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The Domination Number of Grids *

In this paper, we conclude the calculation of the domination number of all n × m grid graphs. Indeed, we prove Chang's conjecture saying that for every 16

-4.

Introduction

A dominating set in a graph G is a subset of vertices S such that every vertex in V (G)\ S is a neighbour of some vertex of S. The domination number of G is the minimum size of a dominating set of G. We denote it by γ(G). This paper is devoted to the calculation of the domination number of complete grids.

The notation [i] denotes the set {1, 2, . . . , i}. If w is a word on the alphabet A, w[i] is the i-th letter of w, and for every a in A, |w| a denotes the number of occurrences of a in w (i.e. |{i ∈ {1, . . . , |w|} : w[i] = a}|). For a vertex v, N[v] denotes the closed neighbourhood of v (i.e. the set of neighbours of v and v itself). For a subset of vertices S of a vertex set V of a graph, we denote by N[S] = S v∈S N [v]. Note that D is a dominating set of G if and only if N[D] = V (G). Let G n,m be the n × m complete grid, i.e. the vertex set of G n,m is V n,m := [n] × [m], and two vertices (i, j) and (k, l) are adjacent if |k -i| + |l -j| = 1. The couple (1, 1) denotes the bottom-left vertex of the grid and the couple (i, j) denotes the vertex of the i-th column and the j-th row. We will always assume in this paper that n ≤ m. Let us illustrate our purpose by an example of a dominating set of the complete grid G 24,24 on Figure 1.

The first results on the domination number of grids were obtained about 30 years ago with the exact values of γ(G 2,n ), γ(G 3,n ), and γ(G 4,n ) found by Jacobson and Kinch [START_REF] Jacobson | On the domination number of products of a graph; I[END_REF] in 1983. In 1993, Chang and Clark [START_REF] Chang | The domination numbers of the 5 × n and 6 × n grid graphs[END_REF] found those of γ(G 5,n ) and γ(G 6,n ). These results were obtained analytically. Chang [START_REF] Chang | Domination Numbers of Grid Graphs[END_REF] devoted his PhD thesis to study the domination number of grids; he conjectured that this invariant behaves well provided that n is large enough. Specifically, Chang conjectured the following: 

γ(G n,m ) = (n + 2)(m + 2) 5 -4.
Observe that for instance, this formula would give 131 for the domination number of the grid in Figure 1. To motivate his bound, Chang proposed some constructions of dominating sets achieving the upper bound:

Lemma 1 ([1]). For every 8 ≤ n ≤ m, γ(G n,m ) ≤ (n + 2)(m + 2) 5 - 4 
Later, some algorithms based on dynamic programming were designed to compute a lower bound of γ(G n,m ). There were numerous intermediate results found for γ(G n,m ) for small values of n and m (see [START_REF] Chang | Dominations of complete grid graphs I[END_REF][START_REF] Hare | Algorithms for Computing the Domination Number of K × N Complete Grid Graphs[END_REF][START_REF] Singh | A parallel implementation for the domination number of grid graphs[END_REF] for details). In 1995, Hare, Hedetniemi and Hare [START_REF] Hare | Algorithms for Computing the Domination Number of K × N Complete Grid Graphs[END_REF] gave a polynomial time algorithm to compute γ(G n,m ) when n is fixed. Nevertheless, this algorithm is not usable in practice when n hangs over 20. Fisher [START_REF] Fisher | The Domination number of complete grid graphs[END_REF] developed the idea of searching for periodicity in the dynamic programming algorithms and using this technique, he found the exact values of γ(G n,m ) for all n ≤ 21. We recall these values for the sake of completeness. Theorem 2 ([5]). For all n ≤ m and n ≤ 21, we have: 

γ(G n,m ) =                                                                                                              ⌈ m 3 ⌉ if n = 1 ⌈ m+1 2 ⌉ if n = 2 ⌈ 3m+1 4 ⌉ if n = 3 m + 1 if n = 4 and m = 5, 6, 9 m if n = 4 and m = 5, 6, 9 ⌈ 6m+4 5 ⌉ -1 if n = 5 and m = 7 ⌈ 6m+4 5 ⌉ if n = 5 and m = 7 ⌈ 10m+4 7 ⌉ if n = 6 ⌈ 5m+1 3 ⌉ if n = 7 ⌈ 15m+7 8 ⌉ if n = 8 ⌈ 23m+10 11 ⌉ if n = 9 ⌈ 30m+15 13 ⌉ -1 if n =
⌊ (n+2)(m+2) 5 ⌋ -4 if n ≥ 16
Note that these values are obtained by specific formulas for every 1 ≤ n ≤ 15 and by the formula of Conjecture 1 for every 16 ≤ n ≤ 21. This proves Chang's conjecture for all values 16 ≤ n ≤ 21.

In 2004, Conjecture 1 has been confirmed up to an additive constant:

Theorem 3 (Guichard [6]). For every 16

≤ n ≤ m, γ(G n,m ) ≥ (n + 2)(m + 2) 5 -9.
In this paper, we prove Chang's conjecture, hence finishing the computation of γ(G n,m ). We adapt Guichard's ideas to improve the additive constant from -9 to -4 when 24 ≤ n ≤ m. Cases n = 22 and n = 23 can be proved in a couple of hours using Fisher's method (described in [START_REF] Fisher | The Domination number of complete grid graphs[END_REF]) on a modern computer. They can be also proved by a slight improvement of the technique presented in the next section.

Values of γ(G n,m ) when 24 ≤ n ≤ m

Our method follows the idea of Guichard [START_REF] Guichard | A lower bound for the domination number of complete grid graphs[END_REF]. A slight improvement is enough to give the exact bound.

A vertex of the grid G n,m dominates at most 5 vertices (its four neighbours and itself). It is then clear that γ(G n,m ) ≥ n×m 5 . The previous inequality would become an equality if there would be a dominating set D such that every vertex of G n,m is dominated only once, and all vertices of D are of degree 4 (i.e. dominates exactly 5 vertices); in this case, we would have 5 × |D|n × m = 0. This is clearly impossible (e.g. to dominate the corners of the grid, we need vertices of degree at most 3). Therefore, our goal is to find a dominating set D of G n,m such that the difference 5 × |D|n × m is the smallest.

Let S be a subset of

V (G n,m ). The loss of S is ℓ(S) = 5 × |S| -|N[S]|.
Proposition 4. The following properties of the loss function are straightforward:

(i) For every S, ℓ(S) ≥ 0 (positivity),

(ii) If S 1 ∩ S 2 = / 0, then ℓ(S 1 ∪ S 2 ) = ℓ(S 1 ) + ℓ(S 2 ) + |N[S 1 ] ∩ N[S 2 ]|, (iii) If S ′ ⊆ S, then ℓ(S ′ ) ≤ ℓ(S) (increasing function), (iv) If S 1 ∩ S 2 = / 0, then ℓ(S 1 ∪ S 2 ) ≥ ℓ(S 1 ) + ℓ(S 2 ) (super-additivity).
Let us denote by ℓ n,m the minimum of ℓ(D) when D is a dominating set of G n,m .

Lemma 5. γ(G n,m ) = n×m+ℓ n,m 5 Proof. If D is a dominating set of G n,m , then ℓ(D) = 5 × |D| -|N[D]| = 5 × |D| -n × m.
Hence, by minimality of ℓ n,m and γ(G n,m ), we have

ℓ n,m = 5 × γ(G n,m ) -n × m.
Our aim is to get a lower bound for ℓ n,m . As the reader can observe in Figure 1, the loss is concentrated on the border of the grid. We now analyse more carefully the loss generated by the border of thickness 10.

We define the border B n,m ⊆ V n,m of G n,m as the set of vertices (i, j) where i ≤ 10, or j ≤ 10, or i > n -10, or j > m -10 to which we add the four vertices (11, 11), (11, m -10), (n -10, 11), (n -10, m-10). Given a subset S ⊆ V , let I(S) be the internal vertices of S, i.e. I(S) = {v ∈ S : N[v] ⊆ S}. These sets are illustrated in Figure 2 In the following, we split the border B n,m in four parts, O m-12 , P n-12 , Q m-12 , R n-12 , which are defined just below.

For p ≥ 12, let P p ⊂ B n,m defined as follows :

P p = ([10] × {12}) ∪ ([11] × {11}) ∪ ([p] × [10]
). We define the input vertices of P p as [10] × {12} and the output vertices of P p as {p} × [10]. The set P p , illustrated for p = 19 in Figure 3, corresponds to the set of black and gray vertices. The input vertices are the gray circles, and the output vertices are the gray squares. Recall that in our drawing conventions, the vertex (1, 1) is the bottom-left vertex and hence the vertex (i, j) is in the i th column from the left and in the j th row from the bottom.

For

n, m ∈ N * , let f n,m : [n] × [m] → [m] × [n]
be the bijection such that f n,m (i, j) = ( j, ni + 1). It is clear that the set B n,m is the disjoint union of the following four sets depicted in Figure 4: O m-12 = f -1 n,m (P m-12 ). Similarly to P n-12 , the sets O m-12 , Q n-12 and R m-12 have input and output vertices. For instance, the output vertices of Q m-12 correspond in Figure 3 to the white squares. Every set playing a symmetric role, we now focus on P n-12 .

P n-12 , Q m-12 = f n,m (P m-12 ), R n-12 = f m,n • f n,m (P n-12 ) and
n-12 R n-12 Q m-12 O m-12 V (G n,m ) \ B n,m
Given a subset S of V n,m , let the labelling φ S : V n,m → {0, 1, 2} be such that

φ S (i, j) =    0 if (i, j) ∈ S 1 if j) ∈ N[S] \ S 2 otherwise
Note that φ S is such that any two adjacent vertices in G n,m cannot be labelled 0 and 2.

Given p ≥ 12 and a set S ⊆ P p , the input word (resp. output word) of S for P p , denoted by w in (S) (resp. w out p (S)), is the ten letters word on the alphabet {0, 1, 2} obtained by reading φ S on the input vertices (resp. output vertices) of P p . More precisely, its i th letter is φ S (i, 12) (resp. φ S (p, i)). Similarly, O p , Q p and R p have also input and output words. For example, the output word of S ⊆ O p for O p is w out p ( f n,m (S)).

According to the definition of φ, the input and output words belong to the set W of ten letters words on {0, 1, 2} which avoid 02 and 20. The number of k-digits trinary numbers without 02 or 20 is given by the following formula [START_REF] Fisher | The Domination number of complete grid graphs[END_REF]:

(1 + √ 2) k+1 + (1 - √ 2) k+1 2 (1) 
The size of W is therefore |W | = 8119. Given two words w, w ′ ∈ W , we define D w,w ′ p as the family of subsets D of P p such that:

• D dominates I(P p ),
• w is the input word w in (D),

• w ′ is the output word w out p (D).

A relevant information for our calculation will be to know, for two given words Let w, w ′ ∈ W be two given words. Due to the symmetry of P 12 with respect to the first diagonal (bottom-left to top-right) of the grid, if a vertex set D belongs to D w,w ′ 12 , then D ′ = {( j, i)|(i, j) ∈ D} belongs to D w ′ ,w 12 . Moreover, it is clear that, always due to the symmetry, ℓ(D) = ℓ(D ′ ). Therefore, we have C 12 [w, w ′ ] = C 12 [w ′ , w] and thus C 12 is a symmetric matrix. Despite the size of C 12 and the size of P 12 (141 vertices), it is possible to compute C 12 in less than one hour by computer. Indeed, we choose a sequence of subsets X 0 = / 0, X 1 , . . . , X 141 = P 12 such that for every i ∈ {1, . . . , 141}, X i ⊆ X i+1 and X i+1 \ X i = {x i+1 }. Moreover, we choose the sequence such that for every i, X i \ I(X i ) is at most 21. This can be done for example by taking x i+1 = min{(x, y) : (x, y) ∈ P 12 \ X i }, where the order is the lexical order. For i ∈ {0, . . . , 141}, we compute for every labeling f ∈ F i , where F i is the set of functions (X i \ I(X i )) → {0, 1, 2}, the minimal loss l i, f of a set S ⊆ X i which dominates I(X i ) and such that φ S (v) = f (v) for every v ∈ X i \ I(X i ). Note that not every labeling is possible since two adjacent vertices cannot be labeled 0 and 2. The number of possible labellings can be computed using formula [START_REF] Chang | Domination Numbers of Grid Graphs[END_REF], and since |X i \ I(X i )| can be covered by a path of at most 23 vertices, this gives, in the worst case, that this number is less than 10 9 and can be then processed by a computer. We compute inductively the sequence (l i, f ) f ∈F i from the sequence (l i-1, f ) f ∈F i-1 by dynamical programming, and C is easily deduced from (l 141, f ) f ∈F 141 .

In the following, our aim is to glue P n-12 , Q m-12 , R n-12 , and O m-12 together. For two consecutive parts of the border, say P n-12 and Q m-12 , the output word of Q m-12 should be compatible with the input word of P n-12 . Two words w, w ′ of W are compatible if the sum of their corresponding letters is at most 2, i.e. w[i] + w ′ [i] ≤ 2 for all i ∈ [START_REF] Singh | A parallel implementation for the domination number of grid graphs[END_REF]. Note that w[10] + w ′ [10] should be greater than 2 since the corresponding vertices can be dominated by some vertices of V n,m \ B n,m .

Given two words w, w

′ ∈ W , let ℓ(w, w ′ ) = |{i ∈ [10] : w[i] = 2 and w ′ [i] = 0}| + |{i ∈ [10] : w ′ = 2 and w[i] = 0}|.

Lemma 6. Let D be a dominating set of G n,m and let us denote D P = D ∩ P n-12 and D

Q = D ∩ Q m-12 . Then ℓ(D ∩ (P n-12 ∪ Q m-12 )) = ℓ(D P ) + ℓ(D Q ) + ℓ(w, w ′ ), where w = w in (D P ) and w ′ = w out q ( f -1 n,m (D Q ))
. Moreover, w and w ′ are compatible.

Proof. By Proposition 4(ii), ℓ(D∩

(P n-12 ∪Q m-12 )) = ℓ(D P )+ℓ(D Q )+|N[D P ]∩N[D Q ]|. It suffice then to note that ℓ(w, w ′ ) = |N[D P ] ∩ N[D Q ]| to get ℓ(D ∩ (P n-12 ∪ Q m-12 )) = ℓ(D P ) + ℓ(D Q ) + ℓ(w, w ′ ).
In what remains, we prove that w and w ′ are compatible. If those two words were not compatible, there would exist an index i ∈ [START_REF] Singh | A parallel implementation for the domination number of grid graphs[END_REF] 

such that w out m-12 ( f -1 n,m (D Q ))[i] + w in (D P )[i] > 2.
Thus at least one of these two letters should be a 2, and the other one should not be 0.

Suppose that w out m-12 ( f -1 n,m (D Q ))[i] = 2 and note that this means that the vertex (i, 13) is not dominated by a vertex in D Q . Since D is a dominating set of G n,m , every output vertex of Q m-12 except (10, 13) (and every input vertex of P n-12 except (10, 12)) is dominated by a vertex of D Q or by a vertex of D P . Thus (i, 13) should be dominated by its unique neighbour in P n-12 , (i, 12). This would imply that (i, 12) ∈ D contradicting the fact that w in (D P )[i] = 0.

Similarly, if w in (D P )[i] = 2, the vertex (i, 12) is not dominated by a vertex in D P , thus (i, 12) must be dominated by the vertex (i, 13) ∈ D, contradicting the fact that

w out m-12 ( f -1 n,m (D Q ))[i] = 0.
Lemma 6 is designed for the two consecutive parts P n-12 and Q m-12 of the border of G n,m . Its easy to see that this extends to any pair of consecutive parts of the border, i.e. Q m-12 and R n-12 , R n-12 and O m-12 , O m-12 and P n-12 .

We define the matrix 8119 × 8119 square matrix L which contains, for every pair of words w, w ′ ∈ W , the value ℓ(w, w ′ ):

L[w, w ′ ] =
+∞ if w and w ′ are not compatible, ℓ(w, w ′ ) otherwise.

Note that L is symmetric since ℓ(w, w ′ ) = ℓ(w ′ , w).

Let ⊗ be the matrix multiplication in (min, +) algebra, i.e. C = A ⊗ B is the matrix where for all i, j, C

[i, j] = min k A[i, k] + B[k, j]. Let M p = L ⊗ C p for p ≥ 12.
By construction, M n-12 [w, w ′ ] corresponds to the minimum possible loss ℓ(D ∩ P n-12 ) of a dominating set D ⊆ V n,m that dominates I(P n-12 ) and such that w is the output word of Q m-12 and w ′ is the output word of P n-12 . Lemma 7. For all 24 ≤ n ≤ m, we have b n,m ≥ min 

w 1 ,w 2 ,w 3 ,w 4 ∈W M n-12 [w 1 , w 2 ]+ M m-12 [w 2 , w 3 ]+ M n-12 [w 3 , w 4 ]+ M m-12 [w 4 , w 1 ]. Proof. Consider a set D ⊆ B n,m which dominates I(B n,m ) and achieving ℓ(D) = b n,m . Let D P = D ∩ P n-12 , D Q = D ∩ Q m-12 , D R = D ∩ R n-
(D Q ) ≥ C m-12 [w Q , w ′ Q ], ℓ(D R ) ≥ C n-12 [w R , w ′ R ] and ℓ(D O ) ≥ C m-12 [w O , w ′ O ]
. By the definition of the loss:

ℓ(D) = b n,m = 5 × |D| -|N[D]| = ℓ(D O ) + ℓ(D P ) + ℓ(D Q ) + ℓ(D R ) + L[w ′ O , w P ] + L[w ′ P , w Q ] + L[w ′ Q , w R ] + L[w ′ R , w O ] by Lemma 6 and since N[D P ] ∩ N[D R ] = N[D Q ] ∩ N[D O ] = / 0 ≥ C m-12 [w O , w ′ O ] + C n-12 [w P , w ′ P ] + C m-12 [w Q , w ′ Q ] + C n-12 [w R , w ′ R ] + L[w ′ O , w P ] + L[w ′ P , w Q ] + L[w ′ Q , w R ] + L[w ′ R , w O ] ≥ M m-12 [w O , w P ] + M n-12 [w P , w Q ] + M m-12 [w Q , w R ] + M n-12 [w R , w O ] since w ′
O and w P (resp. w ′ P and w Q , w ′ Q and w R , w ′ R and w O ) are compatibles.

According to Lemma 7, to bound b n,m it would be thus interesting to know M p for p > 12. It is why we introduce the following 8119 × 8119 square matrix, T . Lemma 8. There exists a matrix T such that C p+1 = C p ⊗ T for all p ≥ 12. This matrix is defined as follows: 

T [w, w ′ ] =                        +∞ if ∃i ∈ [10] s.t. w[i] = 0 and w ′ [i] = 2 +∞ if ∃i ∈ [9] s.t. w[i] = 2 and w ′ [i] = 0 +∞ if ∃i ∈ {2, . . . , 9} s.t. w ′ [i] = 1, w[i] = 0, w ′ [i -1] = 0 and w ′ [i + 1] = 0 +∞ if w ′ [1] = 1, w[1] = 0 and w ′ [2] = 0 +∞ if w ′ [10] = 1, w[10] = 0 and w ′ [9] = 0 3 × |w ′ | 0 -|w| 2 -|w ′ | 1 + |w| 0 -1 if w ′ [10] = 0 3 × |w ′ | 0 -|w| 2 -|w ′ | 1 + |w| 0 otherwise.
∆(S, S ′ ) = 3 × |w ′ | 0 -|w| 2 -|w ′ | 1 + |w| 0 -1 if w ′ [10] = 0 3 × |w ′ | 0 -|w| 2 -|w ′ | 1 + |w| 0 otherwise
where |w| n denotes the number of occurrences of the letter n in the word w. Thus ∆(S, S ′ ) only depends on the output words of S and S ′ , and we can denote this value by ∆(w, w ′ ). Note however that there exist pairs of words (w, w ′ ) that could not be the output words of S and S ′ ; there are three cases: For these forbidden cases, we set ∆(w, w ′ ) = +∞. By definition, C p+1 [w i , w ′ ] is the minimum loss ℓ(S ′ ) of a set S ′ ⊆ P p+1 that dominates I(P p+1 ), with w i as input word and w ′ as output word. It is clear that S = S ′ ∩ P p dominates I(P p ) and has w i as input word. Let w be its output word and note that C p+1 [w i , w ′ ] = ℓ(S ′ ) = ℓ(S) + ∆(w i , w ′ ). The minimality of ℓ(S ′ ) implies the minimality of ℓ(S) over the sets X ∈ D w i ,w ′ p . Indeed, any set X ∈ D w i ,w ′ p could be turned in a set of X ′ ∈ D w i ,w ′ p+1 by adding vertices of the p + 1 th column accordingly to w ′ . Thus This concludes the proof of the lemma.

By the definition of M p , we have also M p+1 = M p ⊗ T . Note that T is a sparse matrix: about 95.5% of its 8119 2 entries are +∞. Thus the multiplication by T in the (min, +) algebra can be done in a reasonable amount of time by a trivial algorithm. 
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 1 Figure 1: Example of a set of size 131 dominating the grid G 24,24

  . We will compute b n,m = min D ℓ(D), where D is a subset of B n,m and dominates I(B n,m ), i.e. D ⊆ B n,m and I(B n,m ) ⊆ N[D]. Observe that this lower bound b n,m is a lower bound of ℓ n,m . Indeed, for every dominating set D of G n,m , the set D ′ := D ∩ B n,m dominates I(B n,m ), hence b n,m ≤ ℓ(D ′ ) ≤ ℓ(D). In the remainder, we will compute b n,m and we will show that b n,m = ℓ n,m .

Figure 2 :

 2 Figure 2: The graph G 30,40 . The set I(B 30,40 ) is the set of vertices filled in black. The set B 30,40 is the set of vertices filled in black or in gray.

Figure 3 :

 3 Figure 3: The set P 19 (black and gray), the set of input vertices (gray circles) and the set of output vertices (gray squares).
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Figure 4 :

 4 Figure 4: The sets O m-12 , P n-12 , Q m-12 and R n-12 .

  w, w ′ ∈ W , the minimum loss over all losses ℓ(D) where D ∈ D w,w ′ p . For this purpose, we introduce the 8119 × 8119 square matrix C p . For w, w ′ ∈ W , let C p [w, w ′ ] = min D∈D w,w ′ p ℓ(D) where the minimum of the empty set is +∞.

Proof.

  Consider a set S ′ ⊆ P p+1 dominating I(P p+1 ) and let S = S ′ ∩ P p . Let w = w out p (S) and w ′ = w out p+1 (S ′ ). Let ∆(S, S ′ ) = ℓ(S ′ )ℓ(S). By definition of the loss, ∆(S, S ′ ) = 5 × |S ′ \ S| -|N[S ′ ] \ N[S]|. Let us compute ∆(S, S ′ ) in term of the number of occurrences of 0's, 1's and 2's in the words w and w ′ . The set S ′ \ S corresponds to the vertices {(p + 1, i) | i ∈ [10], w ′ [i] = 0}. The set N[S ′ ] \ N[S] corresponds to the vertices dominated by S ′ but not dominated by S; these vertices clearly belong to the columns p, p + 1 and p + 2. Since S ′ dominates I(P p+1 ), those in the column p are the vertices {(p, i) | i ∈ [10], w[i] = 2}. Those in the column p + 1 are the vertices {(p + 1, i) | i ∈ [10], w ′ [i] = 2, w[i] = 0} and possibly the vertex (p + 1, 11) when w ′ [10] = 0. Finally, those in the column p + 2 are the vertices {(p + 2, i) | i ∈ [10], w ′ [i] = 0}. We then get:

Case 1 .

 1 w[i] = 0 and w ′ [i] = 2 since the vertex (p + 1, i) would be dominated by (p, i) contradicting its label 2; Case 2. w[i] = 2 and w ′ [i] = 0 for i ∈[START_REF] Singh | A parallel implementation for the domination number of grid graphs[END_REF] since (p, i) would not be dominated contradict the fact that S ′ dominates I(P p+1 );Case 3. w ′ [i] = 1 and w ′ [i -1] = 0, w ′ [i + 1] = 0, w[i] = 0 since (p + 1, i) would be dominated according to its label but none of its neighbors belong to S ′ .

C

  p+1 [w i , w ′ ] = C p [w i , w] + ∆(w, w ′ ) which implies that C p+1 [w i , w ′ ] ≥ min w C p [w i , w] + ∆(w, w ′ ).On the other hand, for every wordw o ∈ W such that C p [w i , w o ] = +∞ and ∆(w o , w ′ ) = +∞, there is a set S ∈ D w i ,w o p , with ℓ(S) = C p [w i , w o ], that can be turned in a set S ′ ∈ D w i ,w ′ p+1 with ℓ(S ′ ) = C p [w i , w o ] + ∆(w o , w ′ ). Thus C p+1 [w i , w ′ ] ≤ min w o C p [w i , w o ] + ∆(w o , w ′ ).

Fact 9 .

 9 The computations give us that M 126 = M 125 + 1. Thus, since (A + c) ⊗ B = (A ⊗ B) + c for any matrices A, B and any integer c, we have that M 125+k = M 125 + k for every k ∈ N.

  12 and D O = D ∩ O m-12 . Let w P (w Q , w R and w O , respectively) be the input word of P n-12 (Q m-12 , R n-12 and O m-12 ), and w ′ P (w ′ Q , w ′ R and w ′ O ) be the output word of P n-12 (Q m-12 , R n-12 and O m-12 ). By definition of C p , the loss of D P is at least C n-12 [w P , w ′ P ]. Similarly, we have ℓ

* This work has been partially supported by the ANR Project GRATOS ANR-JCJC-00041-01.

Let us define M ′ p = min k∈N (M p+kk). Then, for all q ≥ p, M q ≥ M ′ p + (qp). By Fact 9, M ′ p = min k∈{0,... 125 

Proof. By Chang's construction [START_REF] Cockayne | Bounds for the Domination Number of Grid Graphs[END_REF], γ(G n,m ) ≤ (n+2)(m+2)
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-4. Let us now compute a lower bound for the loss of a dominating set of G n,m .

Thus by Lemma 5, we have: