and necessary) conditions for a positive answer to question Q;. As we see in the following
theorem, we have a sufficient condition for an algorithm to compute only X-orderings, but this condition is not always
necessary.

136 R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142

Table 1
Labeling structure properties for graph searches.

X Propx (S)
L L, L3 Ly Ls Lg Ly

GGS
BFS
DFS
MNS
LexBFS
LexDFS
MCS

PRI 2NN
% % %X ¥ XN
AN N N

* N ¥ N

AN

Theorem 5.9. For any X in BasicAlg, Propx (S) is a sufficient condition on a labeling structure S for S-GLS to compute only X
orderings of G for every graph G.
It is also a necessary condition if X is in {GGS, DFS, LexBFS, LexDFS}, but not otherwise, i.e. if X is in {BFS, MNS, MCS}.

Proof. We will begin this proof with a general discussion.
Let X € BasicAlg and S = (L, <, ly, UPLAB) be a labeling structure. In the following, lab(I) stands for labs(I). By
Theorem 5.3(A1), Propx (S) is a sufficient condition iff

Propx (S) = Sub(S, So(X)), and Propx(S) is a necessary condition if and only if
Sub(S, So(X)) = Propx(S).

Let us show that Propx (S) is a sufficient condition. We assume that Propy (S) holds. Let I and J be subsets of N such that
labsx) (1) <syx) 1absyx) (J). Let us show that lab(I) < lab(]). For any integeri > 0, let; = lab(I N"N;") and I = lab(J N N;1).
Note that for i = 0, I; corresponds to the label Iy defined in S and that for any i > 0, [; and I belong to L;. It is sufficient to
show that l; < [} for some i > max(I U]J). In the following, we show that lab(I) < lab(J) for each X € BasicAlg.

In each case, we will also prove in the following discussion whether or not Propx (S) is or is not a necessary condition.

X = GGS

Propx(S) = Ly, ' <s,x)' = * < "and for any subset I of NT, labs,x)(I) = 0if I = ¥ and 1 otherwise.

As labg,) (I) <syx) labsyx)(J), I = W and] # @. Let i = max(J). By L1l; = ly < UPLAB(l;_,, 1) = I}, with i = max(I U).
Thus Propx (S) is a sufficient condition.

Let us show that Propy (S) is also a necessary condition. We assume that Sub(S, So(X)) holds. Foranyi > 1and! € L;_1,
lo = lab(I) with I = ¥ and UPLAB(l, i) = lab(J) with] # @, so labs,x),(I) <s,x) labsyx)(J) and by Sub(S, So(X))lp = lab(I) <
lab(J) = UPLAB(l, i).

X = BFS

Propx(S) = Ly ALy AL, <syx)" = * > "and for any subset I of N*, labs,x)(I) = oo if I = ¢ and min(I) otherwise (min
is for the usual order < on integers).

As labs,x) (I) <syx) labsy 0 (),] # © and either I = ¢ or min(I) > min(J). It is sufficient to show that l; < I for every
i > min(J). Let us prove it by induction on i. For i = min(J), by Ly, l; = lp < UPLAB(lp, i) = I;. We assume that l;_; < [_;.
As l; is either equal to li_; or to UPLAB(l;_+, i), by induction hypothesis and Ls, we have l; < I;_;. As by L,I;_; < I}, we obtain
li < I_; = I}, which completes the proof by induction. Thus Propx (S) is a sufficient condition.

Let us show that Propy (S) is not a necessary condition. Let L = {1, 1.5,2,2.5,3, ...} U{o0},* <" ="*> "1y = 00, and
let UPLAB(I, i) equal i if | = oo, [+ 0.5 if l is an integer and [otherwise. For any subset I of N™, lab(I) = oo if I = @, min(l) if
|I| = 1and min(I) + 0.5 otherwise. Thus Sub(S, So(X)) holds, but not Propy (S) since L, is violated: UPLAB(l,i) =1+ 0.5 < I
if I is an integer.

X = DFS

Propx(S) = L, ‘ <syx)' = * < "and for any subset I of N*, labs,x,(I) = 0if I = ¥ and max(I) otherwise.

As labs,x)(I) <syx) labs,x)(J),] # ¢ and either I = § or max(I) < max(J). Let i = max()), by Lgli = i1 <
UPLAB(l;_,, i) = I; with i = max(I UJ). Thus Propx (S) is a sufficient condition.

Let us show that Propy (S) is also a necessary condition. We assume that Sub(S, So(X)) holds. Leti > 1and [, I € L;_;. Let
us show that I < UPLAB(!', i). Let I and J be subsets of Nf_l such that [= lab(I) and I' = lab(J). Hence UPLAB(!', i) = lab(J")
with] = JU{i}.J' # @ andeither] = Jormax(I) < i—1 < i = max(J'), so labs,x),(I) <s,x) labs,x)(J’) and by
Sub(S, So(X))! = lab(I) < lab(J’) = UPLAB(l', i).

X = MNS

Propx(S) = L3 A La, * <syx) " 1s strict set inclusion * C ’ and for any subset I of N¥, labsyx)(I) = 1. As labsyx) (I) <sy00)
labs,x)(J),1 C J.Itis sufficient to show that; < I} for every i > min(J —I). Let us prove it by induction on i. Fori = min(J —1I),
INN', =JNN' sobyLsli = iy =, < UPLAB(__,,i) = . We assume that l,_; < I!_,.By L3l. ; < I Ifi ¢ I then
li=1li_y < I._; < I}, otherwise i € I NJ and by L4 and induction hypothesis l; = UPLAB(l;_1, i) < UPLAB(l;_,, i) = I}, which
completes the proof by induction. Thus Propx (S) is a sufficient condition.

R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142 137

Let us show that Propy (S) is not a necessary condition. Let S be the labeling structure obtained from Sy(X) by replacing
=s,00 by the partial order < on L defined by: forany I, I' € L, I < I'iff (I € I' or (I = {2} and 3 € I')) (the verification that <
is a partial order on L is left to the reader). Sub(S, So(X)) holds since <, (x) is a sub-order of <, but Propx (S) does not hold
since Ly is violated: {2} < {3} but UPLAB({2}, 4) = {2, 4} £ {3, 4} = UPLAB({3}, 4).

X = LexBFS

Propx (S) = L3 A Ls, <s,(x) is the strict lexicographic order with order > on integers, and for any subset I of NT, labsyxy (I
is the string of the integers in I in increasing order (for usual order <).

As labsyx) (1) <syx) labsy) (),] — I # ¥ and fori = min(— 1), I N N, = J NN} . It is sufficient to show that
li < I for every i > min(J — I). Let us prove it by induction on i. For i = min(J — I), in the same way as for X = MNS, by
Lsli =iy =1Ii_; < UPLAB(l_,, i) = I;. We assume that li_; < [!_,.In the same way as for X = BFS, by induction hypothesis
and Ls, l; < Ii_;,and as by L,I!_; < I, we obtain ; < I!_; < I, which completes the proof by induction.

Thus Propx (S) is a sufficient condition.

Let us show that Propy (S) is also a necessary condition. We assume that Sub(S, So(X)) holds. By Proposition 5.4 with
S’ = S(LexBES), Sub(So(X), S) also holds. Thus for any subsets I and J of N, labsyx) (1) <sy0x) labs,x) () iff lab(I) < lab(J).
Properties L3 and Ls can be rewritten into:

L3: lab(I) < lab(I U {i}),foralli > 1andI C Nitl,

Ls: if lab(I) < lab(J)' then lab(I U {i}) < lab(J) foralli > 1andI,] C NL

Hence as by Lemma 5.8 Propx (So(X)) holds, Propy (S) also holds.

X = LexDFS

Propx (S) = Ly ALg, <s,(x) is the strict lexicographical order with order < on integers, and for any subset | of NT, labsyx (1)
is the string of the integers in I in decreasing order.

As labs,x)(I) <syx) labsy (),] — 1 # @ and for any i > max(J —1I),i € I'iffi € J. It is sufficient to show that ; < [
for every i > max(J — I). Let us prove it by induction on i. For i = max(J — I), in the same way as for X = DFS, by
Lgli = iy < UPLAB(l;_,,i) = Il We assume that l;_y < I[_;.Ifi ¢ I theni & Jand |y = l_y < [[_; = I, otherwisei e IN]
and by L, and induction hypothe515 i = UPLAB(l;_+, i) < UPLAB(ll 1» 1) = I}, which completes the proof by induction. Thus
Propx (S) is a sufficient condition.

We show that Propy (S) is also a necessary condition in the same way as for X = LexBFS.

X = MCS

Propx(S) = L3 A L7,* <syx) ' = * < ' and for any subset | of N*, labsyx) (1) = |1].

As labs,x)(I) <syx) labsyxy(J), [I| < |J]. Foranyi > 1and any ! € Li_y, let f (I) = UPLAB(], i) (which is independent from
iby L7) and for any p > 0, let fP(I) be the label obtained from I by p applications of f. lab(I) = f"!(Iy) and lab(J) = fV!(ly).
As|I| <], by Lslab(I) = f"(ly) < fU'(lo) = lab(J). Thus Propx(S) is a sufficient condition.

Let us show that Propx (S) is not a necessary condition. Let L = {0, 1,1.5,2,2.5,3,...},' <" =" <" Iy = 0, and let
UPLAB(l, i) equal [+ 1.5 ifi = 1 and | 4 1 otherwise. For any subset [of N*, lab(I) = |I| +05if1 € Iand |I| otherwise.
Thus Sub(S, So(X)) holds, but not Propx (S) since Ly is violated: UPLAB(0, 1) = 1.5 and UPLAB(0,2) = 1. O

For X = BFS, we can build from the previous proof a property P on a labeling structure S that is weaker than Propggs (S)
and is also a sufficient condition for S-GLS to compute only BFS orderings: P = (L1) A (L2") A L4 A Ls, where (L1") and (L2")
are the weaker variants of L; and L, respectively defined by

(L1) lg < UPLAB(ly, i) for alli > 1,
(L2") ifl < I'thenl < UPLAB(l', i) foralli > 1and I, ' € L;_;.

Unfortunately, P is also not a necessary condition since the counterexample given in the previous proof for X = BFS
violates (L2'): if l is an integer then [+ 0.5 < [but [+ 0.5 = UPLAB(l, i).
We obtain the following characterization of X orderings for every type X of search in BasicAlg.

Characterization 5.10. Let G be a graph, o be an ordering of V and X € BasicAlg. Then o is an X ordering of G if and only if
there is a labeling structure S such that Propy (S) holds and o is an S-GLS ordering of G.

Proof. If o is an X ordering of G then it is a So(X)-GLS ordering of G, with Propy (So(X)) by Lemma 5.8. The converse follows
from Theorem 5.9. O

To illustrate Characterization 5.10, Fig. 2 (inspired from [5]) shows the hierarchy between the sets of orderings yielded
by the different graph searches we studied: an arrow from X to X’ means that every X ordering of a graph is an X" ordering
of this graph.

This hierarchy is deduced in [5] from some other characterizations of the algorithms of BasicAlg, except for MCS which
is not studied in [5]. It is also clear from Characterization 5.10. For any X, X’ in BasicAlg, if Propx (S) implies Propy:(S), i.e. if
every property marked in Table 1 (with a check mark) on line X’ is also marked (with a check mark or an asterisk) on line X,
then every X ordering of a graph is also an X’ ordering of this graph.

Berry, Krueger and Simonet [1] defined a labeling structure with the restriction that it has to satisfy two conditions
(Is1) and (Is2), which are exactly L3 and L4. Thus a labeling structure as defined in [1] corresponds in this paper to a labeling

138 R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142

GGS

T

BFS DFS

MNS

N

LexBFS LexDFS

MCS

Fig. 2. Hierarchy of types of search.

structure S such that Propyys (S). It is shown in [1] that every S-GLS ordering defined with this restriction is an MNS ordering
of G, which immediately follows from Theorem 5.9. A labeling structure S is defined in [1] with the restriction that it satisfies
condition IC, which is exactly Sub(S, S(MNS)). Thus the fact that every S-GLS ordering defined with this restriction is an MNS
ordering of G immediately follows from Theorem 5.3(A1), and by Theorem 5.9 condition IC is strictly more general than the
conjunction of (Is1) and (Is2). It is proved in [1] that IC, i.e. Sub(S, S(MNS)), is a necessary and sufficient condition on a
labeling structure S for S-GLS to compute only peos of every chordal graph.

6. Searching the complement graph

Not all search-like algorithms can be expressed using a labeling structure. GLS does not “look ahead” into the unnumbered
portion of the graph. Thus, as mentioned at the end of Section 4, the MEC and MCC algorithms of Shier [10], which make
decisions based on the connected components of the subgraph induced by the unnumbered vertices, require information
that GLS itself cannot obtain. GLS does, however, express some interesting non-graph search algorithms. We will define
labeling structures that allow GLS to compute search orderings of the complement G of a graph G without computing G.

Theorem 6.1. For any labeling structures S and S’ with partial orders <s and < resp., the set of S-GLS orderings of G is equal
to the set of S’-GLS orderings of G for every graph G if and only if the following property Comp(S, S") holds:
Comp(S, S'): for any integer n > 1 and any subsets I and | oanﬂ labs(I) <s labs(J) if and only if
labs (N7 —I) < labs (N —).

Proof. We assume that Comp(S, S’) holds. Let G be a graph and o be an ordering of V. By Remark 3.6, o is an S’-GLS ordering
of G if and only if for any integers i,j such that 1 < i < j < n, laby (NumSetZ (o (i))) Ag laby (NumSetZ . (o (j))),
i.e. labg/ (Nfl1 — NumSetg; (o (i) Ay labs (Nfl1 — NumSet¢ ; (o (j))), or by Comp(S, S/)labs(NumSet(‘;’,H (o (i))) 4 labs
(NumSet¢ ;_(o(j))). We conclude by Remark 3.6 again that o is an S’-GLS ordering of G iff it is an S-GLS ordering of G.

We assume now that Comp(S, S’) does not hold. Let us show that there are a graph G and an S-GLS ordering o of G
that is not an S’-GLS ordering of G or vice-versa. Let p be an integer > 1 and I, J be subsets of N; such that exactly
one of ‘labs(I) <s labs(J)’ and ‘labs (N, — I) < labs' (N, —)’ holds. We suppose that labs(I) A5 labs(]) and labs (N —
I) <y labs (N;r — J) (the proof in the other case is similar). By Lemma 5.1, there are a graph G and an S-GLS ordering
o such that NumSetg‘p(o (p+ 1) = Iand NumSetg_p(a(p + 2)) = J. It follows that labs (NumSetg’p(o P+ 1) =

labs/ (Np+ — 1) <g labg (N;r —J) = laby (NumSetgp(o (p + 2))), and by Remark 3.6 ¢ is not an S’-GLS ordering of G. O

Definition 6.2. For any labeling structure S with partial order <, Rev(S) is the labeling structure obtained from S by replacing
< by its dual order.

Lemma 6.3. For any X in {MNS, LexBFS, LexDFS, MCS}, property Comp(Rev(Sy(X)), So(X)) holds.

Proof. Let X € {MNS, LexBFS, LexDFS, MCS}, n be an integer > 1,1 and J be subsets of N¥, | = NI — I and] = N —J. Let
us show that labgo(x) U) <So(X) labgo(x) (I) iff!abgq(x) (I) <So(X) labgo(x) U) B B
It is evident for X = MNS sinceJ C I'iffI C J, and for X = MCS since |J| < [I| iff |I| < []]. L
For X = LexBFS, labs,x)(J) <s,x) labs,x)(I) iff I # J and min((I — J) U (J — 1)) € I —], or equivalently I # | and

min((J — 1) U (I —])) €] — 1, i.e. labs,x)(I) <s,0x) labs,xx) ()
The proof for X = LexDFS is obtained from the proof for X = LexBFS by replacing min by max. O

R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142 139

Fig. 3. A graph for which GLS cannot find exactly the GGS nor the DFS orderings of the complement. Dashed lines indicate non-edges.

Lemma 6.4. Let Sz = (L, <, lp, UPLAB), withL = N*,* <’ =" > "l = 1and UPLAB(l, i) = | 4+ 1if | = i and | otherwise.
Then property Comp(Sggs, S(BFS)) holds.

Proof. Let S = Sg. Let us first show that for any integer n > 1 and any subset I of N, labs(I) = n+ 1ifI = N;} and
min(N;" —I) otherwise. Let n be an integer > 1,1 be a subset of N and for any integer i > 0, let ; = labs(I N N;").If [= N
then for any i fromOtonl; = i+ 1 (by induction on i, as [y = 1 and for any i from 1 to nl; = UPLAB(l;_1, i) = UPLAB(i, i) =
i+ 1) and therefore labs(I) = I, = n+ 1. We suppose now that I # N;. Letp = min(N;f —I). [, = labs(N;r_l) = p by the
previous result, and for any i > pl; = p (by induction oni,asl, = I,_; = p and for any i > pl; is either equal to ;_; = p or
to UPLAB(li_1, i) = UPLAB(p, i) = p). Thus labs(I) =1, = p = min(NnJr —1).

Let us show now that Comp(S,S(BFS)). Let n be an integer > 1 and I,] be subsets of Ni. labsgrs) (N —
) <sers) labsgrs) (N — J) iff Nf —] # @ and (either Nf — [= ¢ or min(N;' — I) > min(N} — J)), i.e.] # N/ and
(either I = N or min(N; —I) > min(N; — J)), which is exactly labs(I) <s labs(J). O

Theorem 6.5. For any X € {BFS, MNS, LexBFS, LexDFS, MCS}, let S = Sgrs if X = BFS and Rev(So(X)) otherwise. Then the set
of S-GLS orderings of G is equal to the set of X orderings of G for every graph G.

For any X € {GGS, DFS}, there is no labeling structure S such that the set of S-GLS orderings of G is equal to the set of X
orderings of G for every graph G.

Proof. The first result follows from Theorem 6.1 and Lemmas 6.3 and 6.4.

LetX e {GGS, DFS}. Let us assume for contradiction that there is a labeling structure S such that the set of S-GLS orderings
of Gis equal to the set of X orderings of G for every graph G. Let G be the graph shown in Fig. 3. Letl; = UPLAB(l, 1). Consider
ordering 0 = (z1, 22, 73, Z4). Since o is an X ordering of G, o is an S-GLS ordering of G. As z3 is chosen at iteration 3 with
label Iy whereas z4 has label Iy, I; 4 ly. We now consider ordering t = (z1, z3, 23, z4). Since l; £ Iyt is an S-GLS ordering of
G.But 7 is not an X ordering of G. O

For X € {GGS, DFS}, though there is no labeling structure S such that S-GLS computes exactly the X orderings of the
complement of the input graph, there is a labeling structure S such that S-GLS only computes X orderings of the complement.
For instance, Rev(S(LexDFS))-GLS only computes X orderings of G for every graph G since every LexDFS ordering of G is also
an X ordering of G.

‘We can deduce from the previous result some sufficient (and necessary) conditions for S-GLS to compute only X orderings
of G for every graph G.

Theorem 6.6. For any X in {MNS, LexBFS, LexDFS, MCS}, Propx(Rev(S)) (which is the conjunction of the properties check-
marked in Table 1 as applied to S, endowed with its dual order) is a sufficient condition on a labeling structure S for S-GLS
on input graph G to compute only X orderings of G for every graph G.

It is also a necessary condition if X is in {LexBFS, LexDFS}, but not if X is in {MNS, MCS}.

Proof. Let X € {MNS, LexBFS, LexDFS, MCS}. By Theorem 6.5, S-GLS on input graph G only computes X orderings of G for
every graph G iff it computes only Rev(Sy(X))-GLS orderings of G for every graph G. By Theorem 5.2 it is still equivalent
to Sub(S, Rev(Sp(X))), i.e. Sub(Rev(S), So(X)). Thus by Theorem 5.3(A1) we are looking for a sufficient (and necessary)
condition on a labeling structure S for Rev(S)-GLS to compute only X orderings of G for every graph G. The result follows
from Theorem 5.9. O

Characterization 6.7. Let G be a graph, o be an ordering of V and X € {MNS, LexBFS, LexDFS, MCS}. Then o is an X ordering
of Gifand only if there is a labeling structure S such that Propx (Rev(S)) holds and o is an S-GLS ordering of G.

Proof. If o is an X ordering of G then by Theorem 6.5 it is a Rev(Sq(X))-GLS ordering of G, and Propx (Rev(Rev(Sp(X)))) =
Propx (So(X)) holds by Lemma 5.8. The converse follows from Theorem 6.6. O

7. Implementing graph searches

In this section we complete the results given in [1] about the peo-computing instances of GLS and Test-GLS, which are
recalled in Theorem 7.1. Algorithm Test-GLS takes as input a graph G = (V, E), a labeling structure S and an ordering o of
V and determines whether o is an S-GLS ordering or not. It is obtained from GLS by replacing the choice of an unnumbered

140 R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142

vertex with maximal label at iteration i by a test of maximality of the label of o (i) among unnumbered vertices. If the test is
negative then the algorithm stops with the answer no, otherwise it goes on and will answer yes if all tests have been positive.
Test-S-GLS denotes the instance of Test-GLS having labeling structure S as input. For simplicity, for any X € BasicAlg,
algorithms Syp(X)-GLS and Test-So(X)-GLS are denoted X and Test-X respectively. We will present implementations and
complexity bounds of X and Test-X for each X € BasicAlg, first on a graph G and then on the complement G of a graph
G without computing this complement. For this we will extensively use the implementation with a list of lists, which
generalizes the implementation of LexBFS given in [9].

An implementation of S-GLS computes only S-GLS orderings, but is not necessarily able to compute every S-GLS ordering
of a graph. It follows that S-GLS can be implemented by any implementation of S’-GLS as soon as any S’-GLS ordering is also
an S-GLS ordering for every graph G. For instance, the implementation of LexBFS given in [9] and the implementation of MCS
given in [12] are also implementations of MNS. An implementation of MNS able to compute every MNS ordering of a graph
can be derived from the implementation of Test-MNS with the same complexity [1]. We recall these results on LexBFS and
MCS from [9,12] and the complexity bounds given in [1] for the four peo-computing instances of GLS.

Theorem 7.1 ([9,12,1]). LexBFS, Test-LexBFS, MCS, Test-MCS and MNS can be implemented in O(n 4+ m) time and space. LexDFS
and Test-LexDFS can be implemented in O(n?) time and O(n 4+ m) space. Test-MNS can be implemented in O(n(n + m)) time and
0(n?) space.

By Theorem 5.2 if Sub(S, S’) holds then any implementation of S-GLS is also an implementation of S’-GLS. In particular,
S-GLS can be implemented by replacing the partial order on labels by anyone of its linear extensions. This property does not
hold for Test-S-GLS, which has to keep closer to the labeling structure S.

The implementation of GLS with a list of lists defined for LexBFS in [9] and adapted to LexDFS in [1] can be generalized
to S-GLS.

Implementation of S-GLS with a list of lists

We assume that < is a total order on labels (if it is not the case then replace < by one of its linear extensions). As in the
implementation of LexBFS, the current state of labels is represented by a list L of non-empty lists I. Each list [contains the
unnumbered vertices having a given label, and the list L is ordered in decreasing order of the labels associated with the lists
I (see [9] for a full description of the data structure). It is initialized with a unique list [containing all vertices of the graph. At
iteration i, o (i) is picked in the first list in L and removed from this list. Then list L is updated: each unnumbered neighbor of
o (i) whose label is modified at iteration i is removed from its list [and inserted into the list corresponding to its new label,
which may be created at iteration i or already existing. For some labeling structures, this can be done without knowing the
verteX labels. In that case the labels are not explicitly stored and the implementation is said to be label-free.

For Test-S-GLS, order < has to be a total order (it cannot be replaced by one of its linear extensions). At iteration i, we
test whether o (i) is in the first list or not.

We clearly have the following lemma.

Lemma 7.2. Let S be a labeling structure with a total order < such that in an implementation of S-GLS with a list L of lists, the
list L (and vertex labels if needed) can be updated at each iteration i from 1 to n in O(typdare (i, 1)) time and O(n + m) space.
Then S-GLS and Test-S-GLS can be implemented in O(n + 2?21 tupdate (i, M)) time and O(n + m) space.

For instance, for LexBFS, as described in [9], list L is updated at iteration i by transferring each unnumbered neighbor
of o (i) from its list [into a new list I inserted into L just before I. Thus we get typgee(i,) = 1 + [N(o(i))| and
o(n + Z?:l tupdare (i, M) = O(n 4+ m). LexDFS, as described in [1], proceeds as LexBFS, but it requires at the end of each
iteration i an additional scan of L to form a new list L; with all new lists [; in the same order, which requires O(n) time. The
new list L is obtained by concatenation of L; and the remaining list L, which requires O(1) time. Thus we get t,pgaee (i, 1) = n
and O(n + ZL] tupdate (I, M) = 0(n?). In both cases the implementation is label-free. MCS can also be implemented with a
list of lists (instead of an array of lists as described in [12]). But it is not label-free: the label associated with each list | must
explicitly be stored to make it possible to decide whether an unnumbered neighbor of ¢ (i) removed from its list I must be
inserted into the list I' preceding [in L (if the labels associated with [and I’ are consecutive integers) or into a new list [;
inserted into L just before I. As for LexBFS we get typdare (i, 1) = 1 4 [N (0 (i))|, and therefore linear time and space bounds
for MCS.

It is well-known that BFS and DFS can be implemented in linear time and space with a queue and a stack respectively,
so that GGS is linear in time and space too. To extend these results to their Test-GLS variants, we can combine an
implementation with a queue or a stack and labels to make it possible to decide if o (i) has a maximal label or not. We
can also use a label-free implementation with a list of lists, which will be useful when implementing X and Test-X on the
complement of a graph.

Proposition 7.3. For any X € {GGS, BFS, DFS}, X and Test-X can be implemented in O(n 4+ m) time and space.

Proof. We use a label-free implementation with a list of lists.
For GGS and BFS, list L may be active or inactive. It is initialized as active and remains so as long as at least one unnumbered
vertex has no visited neighbor. At iteration i if L is active then it is updated as follows. For GGS, every neighbor of o (i) in the

R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142 141

last list [of L is transferred into the list preceding I in L if it exists, otherwise into a new list [; inserted into L just before I. For
BFS, every neighbor of o (i) in the last list [of L is transferred into a new list [; inserted into L just before I. In both cases, if the
last list [has become empty by this process then L becomes inactive and will no longer be updated (except for the removal
of o (j) at further iterations j).

For DFS, at iteration i every unnumbered neighbor of o (i) is transferred from its list / into a unique new list [; inserted
into L as its first element.

We conclude with Lemma 7.2 since in each case we have typgare (i,) = 14 [N(0(i))|. O

GLS can in some cases be implemented with the data structure of a stratified tree defined by Van Emde Boas [13,14] to
manipulate priority queues. In particular, if labels are positive integers ordered by < and for any integern > 1, L, is a subset
ofaninterval [1, r(n)] withr(n) in O(n), then S-GLS and Test-S- GLS can be implemented in O((n+m) loglog n+m typap(n))
time and O(n 4+ m) space, where typ;4p(n) is the time required to update a label of L,, with function UPLAB [1].

We now turn to implementations of X and Test-X on the complement of a graph without computing this complement.
Habib et al. [7] showed that a LexBFS search of G can be performed in O(n 4+ m) time and space by a slight modification of
the standard LexBFS algorithm. We extend this result in the following theorem.

Theorem 7.4. For any X € {BFS, MNS, LexBFS, LexDFS, MCS}, X and Test-X on G can be implemented with the same time and
space bounds (in function of the numbers n of vertices and m of edges of G) as X and Test-X on G respectively.

Proof. Let X € {BFS, MNS, LexBFS, LexDFS, MCS}, and let S = Sg if X = BFS and Rev(So(X)) otherwise. By Theorem 6.5, X

on G and Test-X on G can be implemented by implementations of S-GLS on G and Test-S-GLS on G respectively. It is sufficient
to show that the time and space bounds of these implementations are the same as the bounds of X on G and Test-X on G
respectively.

If X = BFS then S = Sg. We can use a label-free implementation of S-GLS on G and Test-S-GLS on G with a list of lists
L, which may be active or inactive. It is initialized as active and remains so as long as at least one unnumbered vertex is a
neighbor in G of every visited vertex. It is updated at iteration i as follows. If L is active then every neighbor of ¢ (i) in the
last list | of L is transferred into a new list [, inserted into L just after L. If there was no neighbor of o (i) in the last list | to be
transferred then L becomes inactive and will no longer be updated (except for the removal of o (j) at further iterations j).
Thus tupdare (i, 1) = 1+ [N(o (i))| and by Lemma 7.2 S-GLS on G and Test-S-GLS on G are linear in time and space, as BFS on
G and Test-BFS on G.

Otherwise, S = Rev(Sp(X)). We check that the complexity bounds of the implementation used for Sy(X) also hold for
Rev(Sp(X)), i.e. that replacing < by its dual does not affect the complexity bounds. For an implementation with a list of lists
L, just reverse the total order on L. For the implementation of Test-MNS given in [1] with a Boolean matrix Preceq such that
for any unnumbered vertices v and w, Preceq(v, w) = True iff label(v) < label(w), just transpose matrix Preceq. In each case
replacing < by its dual does not affect the complexity bounds. O

The implementations of X on G and Test-X on G with a list of lists deduced from Theorem 6.5 can be directly derived from
the implementations of X on G and Test-X on G with a list of lists, which yields a new proof of the corresponding results in
Theorem 6.5. The idea is that in these cases, the list L of lists can be updated at each iteration i by moving the non-neighbors
of o (i) instead of its neighbors. For LexBFS, instead of transferring each unnumbered neighbor of o (i) from its list [into a new
list I; inserted into L just before I, we transfer each unnumbered non-neighbor of o (i) from its list | into a new list I, inserted
into L just after I. Thus we obtain the same orderings by simultaneously replacing G by G and the order on labels by its dual.
It follows that the set of Rev(S(LexBFS))-GLS orderings of G is equal to the set of LexBFS orderings of G for every graph G,
which is a result of Theorem 6.5. Similarly, for LexDFS we can form a new list L, with all new lists [, in the same order and
concatenate the remaining list L and L, in this order instead of concatenating L, and the remaining list L in this order. Once
again we have replaced G by G and the order on labels by its dual. The same technique can be used for MCS, by transferring
each unnumbered neighbor of o (i) from its list [either into the list I’ following [in L (if the labels associated with [and I are
consecutive integers) or into a new list I, inserted into L just after I. For BFS, if L is active then every non-neighbor of o (i) in
the last list | of L is transferred into a new list I, inserted into L just after L If there was no non-neighbor of o (i) in the last
list I to be transferred then L becomes inactive. This is exactly the implementation of Sz-GLS on G described in the proof
of Theorem 7.4. Note that Sgr is different from Rev(S(BFS)) because according to Rev(S(BFS)), the first list of L would be
modified when updating L instead of its last list (this dissymmetry does not occur for LexBFS, LexDFS and MCS since every
list of L is modified when updating L).

As expected from Theorem 6.5, in an implementation of GGS or DFS by a list of lists, the list L cannot be updated at
iteration i by moving the non-neighbors of o (i) instead of its neighbors. Dahlhaus et al. [6] gave an implementation of a DFS
search in the complement of a graph in O(n 4+ m) time and space.

Theorem 7.5 ([6]). DFS on G can be implemented in O(n 4+ m) time and space.

The implementation of DFS on G is given in [6] uses several stacks instead of the usual DFS stack. It can be described
as a label-free implementation with a list L of lists, which will make it easy to extend these linear bounds to Test-DFS on
G. The list L is updated at iteration i as follows. Every neighbor of o (i) in the first list [of L is transferred into a new list [,
inserted just after [in L. The other lists of L are scanned and the non-neighbors of o (i) are transferred into the first list L.

142 R. Krueger et al. / Discrete Applied Mathematics 159 (2011) 128-142

These scans globally cost O(n + m) because (1) testing whether a vertex is a neighbor of o (i) or not takes constant time by
previously marking the neighbors of o (i), (2) scanning the neighbors of o (i) globally costs O(n 4+ m) time and (3) scanning
and transferring the non-neighbors of o (i) also costs O(n + m) time since scanning and transferring them for the first time
costs O(n) time and a vertex can only be transferred again if it has previously been transferred from the first list [of L into a
new list I, which globally costs O(n + m) time. Thus O(n + ZL tupdate (i, M)) = O(n + m) and by Lemma 7.2, these linear

bounds also hold for Test-DFS on G.

Corollary 7.6. Test-DFS on G can be implemented in O(n + m) time and space.

As any BFS or DFS ordering is a GGS one, GGS on G can be implemented in linear time and space by an implementation
of BFS on G or DFS on G. However, to prove that Test-GGS on G is also linear in time and space, we define a label-free
implementation of GGS on G with a list of lists inspired from those of GGS on G and DFS on G.

Theorem 7.7. GGS and Test-GGS on G can be implemented in O(n + m) time and space.

Proof. We use the label-free implementation of GGS with a list of lists described in the proof of Proposition 7.3 with input
graph G instead of G, with the following modification. In the implementation of GGS on G, it is by scanning the list of
neighbors of o (i) that the neighbors of ¢ (i) in the last list [of L are transferred into the list preceding [in L or into a new list
I; inserted into L just before I. In the implementation of GGS on G, this transfer of the non-neighbors of o (i) from the last
list | of L is performed by scanning this last list I. These scans globally cost O(n + m) because (1) testing whether a vertex
is a neighbor of o (i) or not takes constant time by previously marking the neighbors of o (i), (2) scanning the neighbors of
o (i) globally costs O(n + m) time and (3) scanning and transferring the non-neighbors of o (i) only costs O(n) time since a
vertex can only be transferred once. We conclude with Lemma 7.2. O

8. Concluding remarks

In this paper we have described a general labeling algorithm for computing vertex orderings of a graph, and showed how
conditions imposed on the labeling structures allow this algorithm to perform various graph searches.

Our GLS algorithm captures vertex labeling algorithms beyond just graph search. As an example, we characterized
labeling structures that yield algorithms that compute some types of search orderings in the complement of a graph while
avoiding computing the complement, and also showed the limitations on GLS algorithm in such a context. The benefit of
using a single general algorithm like GLS is that one can conveniently prove results for a wide variety of specific algorithms
simply by using the properties of the labeling structures.

Finally, we note that GLS can easily be extended to capture some important variants of graph search. Several algorithms
use multiple sweeps of a graph search to gather information about a graph, where each subsequent sweep uses a previous
ordering to compute a new ordering with additional properties [4]: one could define an extended labeling structure that
allows various different initial labels to be assigned to vertices based on a given input ordering.

References

[1] A.Berry, R. Krueger, G. Simonet, Geneviéve Simonet, Maximal label search algorithms to compute perfect and minimal elimination orderings, SIAM J.
Discrete Math. 23 (1) (2009) 428-446.
[2] A.Brandstddt, F.F. Dragan, F. Nicolai, LexBFS orderings and powers of chordal graphs, Discrete Math. 171 (1-3) (1997) 27-42.
[3] A.Bretscher, D. Corneil, M. Habib, C. Paul, A simple linear time lexbfs cograph recognition algorithm, SIAM J. Discrete Math. 22 (4) (2008) 1277-1296.
[4] D.G.Corneil, Lexicographic breadth first search—a survey, in: Proceedings of WG2004, in: Lecture Notes in Computer Science, vol. 3353, 2004, pp. 1-19.
[5] D. Corneil, R. Krueger, A unified view of graph searching, SIAM J. Discrete Math. 22 (2008) 1259-1276.
[6] E.Dahlhaus, J. Gustedt, R.M. McConnell, Partially complemented representations of digraphs, Discrete Math. Theoret. Comput. Sci. 5 (2002) 147-168.
[7] M. Habib, R. McConnell, C. Paul, L. Viennot, Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition
and consecutive ones testing, Theoret. Comput. Sci. 234 (1-2) (2000) 59-84.
[8] B.Jamison, S. Olariu, On the semi-perfect elimination, Adv. Appl. Math. 9 (3) (1988) 364-376.
[9] DJ. Rose, R.E. Tarjan, G.S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM]J. Comput. 5 (2) (1976) 266-283.
[10] D.R. Shier, Some aspects of perfect elimination orderings in chordal graphs, Discrete Appl. Math. 7 (1984) 325-331.
[11] R.E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput. 1 (2) (1972) 146-160.
[12] R.E. Tarjan, M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs, SIAM J. Comput. 13 (3) (1984) 566-579.
[13] P.van Emde Boas, Preserving order in a forest in less than logarithmic time and linear space, Inform. Process. Lett. 6 (3) (1977) 80-82.
[14] P.van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue, Math. Syst. Theory 10 (1977) 99-127.

	A General Label Search to investigate classical graph search algorithms
	Introduction
	Preliminaries
	GLS, a generic graph search algorithm
	Seven classical graph search algorithms
	Characterizing structures for the 7 classical graph searches
	Searching the complement graph
	Implementing graph searches
	Concluding remarks
	References

