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Abstract

In this paper, we conclude the calculation of the dominatiomber of all
nx m grid graphs. Indeed, we prove Chang’s conjecture sayingftineevery

16<n<m,y(Gnm) = MWJ a4

1 Introduction

A dominating sein a graphG is a subset of verticeSsuch that every vertex M(G) \ S

is a neighbour of some vertex 8f Thedomination numbeof G is the minimum size
of a dominating set oB. We denote it by(G). This paper is devoted to the calculation
of the domination number of complete grids.

The notationi] denotes the s€tl,2,...,i}. If wis a word on the alphabét, wi]
is thei-th letter ofw, and for everya in A, |w|a denotes the number of occurrences
ofainw(i.e. |{i € {1,...,|w|} : w[i] = a}|). For a vertexs, N[v|] denotes the closed
neighbourhood o¥/ (i.e. the set of neighbours of andyv itself). For a subset of
verticesS of a vertex seV of a graph, we denote byY[S = [J,sN[v]. Note thatD
is a dominating set o& if and only if N[D] = V(G). Let Gnm be then x mcomplete
grid, i.e. the vertex set d&n m is Vom := [n] x [M], and two verticesi, j) and(k,|) are
adjacentifk—i|+ |l — j| = 1. The coupld1,1) denotes the bottom-left vertex of the
grid and the couplé, j) denotes the vertex of theth column and the-th row. We will
always assume in this paper timat m. Let us illustrate our purpose by an example of
a dominating set of the complete gf@34 24 on Figure 1.

The first results on the domination number of grids were olethiabout 30 years
ago with the exact values gG;n), Y(Gz n), andy(Ga n) found by Jacobson and Kinch
[7]in 1983. In 1993, Chang and Clark [2] found thosey(®s ) andy(Gsn). These
results were obtained analytically. Chang [1] devoted hi® Ehesis to study the dom-
ination number of grids; he conjectured that this invarlztiaves well provided that
is large enough. Specifically, Chang conjectured the fatigw
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Figure 1: Example of a set of size 131 dominating the G4

Conjecturel ([1]). Forevery 16<n<m,

O e

Observe that for instance, this formula would give 131 ferdlomination number
of the grid in Figure 1. To motivate his bound, Chang propas®de constructions of
dominating sets achieving the upper bound:

Lemmal ([1]). Forevery8 <n<m,

WGn) < {(n+2)5()m+ Z)J 4

Later, some algorithms based on dynamic programming wesigued to compute
alower bound of/(Gnm). There were numerous intermediate results foung(Gp,m)
for small values ofn and m (see [3, 8, 9] for details). In 1995, Hare, Hedetniemi
and Hare [8] gave a polynomial time algorithm to compyt&, m) whenn is fixed.
Nevertheless, this algorithm is not usable in practice wihkangs over 20. Fisher [5]
developed the idea of searching for periodicity in the dyitgrogramming algorithms
and using this technique, he found the exact valug$®f ) for all n < 21. We recall
these values for the sake of completeness.



Theorem 2 ([5]). Foralln < m and n< 21, we have:

Y(Gnm)
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ifn=1
ifn=2
ifn=3

if n=4andm=5,6,9
if n=4andm+#£5,6,9
ifn=5andm=7
if n=5andm=#7

ifn==6
ifn=7
ifn=8
ifn=9

if n=10andm=1310 orm= 13,16
if n=10andm=£1310 andm# 13,16
if n=11andm=11,18,20,22,33

if n=11andm= 11,18 20,22, 33

if n=12

if n=13 andm=3313,16,18,19

if n=13 andm=£331316,18,19

if n=14 andm=,,7

if n=14 andm=£5,7

if n=15andm=5¢5

if n=15andm=#565

if n>16

Note that these values are obtained by specific formulas/nyel < n < 15 and
by the formula of Conjecture 1 for every ¥6n < 21. This proves Chang’s conjecture
for all values 16< n < 21.

In 2004, Conjecture 1 has been confirmed up to an additive@oins

Theorem 3 (Guichard [6]) For everyl6<n<m,

Y

—~

%m4

(n+2)(m+2)

o)

In this paper, we prove Chang’s conjecture, hence finishiregcomputation of
¥(Gnm). We adapt Guichard’s ideas to improve the additive condtam —9 to —4
when 24< n < m. Cases1 = 22 andn = 23 can be proved in a couple of hours using
Fisher’'s method (described in [5]) on a modern computeryTam be also proved by
a slight improvement of the technique presented in the restian.

2 Valuesof y(Gnm) when24<n<m

Our method follows the idea of Guichard [6]. A slight improvent is enough to give

the exact bound.



A vertex of the gridGnm dominates at most 5 vertices (its four neighbours and
itself). Itis then clear thay(Gnm) > "". The previous inequality would become an
equality if there would be a dominating dBtsuch that every vertex @ m is domi-
nated only once, and all verticesfare of degree 4 (i.e. dominates exactly 5 vertices);
in this case, we would have§|D| —nx m= 0. This is clearly impossible (e.g. to dom-
inate the corners of the grid, we need vertices of degree at &oTherefore, our goal
is to find a dominating sdéb of G, such that the difference:%|D| —n x mis the
smallest.

Let Sbe a subset 0f (Gnm). Thelossof Sis £(S) =5 x |§] — IN[]|.

Proposition 4. The following properties of the loss function are straightfard:
(i) Forevery S{(S) > 0 (positivity),

(i) 1S1NS2 =0, thent(SLUSy) = €(S1) +£(S2) + IN[S N[,

(iii) If S’ C S, ther?(S) < ¢(S) (increasing function),

(iv) fSINS =0, then!(SUS) > £(S1) + £(S) (super-additivity).

Let us denote bynm the minimum of/(D) whenD is a dominating set d&n m.

Lemmab. y(Gnm) = ’anm;[n,m—‘

Proof. If D is a dominating set d&nm, then/(D) =5x |D| —|N[D]|=5x |D| —nxm.
Hence, by minimality ofn m andy(Gnm), we havelnm =5 x y(Gnm) —nx m. O

Our aim is to get a lower bound fép m. As the reader can observe in Figure 1, the
loss is concentrated on the border of the grid. We now anaty@e carefully the loss
generated by the border of thickness 10.

We define the bordés, m C Vi m of Gnhm as the set of vertice$, j) wherei <10, or
j €10, ori >n—10, orj > m— 10 to which we add the four verticé$1,11), (11, m—
10),(n—10,11), (n—10,m—10). Given a subse3C V, letl (S) be theinternal vertices
of S i.e. 1(S)={ve S:N[v] C S}. These sets are illustrated in Figure 2. We will
computebn m = minp ¢(D), whereD is a subset 0By, and dominate$(Bnm), i.e.

D C Bym andl(Bnm) C N[D]. Observe that this lower bourts m is a lower bound
of /nm. Indeed, for every dominating sBtof G, m, the setD’ := DN By m dominates

[ (Bn, m) hencebnm < ¢(D’) < ¢(D). In the remainder, we will Compuitnh,m and we
will show thatbn’m ={nm.

In the following, we split the bordeB, , in four parts Om-12, Pn—12, Qm-12, Ra—12,
which are defined just below.

Forp > 12, letP, C Bnm defined as follows P, = ([10] x {12}) U ([11] x {11}) U
([p] x [10]). We define thénput verticesof Py as[10] x {12} and theoutput vertices
of Py as{p} x [10]. The setP,, illustrated forp = 19 in Figure 3, corresponds to the
set of black and gray vertices. The input vertices are thg grales, and the output
vertices are the gray squares. Recall that in our drawingertions, the vertexl, 1)
is the bottom-left vertex and hence the vertey) is in theit column from the left
and in thejt™" row from the bottom.

Forn,me N*, let fom : [n] x [m] — [m] x [n] be the bijection such thdh m(i, j) =
(j,n—i+1). Itis clear that the seB,m is the disjoint union of the following four
sets depicted in Figure £,-12, Qm-12 = fam(Pm-12), Ri—12 = fmno fam(Ph—12) and



Figure 2: The grapi®zo40. The setl (Bzgao) is the set of vertices filled in black. The
setBzgao is the set of vertices filled in black or in gray.

Figure 3: The sePyg (black and gray), the set of input vertices (gray circles) tre
set of output vertices (gray squares).



Figure 4: The set®n_12, Ph—12, Qm-12 andR,_12.



Om-12= fr;r%(Pm,lg). Similarly toP,_12, the set©n_12, Qn_12 andRy_12 have input
and output vertices. For instance, the output vertice3n9f12 correspond in Figure 3
to the white squares. Every set playing a symmetric role, ave focus onP,_1».

Given a subseb of Vi, m, let the labellingps : Vam — {0, 1,2} be such that

0 if(i,j)es
1 if(i,j) e N[F\S
2 otherwise

Note thatgs is such that any two adjacent vertices@qm cannot be labelled 0
and 2.

Givenp > 12 and a se6 C Py, theinput word (resp. output word of Sfor P,
denoted byw'"(S) (resp.w3(S)), is the ten letters word on the alphakiét 1,2} ob-
tained by readings on the input vertices (resp. output verticesPgf More precisely,
its it letter isqs(i, 12) (resp. @s(p,i)). Similarly, Op, Qp andR,, have also input and
output words. For example, the output wordSsf. Op, for Op is W (fnm(S)).

According to the definition ofp, the input and output words belong to the g¢t
of ten letters words 0fi0, 1,2} which avoid 02 and 20. The numberlofligits trinary
numbers without 02 or 20 is given by the following formula:[5]

(1+ V2R 4 (1— v2)dH
2

The size of W is thereford W| = 8119.
w, W
P

Given two wordswv,w € W, we defineD
that:

1)

as the family of subsef3 of P, such

e D dominated (Pp),
e wis the input wordv™(D),
e W is the output wordhQ"(D).

A relevant information for our calculation will be to knowgrftwo given words

w,W € W, the minimum loss over all lossé$D) whereD € Q),V)V*"‘/. For this pur-
pose, we introduce the 81198119 square matri€,. Forw,w € W, letCp[w,w] =
minDe@W £(D) where the minimum of the empty set-s».

p

Letw,w € W be two given words. Due to the symmetryRyb with respect to the
first diagonal (bottom-left to top-right) of the grid, if anex setD belongs toﬂ)xv‘z"‘/,

thenD’ = {(j,i)|(i,]) € D} belongs toQ)X‘/Z’W. Moreover, it is clear that, always due
to the symmetryf(D) = ¢(D’). Therefore, we hav€;ow,w]| = Ci2[w,w]| and thus

Cy12 is a symmetric matrix. Despite the size®f, and the size oP;» (141 vertices),

it is possible to comput€;» in less than one hour by computer. Indeed, we choose
a sequence of subsets = 0,Xy,...,X141 = P12 such that for every € {1,...,141},

X C Xi+1 andXi+1\ X = {X+1}. Moreover, we choose the sequence such that for every
i, X\ 1(X) is at most 21. This can be done for example by taking = min{(x,y) :

(x,¥) € P12\ X}, where the order is the lexical order. Rar {0,...,141}, we compute

for every labelingf € %, wheref; is the set of function$X; \ 1 (X)) — {0,1,2}, the
minimal lossl; ¢ of a setSC X; which dominate$(X;) and such thaps(v) = f(v) for
everyv € X\ 1 (X). Note that not every labeling is possible since two adjacertices



cannot be labeled 0 and 2. The number of possible labelliagse computed using
formula (1), and sincéX; \ | (X;)| can be covered by a path of at most 23 vertices, this
gives, in the worst case, that this number is less thahab@ can be then processed
by a computer. We compute inductively the sequeficg)sc 5 from the sequence
(li-1,f)fes_, by dynamical programming, ar@lis easily deduced frorfi141 ) fe 7,,-

In the following, our aim is to glu®,_12, Qm-_12, Rn—12, andO,_12 together. For
two consecutive parts of the border, 98y 12 andQn_12, the output word of)m,_12
should be compatible with the input word Bf_1,. Two wordsw,w of ' arecom-
patible if the sum of their corresponding letters is at most 2, ini] +w'[i] < 2 for
alli € [9]. Note thatw[10] +w[10] should be greater than 2 since the corresponding
vertices can be dominated by some verticeggf \ Bnm.

Given two wordsw,w € W, let {(w,w') = |{i € [10] : w[i] # 2 andw[i] = O}| +
[{i € [10): W[i] # 2 andw][i] = 0}|.

Lemma 6. Let D be a dominating set of { and let us denote = DN P,_12 and
DQ = _D N Qm-_12. Thenﬁ(D n (Pn,lzu melz)) = g(Dp) + é(DQ) + g(W,V\/), where
w=w"(Dp) and W = w3"(f, 7(Dq)). Moreover, w and tare compatible.

Proof. By Proposition 4(ii) /(DN (Py-12UQm-12)) = ¢(Dp) +£(Dq) + [N[Dp]NN[Dg|.
It suffice then to note tha({w,w) = |[N[Dp] N N[Dg]| to get/(DN (Pr-12UQm-12)) =
¢(Dp) + £(Dq) + £(w,w).

In what remains, we prove thatandw’ are compatible. If those two words were
not compatible, there would exist an index [9] such thatwi",,(f,4(Dqg))[i] +
w"(Dp)[i] > 2. Thus at least one of these two letters should be a 2, anditiee o
one should not be 0.

Suppose thatf" | ,( fr;r}](DQ))[i] = 2 and note that this means that the ve(ie3)
is not dominated by a vertex Dg. SinceD is a dominating set dBn m, every output
vertex of Qm_12 except(10,13) (and every input vertex dP,_12 except(10,12)) is
dominated by a vertex d@q or by a vertex oDp. Thus(i, 13) should be dominated by
its unique neighbour i®,_12, (i,12). This would imply that(i,12) € D contradicting
the fact thatv" (Dp)]i] # O.

Similarly, if w"(Dp)[i] = 2, the vertex(i,12) is not dominated by a vertex Dp,
thus (i,12) must be dominated by the vertéx13) € D, contradicting the fact that
wWor12(fam(D))[i] # 0. O

Lemma 6 is designed for the two consecutive pBits 2 andQn_12 of the border
of Gnm. Its easy to see that this extends to any pair of consecuifts pf the border,
i.e. Qm-12 andRy_12, Ry—12 andOm_12, Om_12 andPy_12.

We define the matrix 8119 8119 square matrik which contains, for every pair
of wordsw,w € W, the value/(w,w'):

+o if wandw' are not compatible,
£(w,w') otherwise.

Lw,w] = {
Note thatl is symmetric sincé(w,w') = (W, w).
Let® be the matrix multiplication ifmin, +) algebra, i.eC = A® B is the matrix
where for alli, j, C[i, j] = mingAli, K] + B[k, j].
LetMp =L®Cpfor p> 12.



By construction,Mp_12[W, W] corresponds to the minimum possible 1d&® N
Pnr-12) of a dominating seD C V, m that dominates$(P,_12) and such thatv is the
output word ofQn,_12 andw is the output word oP,_1».

Lemma?. Forall 24 <n<m, we have

bn,mZ min Mn712[W1,W2]+Mm712[W2,W3]+Mn712[W3’W4]+Mm712[w4’wl].
Wy, Wp,W3,Wa€ W

Proof. Consider a seD C Bpm which dominated (B m) and achieving(D) = by m.
LetDp =DNPy-12, Do =DNQm-12, Dr=DNR_12 andDo = DN Om_12. Letwp
(wo, Wr andwpo, respectively) be the input word &_12 (Qm-12, Rn—12 andOm_12),
andwp (V\/Q, Wi andwg) be the output word o 12 (Qm-12, Rn—12 andOm_12). By
definition ofCp, the loss oDp is at leasC,_12[wp,Wp]. Similarly, we have/(Dqg) >
Crn,]_z[WQ,V\/Q], ¢(DR) > Cn,]_z[WR,V\/R] and/(Do) > Cmle[WO,V\/O]- By the definition
of the loss:

¢(D) =bnm
=5x|D| - N[D]|
=((Do) + £(Dp) + £(Dq) + £(DR) + L[Wo, We] + L[Wp, Wo] + L[Wa, Wg] + L [Wg, Wo
by Lemma 6 and sincd[Dp] N N[Dr] = N[Dg] NN[Do] = 0
> Cm-12[Wo, Wo] + Cn—12[Wp, Wp] + Cin- 12[WQ, Wo] + Cn—12[WR, WR]
+ L[Wo, W] 4 L[Wp, Wo] + L[Wa, Wr] + LWk, Wo]
> Mm-12[Wo, Wp] + Mn_12[Wp, Wo] + Mm_12[Wq, WR] + Mn_12[Wr, Wo|
sincew,, andwp (resp.wp andwg, W, andwg, W andwo) are compatibles.

O

According to Lemma 7, to bourigh m, it would be thus interesting to knol, for
p > 12. Itis why we introduce the following 811298119 square matrix, .

Lemma8. There exists a matrix T such thatG =Cp®T for all p> 12. This matrix
is defined as follows:

+oo if Ji € [10] s.t. Wi =0and wW[i] =2

+oo if Ji € [9] s.t. wi] =2 and W[i] #0

+oo ifJie{2,...,9} s.t. W[i] =1, w[i] #0,W[i—1] #O0and Wi+ 1] #0
Tww]=< 4o ifw/[1]=1,w1] #0andw[2] #0

+oo ifw[10] =1, w[10] £ 0 and W[9] # 0

3x |Wlo— W2 — |W|i1+|Wo—1 ifw'[10]=0

3x |Wlp—|w|2— W1+ |w|o otherwise.

Proof. Consider a se€ C Pp1 dominatingl (Pp;1) and letS= S NP, Letw=
w2'(S) andw = wRY,(S). Let A(SS) = £(S) —£(S). By definition of the loss,
A(S,S) =5x |8\ 9 — IN[S]\N[F]|. Let us computé(S,S) in term of the number of
occurrences of 0's, 1's and 2’s in the wordsindw/. The setS'\ Scorresponds to the
vertices{ (p+1,i) | i € [10,w[i] = 0}. The seN[S]\ N[S| corresponds to the vertices
dominated byS but not dominated by, these vertices clearly belong to the columns

p, p+ 1 andp+ 2. SinceS dominated (Py1), those in the colummp are the vertices



{(p,i) | i € [10],w[i] = 2}. Those in the colump+ 1 are the vertice§(p+ 1,i)|i €
[10],wWi] # 2,w[i] # 0} and possibly the vertefp + 1,11) whenw/[10] = 0. Finally,
those in the columip+ 2 are the vertice$(p+ 2,i) | i € [10],w[i] = 0}. We then get:

3x Wlo—|Wz2— W1+ wo—1 ifw[10=0
A(SS) =
(59) {3 X |Wlo— w2 — |W|1+|wlo otherwise

where|w|,, denotes the number of occurrences of the letiarthe wordw.

ThusA(S, S) only depends on the output words®&ndS, and we can denote this
value byA(w,w'). Note however that there exist pairs of wofgsw') that could not
be the output words ddandS; there are three cases:

Case 1.w[i] = 0 andw/[i] = 2 since the vertexp+ 1,i) would be dominated byp, i)
contradicting its label 2;

Case 2.w[i] =2 andw[i] # 0 fori € [9] since(p,i) would not be dominated contradict
the fact thaS dominates (Pp1);

Case 3.W[i] =1 andw/|i — 1] # 0, Wi + 1] # 0, wli] # 0 since(p+ 1,i) would be
dominated according to its label but none of its neighbolsrigto S.

For these forbidden cases, we Aéty,W') = +oo.

By definition,Cp1[wi, W] is the minimum los€(S) of a setS C Py, 1 that domi-
natesl (Pp;1), with w; as input word andv as output word. Itis clear th&= S NP,
dominated (Pp) and hasw; as input word. Letwv be its output word and note that
Cpr1[Wi, W] =£(S) = £(S)+ A(w;,w). The minimality of¢(S) implies the minimal-
ity of £(S) over the setX € DY Indeed, any seX € DY could be turned in a set

of X’ € Q)m‘f by adding vertices of thp + 11" column accordingly tev. Thus

Cp+1[Wi, W] = Cp[wi, W] +A(w,W)
which implies that

Cppa[wi,w] > minCp[wi, w] +A(w,w).

On the other hand, for every wowg € W such thaCp[wi, Wo] # +00 andA(wo, W) #

+oo, there is a seB € Dp""™, with £(S) = Cp[wi,Wo], that can be turned in a set

Se D"pvﬂ with £(S) = Cp[wi, Wo] + A(Wo, W). Thus

Cppawi,w] < rUanCp[wi,wo] +A(Wo,W).

This concludes the proof of the lemma. O

By the definition ofMp, we have alsdMp.1 = Mp® T. Note thatT is a sparse
matrix: about 9%5% of its 8114 entries arerc. Thus the multiplication byl in the
(min, +) algebra can be done in a reasonable amount of time by a taigatithm.

Fact 9. The computations give us thatip§ = M125+ 1. Thus, sincdA+c)®B =
(A®B) + c for any matrices A, B and any integer c, we have thatgvk = M125+ k
for every ke N.

10



Let us defineM’, = minew (Mp.« — k). Then, for allq > p, Mq > M}, + (g — p). By
Fact 9,Mp, = Minkco,..125 p} (Mp1k — K)

Fact 10. By computing M, and A = M},® M} ,, we obtain thamin, w, (A’ +AT)[wi, ws] =
76 (where A is the transpose of A).

This implies that

min (MinM7,[wy, Wa] 4+ M/o[wa,W3]) + (MinM/,[ws, Wg] +M7[Wa,wi]) = 76
W1,W3 - W2 Wy

wpin Mio[wa, W] + Mio[Wz, W] + My5[Ws, Wa] + M3[wa, W] = 76.

Theorem 11. If 24<n<m, then
n+2)(m+2
Y(Gnhm) = {%J —4.

Proof. By Chang’s construction [4}(Gnm) < {%J —4. Let us now compute
a lower bound for the loss of a dominating seGfm.

lam > bnm
> Wl,Vmu/l,W4 Mn_12[W1, W2] 4+ Mm_12[W2, W3] + Mn_12[W3, Wa] + Mm_12[Wa, W]
by Lemma 7
> W17VI\;T21,L5]37W4M/12[W1,W2] +(n—-12—-12)+ M/lZ[Wz,Wg] +(m-12-12)+ M/lz[Wg,W4]
+(N—12—12) + Mig[wa, W] + (M—12—12)
> 2x(n+m-48) +w1,vr\/2i/|\?3,W4 M7o[W1, Wa] + M7o[Wa, Wa] + M7 [ Ws, Wa] + M7 [Wa, W]
> 2% (n+m-—48)+76
> 2 (n+m)—20.

Thus by Lemma 5, we have:

(nxm+2x (n+m)—20
¥(Gnm) > ( ) - —‘
> [(n+2)( m+2 4" _4

> (n+2)ém+2J _4
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