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Abstract

In this paper, we conclude the calculation of the dominationnumber of all
n×m grid graphs. Indeed, we prove Chang’s conjecture saying that for every

16≤ n≤ m, γ(Gn,m) =
⌊

(n+2)(m+2)
5

⌋

−4.

1 Introduction

A dominating setin a graphG is a subset of verticesSsuch that every vertex inV(G)\S
is a neighbour of some vertex ofS. Thedomination numberof G is the minimum size
of a dominating set ofG. We denote it byγ(G). This paper is devoted to the calculation
of the domination number of complete grids.

The notation[i] denotes the set{1,2, . . . , i}. If w is a word on the alphabetA, w[i]
is the i-th letter ofw, and for everya in A, |w|a denotes the number of occurrences
of a in w (i.e. |{i ∈ {1, . . . , |w|} : w[i] = a}|). For a vertexv, N[v] denotes the closed
neighbourhood ofv (i.e. the set of neighbours ofv and v itself). For a subset of
verticesS of a vertex setV of a graph, we denote byN[S] =

S

v∈SN[v]. Note thatD
is a dominating set ofG if and only if N[D] = V(G). Let Gn,m be then×m complete
grid, i.e. the vertex set ofGn,m is Vn,m := [n]× [m], and two vertices(i, j) and(k, l) are
adjacent if|k− i|+ |l − j| = 1. The couple(1,1) denotes the bottom-left vertex of the
grid and the couple(i, j) denotes the vertex of thei-th column and thej-th row. We will
always assume in this paper thatn≤ m. Let us illustrate our purpose by an example of
a dominating set of the complete gridG24,24 on Figure 1.

The first results on the domination number of grids were obtained about 30 years
ago with the exact values ofγ(G2,n), γ(G3,n), andγ(G4,n) found by Jacobson and Kinch
[7] in 1983. In 1993, Chang and Clark [2] found those ofγ(G5,n) andγ(G6,n). These
results were obtained analytically. Chang [1] devoted his PhD thesis to study the dom-
ination number of grids; he conjectured that this invariantbehaves well provided thatn
is large enough. Specifically, Chang conjectured the following:
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Figure 1: Example of a set of size 131 dominating the gridG24,24

Conjecture 1 ([1]). For every 16≤ n≤ m,

γ(Gn,m) =

⌊

(n+2)(m+2)

5

⌋

−4.

Observe that for instance, this formula would give 131 for the domination number
of the grid in Figure 1. To motivate his bound, Chang proposedsome constructions of
dominating sets achieving the upper bound:

Lemma 1 ([1]). For every8≤ n≤ m,

γ(Gn,m) ≤
⌊

(n+2)(m+2)

5

⌋

−4

Later, some algorithms based on dynamic programming were designed to compute
a lower bound ofγ(Gn,m). There were numerous intermediate results found forγ(Gn,m)
for small values ofn and m (see [3, 8, 9] for details). In 1995, Hare, Hedetniemi
and Hare [8] gave a polynomial time algorithm to computeγ(Gn,m) whenn is fixed.
Nevertheless, this algorithm is not usable in practice whenn hangs over 20. Fisher [5]
developed the idea of searching for periodicity in the dynamic programming algorithms
and using this technique, he found the exact values ofγ(Gn,m) for all n≤ 21. We recall
these values for the sake of completeness.
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Theorem 2 ([5]). For all n ≤ m and n≤ 21, we have:

γ(Gn,m) =



























































































































































































































⌈m
3 ⌉ if n = 1

⌈m+1
2 ⌉ if n = 2

⌈3m+1
4 ⌉ if n = 3

m+1 if n = 4 andm= 5,6,9

m if n = 4 andm 6= 5,6,9

⌈6m+4
5 ⌉−1 if n = 5 andm= 7

⌈6m+4
5 ⌉ if n = 5 andm 6= 7

⌈10m+4
7 ⌉ if n = 6

⌈5m+1
3 ⌉ if n = 7

⌈15m+7
8 ⌉ if n = 8

⌈23m+10
11 ⌉ if n = 9

⌈30m+15
13 ⌉−1 if n = 10 andm≡13 10 orm= 13,16

⌈30m+15
13 ⌉ if n = 10 andm 6≡13 10 andm 6= 13,16

⌈38m+22
15 ⌉−1 if n = 11 andm= 11,18,20,22,33

⌈38m+22
15 ⌉ if n = 11 andm 6= 11,18,20,22,33

⌈80m+38
29 ⌉ if n = 12

⌈98m+54
33 ⌉−1 if n = 13 andm≡33 13,16,18,19

⌈98m+54
33 ⌉ if n = 13 andm 6≡33 13,16,18,19

⌈35m+20
11 ⌉−1 if n = 14 andm≡22 7

⌈35m+20
11 ⌉ if n = 14 andm 6≡22 7

⌈44m+28
13 ⌉−1 if n = 15 andm≡26 5

⌈44m+28
13 ⌉ if n = 15 andm 6≡26 5

⌊ (n+2)(m+2)
5 ⌋−4 if n≥ 16

Note that these values are obtained by specific formulas for every 1≤ n≤ 15 and
by the formula of Conjecture 1 for every 16≤ n≤ 21. This proves Chang’s conjecture
for all values 16≤ n≤ 21.

In 2004, Conjecture 1 has been confirmed up to an additive constant:

Theorem 3 (Guichard [6]). For every16≤ n≤ m,

γ(Gn,m) ≥
⌊

(n+2)(m+2)

5

⌋

−9.

In this paper, we prove Chang’s conjecture, hence finishing the computation of
γ(Gn,m). We adapt Guichard’s ideas to improve the additive constantfrom −9 to −4
when 24≤ n≤ m. Casesn = 22 andn = 23 can be proved in a couple of hours using
Fisher’s method (described in [5]) on a modern computer. They can be also proved by
a slight improvement of the technique presented in the next section.

2 Values of γ(Gn,m) when 24≤ n≤ m

Our method follows the idea of Guichard [6]. A slight improvement is enough to give
the exact bound.
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A vertex of the gridGn,m dominates at most 5 vertices (its four neighbours and
itself). It is then clear thatγ(Gn,m) ≥ n×m

5 . The previous inequality would become an
equality if there would be a dominating setD such that every vertex ofGn,m is domi-
nated only once, and all vertices ofD are of degree 4 (i.e. dominates exactly 5 vertices);
in this case, we would have 5×|D|−n×m= 0. This is clearly impossible (e.g. to dom-
inate the corners of the grid, we need vertices of degree at most 3). Therefore, our goal
is to find a dominating setD of Gn,m such that the difference 5× |D| − n×m is the
smallest.

Let Sbe a subset ofV(Gn,m). Thelossof S is ℓ(S) = 5×|S|− |N[S]|.

Proposition 4. The following properties of the loss function are straightforward:

(i) For every S,ℓ(S) ≥ 0 (positivity),

(ii) If S1∩S2 = /0, thenℓ(S1∪S2) = ℓ(S1)+ ℓ(S2)+ |N[S1]∩N[S2]|,

(iii) If S ′ ⊆ S, thenℓ(S′) ≤ ℓ(S) (increasing function),

(iv) If S1∩S2 = /0, thenℓ(S1∪S2) ≥ ℓ(S1)+ ℓ(S2) (super-additivity).

Let us denote byℓn,m the minimum ofℓ(D) whenD is a dominating set ofGn,m.

Lemma 5. γ(Gn,m) =
⌈

n×m+ℓn,m
5

⌉

Proof. If D is a dominating set ofGn,m, thenℓ(D) = 5×|D|−|N[D]|= 5×|D|−n×m.
Hence, by minimality ofℓn,m andγ(Gn,m), we haveℓn,m = 5× γ(Gn,m)−n×m.

Our aim is to get a lower bound forℓn,m. As the reader can observe in Figure 1, the
loss is concentrated on the border of the grid. We now analysemore carefully the loss
generated by the border of thickness 10.

We define the borderBn,m⊆Vn,m of Gn,m as the set of vertices(i, j) wherei ≤ 10, or
j ≤ 10, ori > n−10, or j > m−10 to which we add the four vertices(11,11),(11,m−
10),(n−10,11),(n−10,m−10). Given a subsetS⊆V, let I(S) be theinternal vertices
of S, i.e. I(S) = {v ∈ S : N[v] ⊆ S}. These sets are illustrated in Figure 2. We will
computebn,m = minD ℓ(D), whereD is a subset ofBn,m and dominatesI(Bn,m), i.e.
D ⊆ Bn,m and I(Bn,m) ⊆ N[D]. Observe that this lower boundbn,m is a lower bound
of ℓn,m. Indeed, for every dominating setD of Gn,m, the setD′ := D∩Bn,m dominates
I(Bn,m), hencebn,m ≤ ℓ(D′) ≤ ℓ(D). In the remainder, we will computebn,m and we
will show thatbn,m = ℓn,m.

In the following, we split the borderBn,m in four parts,Om−12,Pn−12,Qm−12,Rn−12,
which are defined just below.

For p≥ 12, letPp ⊂ Bn,m defined as follows :Pp = ([10]×{12})∪ ([11]×{11})∪
([p]× [10]). We define theinput verticesof Pp as[10]×{12} and theoutput vertices
of Pp as{p}× [10]. The setPp, illustrated forp = 19 in Figure 3, corresponds to the
set of black and gray vertices. The input vertices are the gray circles, and the output
vertices are the gray squares. Recall that in our drawing conventions, the vertex(1,1)
is the bottom-left vertex and hence the vertex(i, j) is in the ith column from the left
and in thejth row from the bottom.

For n,m∈ N
∗, let fn,m : [n]× [m] → [m]× [n] be the bijection such thatfn,m(i, j) =

( j,n− i + 1). It is clear that the setBn,m is the disjoint union of the following four
sets depicted in Figure 4:Pn−12, Qm−12 = fn,m(Pm−12), Rn−12 = fm,n ◦ fn,m(Pn−12) and
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Figure 2: The graphG30,40. The setI(B30,40) is the set of vertices filled in black. The
setB30,40 is the set of vertices filled in black or in gray.

Figure 3: The setP19 (black and gray), the set of input vertices (gray circles) and the
set of output vertices (gray squares).
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Pn−12

Rn−12

Qm−12

Om−12V
(G

n,
m
)
\B

n,
m

Figure 4: The setsOm−12, Pn−12, Qm−12 andRn−12.
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Om−12 = f−1
n,m(Pm−12). Similarly toPn−12, the setsOm−12, Qn−12 andRm−12 have input

and output vertices. For instance, the output vertices ofQm−12 correspond in Figure 3
to the white squares. Every set playing a symmetric role, we now focus onPn−12.

Given a subsetSof Vn,m, let the labellingφS : Vn,m →{0,1,2} be such that

φS(i, j) =







0 if (i, j) ∈ S
1 if (i, j) ∈ N[S]\S
2 otherwise

Note thatφS is such that any two adjacent vertices inGn,m cannot be labelled 0
and 2.

Given p ≥ 12 and a setS⊆ Pp, the input word (resp. output word) of S for Pp,
denoted bywin(S) (resp.wout

p (S)), is the ten letters word on the alphabet{0,1,2} ob-
tained by readingφS on the input vertices (resp. output vertices) ofPp. More precisely,
its ith letter isφS(i,12) (resp.φS(p, i)). Similarly, Op, Qp andRp have also input and
output words. For example, the output word ofS⊆ Op for Op is wout

p ( fn,m(S)).
According to the definition ofφ, the input and output words belong to the setW

of ten letters words on{0,1,2} which avoid 02 and 20. The number ofk-digits trinary
numbers without 02 or 20 is given by the following formula [5]:

(1+
√

2)k+1 +(1−
√

2)k+1

2
(1)

The size ofW is therefore|W | = 8119.

Given two wordsw,w′ ∈ W , we defineDw,w′
p as the family of subsetsD of Pp such

that:

• D dominatesI(Pp),

• w is the input wordwin(D),

• w′ is the output wordwout
p (D).

A relevant information for our calculation will be to know, for two given words

w,w′ ∈ W , the minimum loss over all lossesℓ(D) whereD ∈ D
w,w′
p . For this pur-

pose, we introduce the 8119×8119 square matrixCp. Forw,w′ ∈ W , let Cp[w,w′] =
min

D∈D
w,w′
p

ℓ(D) where the minimum of the empty set is+∞.

Let w,w′ ∈ W be two given words. Due to the symmetry ofP12 with respect to the

first diagonal (bottom-left to top-right) of the grid, if a vertex setD belongs toD
w,w′
12 ,

thenD′ = {( j, i)|(i, j) ∈ D} belongs toD
w′,w
12 . Moreover, it is clear that, always due

to the symmetry,ℓ(D) = ℓ(D′). Therefore, we haveC12[w,w′] = C12[w′,w] and thus
C12 is a symmetric matrix. Despite the size ofC12 and the size ofP12 (141 vertices),
it is possible to computeC12 in less than one hour by computer. Indeed, we choose
a sequence of subsetsX0 = /0,X1, . . . ,X141 = P12 such that for everyi ∈ {1, . . . ,141},
Xi ⊆Xi+1 andXi+1\Xi = {xi+1}. Moreover, we choose the sequence such that for every
i, Xi \ I(Xi) is at most 21. This can be done for example by takingxi+1 = min{(x,y) :
(x,y) ∈ P12\Xi}, where the order is the lexical order. Fori ∈ {0, . . . ,141}, we compute
for every labelingf ∈ Fi , whereFi is the set of functions(Xi \ I(Xi)) → {0,1,2}, the
minimal lossl i, f of a setS⊆ Xi which dominatesI(Xi) and such thatφS(v) = f (v) for
everyv∈ Xi \ I(Xi). Note that not every labeling is possible since two adjacentvertices
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cannot be labeled 0 and 2. The number of possible labellings can be computed using
formula (1), and since|Xi \ I(Xi)| can be covered by a path of at most 23 vertices, this
gives, in the worst case, that this number is less than 109 and can be then processed
by a computer. We compute inductively the sequence(l i, f ) f∈Fi from the sequence
(l i−1, f ) f∈Fi−1 by dynamical programming, andC is easily deduced from(l141, f ) f∈F141.

In the following, our aim is to gluePn−12,Qm−12,Rn−12, andOm−12 together. For
two consecutive parts of the border, sayPn−12 andQm−12, the output word ofQm−12

should be compatible with the input word ofPn−12. Two wordsw,w′ of W arecom-
patible if the sum of their corresponding letters is at most 2, i.e.w[i] + w′[i] ≤ 2 for
all i ∈ [9]. Note thatw[10]+ w′[10] should be greater than 2 since the corresponding
vertices can be dominated by some vertices ofVn,m\Bn,m.

Given two wordsw,w′ ∈ W , let ℓ(w,w′) = |{i ∈ [10] : w[i] 6= 2 andw′[i] = 0}|+
|{i ∈ [10] : w′[i] 6= 2 andw[i] = 0}|.

Lemma 6. Let D be a dominating set of Gn,m and let us denote DP = D∩Pn−12 and
DQ = D∩Qm−12. Thenℓ(D∩ (Pn−12∪Qm−12)) = ℓ(DP) + ℓ(DQ) + ℓ(w,w′), where
w = win(DP) and w′ = wout

q ( f−1
n,m(DQ)). Moreover, w and w′ are compatible.

Proof. By Proposition 4(ii),ℓ(D∩(Pn−12∪Qm−12))= ℓ(DP)+ℓ(DQ)+ |N[DP]∩N[DQ]|.
It suffice then to note thatℓ(w,w′) = |N[DP]∩N[DQ]| to getℓ(D∩ (Pn−12∪Qm−12)) =
ℓ(DP)+ ℓ(DQ)+ ℓ(w,w′).

In what remains, we prove thatw andw′ are compatible. If those two words were
not compatible, there would exist an indexi ∈ [9] such thatwout

m−12( f−1
n,m(DQ))[i] +

win(DP)[i] > 2. Thus at least one of these two letters should be a 2, and the other
one should not be 0.

Suppose thatwout
m−12( f−1

n,m(DQ))[i] = 2 and note that this means that the vertex(i,13)
is not dominated by a vertex inDQ. SinceD is a dominating set ofGn,m, every output
vertex ofQm−12 except(10,13) (and every input vertex ofPn−12 except(10,12)) is
dominated by a vertex ofDQ or by a vertex ofDP. Thus(i,13) should be dominated by
its unique neighbour inPn−12, (i,12). This would imply that(i,12) ∈ D contradicting
the fact thatwin(DP)[i] 6= 0.

Similarly, if win(DP)[i] = 2, the vertex(i,12) is not dominated by a vertex inDP,
thus (i,12) must be dominated by the vertex(i,13) ∈ D, contradicting the fact that
wout

m−12( f−1
n,m(DQ))[i] 6= 0.

Lemma 6 is designed for the two consecutive partsPn−12 andQm−12 of the border
of Gn,m. Its easy to see that this extends to any pair of consecutive parts of the border,
i.e. Qm−12 andRn−12, Rn−12 andOm−12, Om−12 andPn−12.

We define the matrix 8119×8119 square matrixL which contains, for every pair
of wordsw,w′ ∈ W , the valueℓ(w,w′):

L[w,w′] =

{

+∞ if w andw′ are not compatible,

ℓ(w,w′) otherwise.

Note thatL is symmetric sinceℓ(w,w′) = ℓ(w′,w).
Let⊗ be the matrix multiplication in(min,+) algebra, i.e.C = A⊗B is the matrix

where for alli, j, C[i, j] = mink A[i,k]+B[k, j].
Let Mp = L⊗Cp for p≥ 12.
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By construction,Mn−12[w,w′] corresponds to the minimum possible lossℓ(D∩
Pn−12) of a dominating setD ⊆ Vn,m that dominatesI(Pn−12) and such thatw is the
output word ofQm−12 andw′ is the output word ofPn−12.

Lemma 7. For all 24≤ n≤ m, we have

bn,m≥ min
w1,w2,w3,w4∈W

Mn−12[w1,w2]+Mm−12[w2,w3]+Mn−12[w3,w4]+Mm−12[w4,w1].

Proof. Consider a setD ⊆ Bn,m which dominatesI(Bn,m) and achievingℓ(D) = bn,m.
Let DP = D∩Pn−12, DQ = D∩Qm−12, DR = D∩Rn−12 andDO = D∩Om−12. Let wP

(wQ, wR andwO, respectively) be the input word ofPn−12 (Qm−12, Rn−12 andOm−12),
andw′

P (w′
Q, w′

R andw′
O) be the output word ofPn−12 (Qm−12, Rn−12 andOm−12). By

definition ofCp, the loss ofDP is at leastCn−12[wP,w′
P]. Similarly, we haveℓ(DQ) ≥

Cm−12[wQ,w′
Q], ℓ(DR) ≥Cn−12[wR,w′

R] andℓ(DO) ≥Cm−12[wO,w′
O]. By the definition

of the loss:

ℓ(D) = bn,m

= 5×|D|− |N[D]|
= ℓ(DO)+ ℓ(DP)+ ℓ(DQ)+ ℓ(DR)+L[w′

O,wP]+L[w′
P,wQ]+L[w′

Q,wR]+L[w′
R,wO]

by Lemma 6 and sinceN[DP]∩N[DR] = N[DQ]∩N[DO] = /0
≥Cm−12[wO,w′

O]+Cn−12[wP,w′
P]+Cm−12[wQ,w′

Q]+Cn−12[wR,w′
R]

+L[w′
O,wP]+L[w′

P,wQ]+L[w′
Q,wR]+L[w′

R,wO]

≥ Mm−12[wO,wP]+Mn−12[wP,wQ]+Mm−12[wQ,wR]+Mn−12[wR,wO]

sincew′
O andwP (resp.w′

P andwQ, w′
Q andwR, w′

R andwO) are compatibles.

According to Lemma 7, to boundbn,m it would be thus interesting to knowMp for
p > 12. It is why we introduce the following 8119×8119 square matrix,T.

Lemma 8. There exists a matrix T such that Cp+1 =Cp⊗T for all p≥ 12. This matrix
is defined as follows:

T[w,w′] =















































+∞ if ∃i ∈ [10] s.t. w[i] = 0 and w′[i] = 2

+∞ if ∃i ∈ [9] s.t. w[i] = 2 and w′[i] 6= 0

+∞ if ∃i ∈ {2, . . . ,9} s.t. w′[i] = 1, w[i] 6= 0, w′[i −1] 6= 0 and w′[i +1] 6= 0

+∞ if w′[1] = 1, w[1] 6= 0 and w′[2] 6= 0

+∞ if w′[10] = 1, w[10] 6= 0 and w′[9] 6= 0

3×|w′|0−|w|2−|w′|1 + |w|0−1 if w′[10] = 0

3×|w′|0−|w|2−|w′|1 + |w|0 otherwise.

Proof. Consider a setS′ ⊆ Pp+1 dominatingI(Pp+1) and letS= S′ ∩Pp. Let w =
wout

p (S) and w′ = wout
p+1(S

′). Let ∆(S,S′) = ℓ(S′)− ℓ(S). By definition of the loss,
∆(S,S′) = 5×|S′ \S|− |N[S′]\N[S]|. Let us compute∆(S,S′) in term of the number of
occurrences of 0’s, 1’s and 2’s in the wordsw andw′. The setS′ \Scorresponds to the
vertices{(p+1, i) | i ∈ [10],w′[i] = 0}. The setN[S′]\N[S] corresponds to the vertices
dominated byS′ but not dominated byS; these vertices clearly belong to the columns
p, p+1 andp+2. SinceS′ dominatesI(Pp+1), those in the columnp are the vertices
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{(p, i) | i ∈ [10],w[i] = 2}. Those in the columnp+ 1 are the vertices{(p+ 1, i) | i ∈
[10],w′[i] 6= 2,w[i] 6= 0} and possibly the vertex(p+ 1,11) whenw′[10] = 0. Finally,
those in the columnp+2 are the vertices{(p+2, i) | i ∈ [10],w′[i] = 0}. We then get:

∆(S,S′) =

{

3×|w′|0−|w|2−|w′|1 + |w|0−1 if w′[10] = 0

3×|w′|0−|w|2−|w′|1 + |w|0 otherwise

where|w|n denotes the number of occurrences of the lettern in the wordw.
Thus∆(S,S′) only depends on the output words ofSandS′, and we can denote this

value by∆(w,w′). Note however that there exist pairs of words(w,w′) that could not
be the output words ofSandS′; there are three cases:

Case 1.w[i] = 0 andw′[i] = 2 since the vertex(p+1, i) would be dominated by(p, i)
contradicting its label 2;

Case 2.w[i] = 2 andw′[i] 6= 0 for i ∈ [9] since(p, i) would not be dominated contradict
the fact thatS′ dominatesI(Pp+1);

Case 3.w′[i] = 1 andw′[i −1] 6= 0, w′[i + 1] 6= 0, w[i] 6= 0 since(p+ 1, i) would be
dominated according to its label but none of its neighbors belong toS′.

For these forbidden cases, we set∆(w,w′) = +∞.
By definition,Cp+1[wi ,w′] is the minimum lossℓ(S′) of a setS′ ⊆ Pp+1 that domi-

natesI(Pp+1), with wi as input word andw′ as output word. It is clear thatS= S′∩Pp

dominatesI(Pp) and haswi as input word. Letw be its output word and note that
Cp+1[wi ,w′] = ℓ(S′) = ℓ(S)+ ∆(wi ,w′). The minimality ofℓ(S′) implies the minimal-

ity of ℓ(S) over the setsX ∈ D
wi ,w′
p . Indeed, any setX ∈ D

wi ,w′
p could be turned in a set

of X′ ∈ D
wi ,w′
p+1 by adding vertices of thep+1th column accordingly tow′. Thus

Cp+1[wi ,w
′] = Cp[wi ,w]+ ∆(w,w′)

which implies that

Cp+1[wi ,w
′] ≥ min

w
Cp[wi ,w]+ ∆(w,w′).

On the other hand, for every wordwo ∈W such thatCp[wi ,wo] 6= +∞ and∆(wo,w′) 6=
+∞, there is a setS∈ D

wi ,wo
p , with ℓ(S) = Cp[wi ,wo], that can be turned in a set

S′ ∈ Dwi ,w′
p+1 with ℓ(S′) = Cp[wi ,wo]+ ∆(wo,w′). Thus

Cp+1[wi ,w
′] ≤ min

wo
Cp[wi ,wo]+ ∆(wo,w

′).

This concludes the proof of the lemma.

By the definition ofMp, we have alsoMp+1 = Mp ⊗T. Note thatT is a sparse
matrix: about 95.5% of its 81192 entries are+∞. Thus the multiplication byT in the
(min,+) algebra can be done in a reasonable amount of time by a trivialalgorithm.

Fact 9. The computations give us that M126 = M125+ 1. Thus, since(A+ c)⊗B =
(A⊗B)+ c for any matrices A, B and any integer c, we have that M125+k = M125+ k
for every k∈ N.
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Let us defineM′
p = mink∈N(Mp+k−k). Then, for allq≥ p, Mq ≥ M′

p+(q− p). By
Fact 9,M′

p = mink∈{0,...125−p}(Mp+k−k)

Fact 10. By computing M′12, and A′ = M′
12⊗M′

12, we obtain thatminw1,w3(A
′+A′T)[w1,w3] =

76 (where AT is the transpose of A).

This implies that

min
w1,w3

(min
w2

M′
12[w1,w2]+M′

12[w2,w3]) + (min
w4

M′
12[w3,w4]+M′

12[w4,w1]) = 76

min
w1,w2,w3,w4

M′
12[w1,w2]+M′

12[w2,w3]+M′
12[w3,w4]+M′

12[w4,w1] = 76.

Theorem 11. If 24≤ n≤ m, then

γ(Gn,m) =

⌊

(n+2)(m+2)

5

⌋

−4.

Proof. By Chang’s construction [4],γ(Gn,m) ≤
⌊

(n+2)(m+2)
5

⌋

−4. Let us now compute

a lower bound for the loss of a dominating set ofGn,m.

ℓn,m ≥ bn,m

≥ min
w1,w2,w3,w4

Mn−12[w1,w2]+Mm−12[w2,w3]+Mn−12[w3,w4]+Mm−12[w4,w1]

by Lemma 7

≥ min
w1,w2,w3,w4

M′
12[w1,w2]+ (n−12−12)+M′

12[w2,w3]+ (m−12−12)+M′
12[w3,w4]

+ (n−12−12)+M′
12[w4,w1]+ (m−12−12)

≥ 2× (n+m−48)+ min
w1,w2,w3,w4

M′
12[w1,w2]+M′

12[w2,w3]+M′
12[w3,w4]+M′

12[w4,w1]

≥ 2× (n+m−48)+76

≥ 2× (n+m)−20.

Thus by Lemma 5, we have:

γ(Gn,m) ≥
⌈

n×m+2× (n+m)−20
5

⌉

≥
⌈

(n+2)(m+2)−4
5

⌉

−4

≥
⌊

(n+2)(m+2)

5

⌋

−4.
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