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Interval Analysis Based Determination of the

Wrench-Feasible Workspace of Parallel

Cable-Driven Robots
Marc Gouttefarde, Member, IEEE, David Daney, Member, IEEE, and Jean-Pierre Merlet, Member, IEEE

Abstract—This paper deals with the wrench-feasible workspace
(WFW) of n-degree-of-freedom parallel robots driven by n or
more than n cables. The WFW is the set of mobile platform
poses for which the cables can balance any wrench of a given set
of wrenches, such that the tension in each cable remains within
a prescribed range. Requirements of nonnegative cable tensions
as well as maximum admissible tensions are thus satisfied. The
determination of the WFW is an important issue since its size
and shape are highly dependent on the geometry of the robot and
on the ranges of allowed cable tensions. The approach proposed
in this paper is mainly based on interval analysis. Two sufficient
conditions are presented, namely, a sufficient condition for a box
of poses to be fully inside the WFW and a sufficient condition
for a box of poses to be fully outside the WFW. These sufficient
conditions are relevant since they can be tested, means of testing
them being discussed in the paper. Used within usual branch-
and-prune algorithms, these tests enable WFW determinations
in which full-dimensional sets of poses (volumes) are found to lie
within or, on the contrary, to lie outside the WFW. This provides
a useful alternative to a basic discretization, the latter consisting
in testing a discrete (zero-dimensional) finite set of poses. In
order to improve the efficiency of the computations, a means
of mitigating the undesirable effects of the so-called wrapping
effect is introduced. The paper also illustrates how the proposed
approach is capable of dealing with small uncertainties on the
geometric design parameters of a parallel cable-driven robot.

Index Terms—Cable-driven robots, workspace determination,
wrench-feasibility, interval analysis.

I. INTRODUCTION

PARALLEL cable-driven robots consist essentially of a

mobile platform connected in parallel to actuated reels

by cables as illustrated in Fig. 1. The actuation of each cable

allows the control of the platform motion and/or wrenches.

These parallel robots have several interesting properties such

as a potentially very large reachable workspace since large

lengths of cables can be used, low mass of the mobile parts of

the robot and low visual intrusion. Therefore, they are good

candidates for many applications, a few examples of which are
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et de Microélectronique de Montpellier (LIRMM), Université Montpellier 2,
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Fig. 1. A parallel cable-driven robot.

high-speed manipulation [1], [2], haptic interfaces [3], auto-

mated construction systems [4] and locomotion interfaces [5].

However, various factors may limit the workspace of parallel

cable-driven robots among which the inability of the cables to

push on the mobile platform is an important and challenging

one. This fundamental issue has been the subject of several

studies especially in recent years. The works presented in [6]–

[13] are among the first ones to tackle this issue, and have been

followed by several others. Cable interferences may also limit

the workspace of parallel cable-driven robots. Cable collisions

are generally avoided, e.g. [14], even if some authors suggest

to permit collisions between the cables so as to obtain a larger

workspace [15]. The present paper does not deal with collision

issues. An interval analysis based method that can be used to

check if cable interferences occur is presented in [16].

The consequences of the unilateral nature of cable actuation

on the shape and size of the usable workspace of parallel cable-

driven robots are usually examined by means of wrench feasi-

bility. In general terms, a pose (position and orientation) of the

mobile platform is said to be wrench feasible if any wrench

of a given required set of wrenches can be applied to the

mobile platform by pulling it with the cables (no cable has to

push), possibly with a range of allowed tension values, that is a

minimal (always nonnegative) and a maximal admissible value

for the tension in each cable [17], [18]. The problem is then to

determine the set of wrench feasible poses, i.e., the so-called

wrench-feasible workspace (WFW). Two particular instances

of the WFW deserve their own names: the static (equilibrium)
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workspace and the force-closure (FC) workspace, the latter

being also known as the wrench-closure workspace—note that

the terminology is far from being unified. The static workspace

is the set of poses of the mobile platform for which the cables

can balance the weight of both the platform and the payload

with tension forces only. It is of particular interest for cable

suspended robots such as the ROBOCRANE [8] which rely

on gravity to keep the cables taut. The static workspace is a

WFW whose required set of wrenches is reduced to a single

wrench corresponding to the platform and payload weight. The

force-closure workspace, whose name derives from an analogy

with force-closure grasps of robotic hands [17], is the set of

poses at which the platform can be fully constrained by the

cables. The FC workspace is thus the very special case of

a WFW whose required set of wrenches is the whole space

of wrenches and the only constraint on the cable tensions is

non-negativity.

Recently, “geometric methods” aiming at delineating the

workspace boundary have been proposed in the case of the

static [19], so-called dynamic [20] and FC [21] workspaces

of planar robots. Not without difficulties, they have also been

applied to the static and FC workspaces of six-DOF robots

[22]. However, except for these particular instances of the

WFW, geometric methods are not currently available probably

due the number and complexity of the equations describing

the WFW boundary [18]. Furthermore, because they aim at

visualizing the boundary, these methods are limited to 3D

workspaces. For six-DOF robots, only a partial picture of the

workspace is thus obtained since at least three out of the

six pose variables must be fixed, e.g., when determining a

constant-orientation workspace.

Therefore, the WFW is commonly determined by consider-

ing a grid of mobile platform poses, each pose of the grid being

tested for wrench feasibility. The grid provides a discretization

of the search space. In such a basic discretization method, the

only tool needed is a test that determines if a given pose is

wrench feasible. Classic methods of constrained optimization

can usually be used to test wrench feasibility of a given pose.

But, since feasibility rather than optimality is of interest, this

does not necessarily yield very efficient tests. Therefore, more

efficient approaches have been proposed. In the case of the

FC workspace, references [10], [22]–[27] present specific tests

which are based on characterizations of FC already known in

grasping by robotic hands [28]. Related works can be found in

[29], [30]. Only a few works, however, deals with the general

case of the WFW, i.e., with minimal and maximal admissible

cable tensions. In fact, tests that determine if a given pose

belongs to the WFW are discussed in [18], [31], [32], some

of them focusing on a specific required wrench set geometry.

The method proposed in [33] is a valuable one since it enables

to test wrench feasibility of a given pose for a great variety

of required wrench set geometries.

A discretization method is quite straightforward to imple-

ment but it does not truly solve the problem of determining

the WFW. In fact, out of the infinitely many poses of the

discretized search space, only finitely many of them—those

of the discretization grid—are tested for wrench feasibility.

Hence, all the poses of the grid may be wrench feasible while

the search space does not fully lie in the WFW because some

poses which are not wrench feasible may be missed. Note that

this issue is not unlikely to happen since the WFW has usually

a non-convex geometry and can contains holes or consists

of several disconnected components [21]. In this sense, the

result provided by a discretization can never be guaranteed,

i.e., one can never know if this result can be trusted. In

practice, a discretization should yield good results as soon as

the discretization grid is fine enough. However, especially for

six-DOF robots, the grid is to remain relatively coarse since

otherwise the number of its poses is rapidly too large for all

of them to be tested in a realistic amount of time. This implies

a strong trade-off between accuracy (number of poses in the

grid) and computation time. For instance, in the case of a

6D space of poses (a 6-DOF robot), when the discretization

of each axis of the search space contains 10 points, provided

that the discretization grid is defined as the Cartesian product

of these discretizations, which is generally the case, the total

number of poses to be tested is 106, a million. With 25 points

per axis, the total number of poses is greater that two billion

and 100 points per axis leads to 1012 poses, such that testing

all of them is too expensive.

The present paper proposes an alternative to discretization

with the aim of addressing the aforementioned drawbacks.

This alternative consists of numerical methods, mainly based

on interval analysis, providing guaranteed WFW determina-

tions in reasonable computation times. It is applicable to any

n-DOF parallel robot driven by n or more than n cables and

consists mainly in a test able to find boxes of poses fully inside

the WFW and a complementary test that can detect boxes fully

outside the WFW. The determination is said to be guaranteed

in the sense that, besides taking into account rounding errors,

wrench feasibility of each of the infinitely many poses of a

search space is explored. Possibly, the method yields sets of

poses for which no conclusion could be drawn at the current

algorithm resolution. The proposed approach is notably based

on a theorem due to Rohn [34], which allows us to conclude

on the feasibility of some infinitely many linear systems of

equations by testing the feasibility of (only) finitely many of

them (Section IV). It is also based on consistency techniques

applied to continuous domains (Section V). Additionally, the

proposed approach is able to deal with uncertainties on the

geometric design parameters (in the form of small uncertainty

boxes) in reasonable computation times, as long as these

uncertainties remain small.

Some of the numerical tools proposed here have been

introduced in a previous paper of the authors [35]. Besides, to

the best of our knowledge, the only other work introducing

interval analysis as a tool to compute the WFW is [36].

Compared to [36], the contributions of the present paper are:

• The use of Rohn’s Theorem (Section IV) to test if a

box of poses is fully included in the WFW. This avoids

both time consuming bisections in the cable tension

and mobile platform wrench spaces and the needs of

considering permutations of the wrench matrix columns.

• A means of testing whether a box of poses lies fully

outside the WFW (Section V).

• A means of mitigating the effects of the so-called wrap-
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ping effect (Section VII), thereby improving computation

time.

These three points lead to interval analysis based determina-

tions of the WFW having reasonable computation times.

The paper is organized as follows. The WFW is defined

in Section II. Section III introduces interval evaluation of the

wrench matrix of a parallel cable robot. Then, in Section IV, a

detailed description of the main problem to be solved—testing

the feasibility of infinitely many linear systems—is proposed.

A sufficient condition for a box of poses to be fully inside

the WFW is also introduced together with a means to test

this condition. A sufficient condition for a box of poses to be

fully outside the WFW and a means to test it are presented

in Section V. In Section VI, the tests of Sections IV and V

are used within usual branch-and-prune algorithms in order to

determine the WFW. Then, in order to significantly improve

efficiency, Section VII shows how to work with a wrench

matrix without denominators. Finally, examples are provided

in Section VIII and Section IX concludes the paper.

II. WRENCH-FEASIBLE WORKSPACE DEFINITION

Let us consider an n-DOF parallel robot whose mobile

platform is driven by m cables with m ≥ n—generally n = 3
or n = 6—together with a fixed frame (O, x, y, z) and

a mobile frame (P , x′, y′, z′), the latter being attached at

the platform reference point P as shown in Fig. 2. The point

of the fixed base from which cable i extends is denoted Ai

whereas Bi denotes the point of the platform at which cable

i is attached. If the projections of
−−→
OAi,

−−→
PBi and

−−→
OP in the

base frame are denoted ai, bi and p, respectively, the vector

directed along cable i from Bi to Ai is li = ai −bi −p. The

corresponding unit vector is di = li/ρi, where ρi denotes the

length of cable i. The pose of the mobile platform is defined

by the position vector p and by the orientation of the mobile

frame with respect to the base frame.

The relationship between the tensions in the cables and the

wrench f—combination of a force and a moment—applied by

the cables at the platform reference point P is [10], [37]

Wτ = f (1)

where τ = (τ1, . . . , τm)T is the vector of cable tensions

and W is the n × m pose dependent wrench matrix whose

columns are denoted wi, W = (w1, . . . ,wm). Thus, the

wrench applied at P by cable i is τiwi. In the case of six-DOF

robots, the wrench wi is

wi =

(

di

bi × di

)

6×1

(2)

where × denotes the cross product. Note that W = −J−T

where J−1 is the so-called inverse Jacobian matrix [38] whose

line vectors are normalized Plücker coordinates of the cable

lines.

Let the required wrench set [f ] be the set of wrenches that

the cables must apply at reference point P and let [τ ] be the

m-dimensional box of allowed cable tensions. Usually, the

box [τ ] is defined as

[τ ] = {τ | τi ∈ [τimin
, τimax

], 1 ≤ i ≤ m} (3)

O

x

y

z

Bi

Ai

P

x′

y′

z′

ρi

cable i

platform
p

bi

ai

di

Fig. 2. Notations.

where, for each i, τimin
and τimax

are two positive scalars such

that τimin
< τimax

. A maximum tension τimax
is necessary

in order to take into account the maximum torque of each

actuator or the maximum tension that a cable can withstand.

The minimum tension τimin
≥ 0 allows one to ensure that

none of the cables will be slack, a situation that may cause

control problems.

In order to deal with the influence on the workspace of the

unilateral nature of the forces applied by the cables, the WFW

is of particular interest. It is is defined as follows [18].

Definition (WFW) The WFW is the set of mobile platform

poses that are wrench feasible, i.e., for which, for any wrench

f in [f ], there exists a vector of cable tensions τ in [τ ] such

that Wτ = f .

Determining the WFW is useful since it allows to take into

account both the requirement of nonnegative cable tensions

and that of maximum admissible cable tensions. Additionally,

at a wrench feasible pose, provided that [f ] contains a neigh-

borhood of the origin, the wrench matrix W has full rank.

Generally, the WFW is thus a singularity free workspace.

III. INTERVAL WRENCH MATRIX

A. Interval Evaluation, Interval Vectors and Interval Matrices

This subsection provides a brief overview of interval analy-

sis as used in the paper. More details can be found in [39]–[42].

An interval [x] is a bounded set of real numbers defined by

[x] = [x, x] = {x ∈ R | x ≤ x ≤ x} (4)

where (x, x) ∈ R
2 and x ≤ x. The reals x and x are

the lower and upper bound of the interval [x], respectively.

A fundamental feature of interval analysis is the interval

evaluation of a function. Let us consider a real-valued function

f(x). The classic rules of addition, multiplication, etc. of

real numbers can be extended to intervals yielding an interval

arithmetic [39]. Moreover, by properly rounding the endpoints

of computed intervals, rounding errors can be taken into

account. Based on these basic operations and on the interval

evaluation of basic algebraic and transcendental functions such

as x2, sin and cos, almost any real function f(x) can be
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evaluated for an interval [x] yielding an interval [f ] which

encloses the image of [x] under f (denoted f([x]), i.e.,

f([x]) = {f(x) | x ∈ [x]} ⊆ [f ]. (5)

The converse inclusion does not hold in general and [f ]
overestimates f([x]) introducing pessimism in the evaluation.

There exists several means to improve the interval evaluation

of a function such as the use of the derivative of the function

or of its Taylor series expansion, e.g. [39], [42].

An n-dimensional interval vector [x] = ([x1], . . . , [xn])
T

is a set of vectors x = (x1, . . . , xn)
T such that, for each

i, xi belongs to the interval [xi]. For instance, the set of

allowed cable tensions [τ ] defined in (3) is an interval vector.

Considered as a set of points of Rn, an interval vector is a box

shaped set. A real-valued function f(x) of several variables

can be interval evaluated yielding an interval [f ] that contains

the image f([x]) of the interval vector [x] = ([x1], . . . , [xn])
T

under f , i.e.

f([x]) = {f(x) | xi ∈ [xi], 1 ≤ i ≤ n} ⊆ [f ]. (6)

Finally, an interval matrix [A] is a two-dimensional rect-

angular array of intervals. We will denote [Aij ] the interval

located at the ith line and jth column of [A]. An interval ma-

trix is a continuous set of matrices and the notation A ∈ [A]
is understood component-wise, i.e., by definition, A ∈ [A] if

each real entry Aij of matrix A belongs to the corresponding

interval [Aij ] of [A]. By means of interval arithmetic, the

multiplication of an interval matrix [A] by an interval vector

[x] yields an interval vector [b] = [A][x] such that

∀ A ∈ [A], ∀ x ∈ [x], Ax ∈ [b]. (7)

In the sense of (7), [b] is a box enclosure of the set

{Ax | A ∈ [A] and x ∈ [x]} (8)

which generally is not a box. Hence, there usually exist vectors

b ∈ [b] which do not belong to this set, i.e., such that

∀ A ∈ [A], ∀ x ∈ [x], b 6= Ax. (9)

B. Interval Evaluation of the Wrench Matrix

Let the n-dimensional vector x denote the pose of the

mobile platform. For instance, in the case of a 6-DOF robot, x

can be the six-dimensional vector (pT ,ψT )T where p defines

the position of the platform and the three components of vector

ψ are Euler angles defining its orientation.

Consider a box of mobile platform poses. This box is an

n-dimensional interval vector, which we denote by [x]. Each

component wij of the wrench matrix W is pose dependent.

Such a dependency is denoted by wij = wij(x). Referring to

the preceding section, each wij can be interval evaluated for

the interval vector [x] yielding an interval [wij ]. According

to (6), [wij ] satisfies the following property: for all poses x

in [x], wij(x) belongs to [wij ]. Therefore, the n×m interval

matrix [W] whose components are the intervals [wij ] has the

following fundamental property

∀ x ∈ [x], W(x) ∈ [W]. (10)

A3=(2.0,2.5)

A1=y

P (x, y)

(1.0,0.35)

x=1.5 x=2.5x

y=1.8

y=0.4

box of poses [x] = ([x], [y])T

A2=(3.25,0.5)

cable 2

Fig. 3. A point-mass cable-driven robot and its box workspace [x].

In (10), W(x) stands for the wrench matrix obtained for the

pose x. In words, for each and every pose x ∈ [x], the wrench

matrix W obtained for x belongs to [W]. The interval matrix

[W] is referred to as the interval wrench matrix. Let us note

here that (10) must be verified for the results presented in

Section IV-A and V-A to hold. The interval wrench matrix

can be thought of as a box in R
nm which encloses the set

{W(x) | x ∈ [x]} (11)

of the infinitely many wrench matrices corresponding to the

poses x lying in [x]. The set (11) has an unknown complex

shape since each component wij of W is a nonlinear function

of x. Consequently, the interval wrench matrix “overestimates”

(11) and it is important to note that there exist matrices

WO ∈ [W] which are not wrench matrices, i.e., ∀ x ∈ [x],
WO 6= W(x). This is known as the wrapping effect [40]

which refers to the loss of the dependency relationships

between the wij at the time of the determination of [W]. In

the sequel, the notation [W] = [W]([x]) means that [W]
is the interval matrix obtained by interval evaluating each

component of W for the box [x]. Hence, it verifies (10). In

the pseudocodes presented in Section VI, this computation is

denoted Compute_WrenchMatrix([x]).

Note that the wrench matrix W is also a function of the

geometric design parameters ai and bi defined in Section II.

Let us collect all these design parameters in a vector u, e.g.

u = (a1x, a1y, a1z, . . . , bmx, bmy, bmz). If in addition to a box

[x], a box [u] of design parameters is given, the wrench matrix

W can be interval evaluated for [x] and [u] yielding an interval

wrench matrix [W] such that ∀ x ∈ [x], ∀ u ∈ [u],W(x,u) ∈
[W].

For instance, let us consider a simple point-mass two-

DOF robot driven by three cables as shown in Fig. 3. The

wrench matrix of this robot is the 2 × 3 matrix W =
(d1,d2,d3) where di is the two-dimensional unit vector

directed along cable i from P to Ai. For the box of poses

[x] = ([1.5, 2.5], [0.4, 1.8])T , each component of each di is

interval evaluated yielding the following [W]

(

[−2.986,−0.239] [0.344, 2.334] [−0.715, 0.715]
[−2.886,−0.0239] [−1.734, 0.134] [0.324, 3.0]

)

.

(12)

It can be verified that for any position x of P lying in [x], the

associated wrench matrix W lies within [W].



5

Finally, note that, for instance, although the matrix
(

−1 1.5 0
−0.5 0 1.6

)

(13)

belongs to [W], it does not correspond to any wrench matrix

obtained for x in [x].

IV. BOXES FULLY INCLUDED IN THE WFW

A. Feasibility of Interval Linear Systems

In this paper, the WFW considered are such that the required

wrench set has the shape of a box in R
n and, thus, can be

identified with an n-dimensional interval vector [f ].
In order to compute the WFW by means of branch-and-

prune algorithms (Section VI), one of the main problem

consists in verifying whether a given box (interval vector) of

poses [x] is fully included in this workspace. According to the

definition of the WFW, this problem amounts to testing if

∀ x ∈ [x], ∀ f ∈ [f ], ∃ τ ∈ [τ ] such that Wτ = f . (14)

In words, (14) reads that for any pose x in [x] and for any

wrench f in [f ] to be exerted by the cables on the mobile

platform, there exists cable tensions τ in the allowed set [τ ]
that can generate f , i.e., such that Wτ = f .

Let x ∈ [x] be a pose of the mobile platform and W the

corresponding wrench matrix. For a given wrench f ∈ [f ], the

system of linear equations Wτ = f is said to be feasible if it

admits a solution τ in [τ ]. Then, since there are infinitely many

poses x in [x] and infinitely many wrenches f in [f ], verifying

whether (14) is true amounts to verifying the feasibility of

infinitely many linear systems Wτ = f . In other words, it

requires the feasibility of all the individual systems belonging

to the following continuous family of linear systems

{Wτ = f | x ∈ [x], f ∈ [f ]} . (15)

To solve this difficult problem, one can rely on interval

analysis tools that allow to deal with a so-called system of

interval linear equations [41], [42], denoted

[W]τ = [f ] (16)

which, following [34], is said to be strongly feasible when

∀ W ∈ [W], ∀ f ∈ [f ], ∃ τ ∈ [τ ] such that Wτ = f . (17)

In fact, let us consider a given box of poses [x] and the

associated wrench matrix [W] = [W]([x]). According to (10),

(17) implies (14). Hence, the strong feasibility (17) of the

system of interval linear equations (16) is a sufficient condition

for the box [x] to be fully included in the WFW. Nevertheless,

since the interval wrench matrix [W] is only an enclosure and

not an exact description of the set (11), (17) is sufficient but

not necessary for [x] to be fully inside the WFW.

A theorem, due to Rohn, providing a necessary and suffi-

cient condition for (17) to be true is presented in Section IV-C.

This theorem applies to the case m ≥ n of n-DOF parallel

robots driven by n or more than n cables. In the particular case

m = n (as many cables as DOF), note that well-known tools

of interval analysis dealing with square systems of interval

linear equations [41], [42] can also be applied.

B. A Set of Vertex Matrices and Vertex Vectors

Before introducing Rohn’s Theorem in the next subsection,

a set of “vertex” matrices of an interval matrix has to be

defined. Let [A] be an n×m interval matrix whose components

are the intervals [Aij ] = [Aij , Aij ] and let Yn be the set of n-

dimensional vectors y whose components yi are equal either

to 1 or to -1. We associate with each of the 2n vectors y ∈ Yn
the matrix Ay whose components are

Ayij
= Aij + (Aij −Aij)(1− yi)/2. (18)

Note that the ith component yi of y defines completely the ith
line of Ay, e.g., when yi = −1 the components of the ith line

of Ay are equal to the upper bounds Aij of the corresponding

interval components of the ith line of [A]. The 2n matrices

Ay are called vertex matrices since, as the interval matrix

[A] can be thought of as a box embedded in R
nm, the Ay

corresponds to some (but not all) of the vertices of this box.

For instance, with y = (1,−1)T ∈ Y2, the vertex matrix Wy

of the interval matrix [W] defined in (12) is equal to
(

−2.986 0.344 −0.715
−0.0239 0.134 3.0

)

. (19)

Let us also define the set of “vertex” vectors of an interval

vector [b] as the set of the 2n vectors by, y in Yn, whose

components are defined by

byi
= bi + (bi − bi)(1 + yi)/2. (20)

where the interval [bi, bi] is the ith component of [b]. Geo-

metrically, the set of vectors by is the set of vertices of the

n-dimensional box [b].

C. A Useful Theorem

The system of interval linear equations (16) is a shorthand

notation for the set of linear systems

{Wτ = f | W ∈ [W] and f ∈ [f ]} . (21)

The following theorem states that the infinitely many systems

belonging to (21) are all feasible, i.e., (17) is true, if and only

if finitely many of them are feasible.

Theorem 1 (Rohn) The system of interval linear equations

[W]τ = [f ] is strongly feasible if and only if the 2n systems

of linear equations Wyτ = fy, y ∈ Yn, are all feasible.

The necessary condition is trivial whereas the reader inter-

ested in the proof of the sufficient condition is referred to

[34] (Chapter 2). Since strong feasibility (17) is a sufficient

condition for a box [x] to lie within the WFW, this very useful

theorem allows us to conclude that [x] is fully inside the WFW

whenever each of the 2n (classic) linear systems Wyτ = fy,

y ∈ Yn, is feasible. Wy and fy are the vertex matrix of

[W] and the vertex vector of [f ] defined by (18) and (20),

respectively.

Note that the feasibility of a system Wyτ = fy is a well-

known problem in linear programming (LP). For example, it

can be tested by means of the simplex method applied to the

general LP problem [43] (chapter 8)

min cT τ s.t. Wyτ = fy and τ ∈ [τ ] (22)
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for which any linear form c, e.g. the trivial linear form c = 0,

can be considered since only the feasibility of the problem

is to be determined. Alternatively, one can also rely on the

methods presented in [18], [31]–[33]. Note that the method

introduced in [44] allows one to keep the numerical guarantee

of interval analysis (the simplex method being highly sensitive

to rounding errors).

In brief, by means of Theorem 1, a procedure denoted

Feasible([W], [f ], [τ ]) can be written. This procedure re-

turns true if the necessary and sufficient condition stated in

Theorem 1 is true and it returns unknown otherwise. When

Feasible() returns true, it thus ensures that the box of poses

[x] for which [W] has been calculated is fully included in the

WFW. Feasible() consists in testing the feasibility of at

most 2n linear systems Wτ = f .

V. BOXES FULLY OUTSIDE THE WFW

A means of testing whether a given box of poses [x]
lies fully outside the WFW is a valuable tool. Indeed, when

Feasible() returns true, the box [x] at hand is guaranteed

to be fully included in the WFW. But, when Feasible()
returns unknown nothing is known about the location of [x]
with respect to the WFW since Feasible() is based on

condition (17), the latter being only a sufficient condition for

[x] to be fully inside the WFW.

A. A Sufficient Condition

By definition, a pose x of the mobile platform of an n-DOF

parallel robot driven by m cables belongs to the WFW if

∀ f ∈ [f ], ∃ τ ∈ [τ ] such that Wτ = f . (23)

A direct consequence of the convexity of [f ] and of the set F =
{f | f = Wτ , τ ∈ [τ ]}—the available net wrench set [18]—

is the equivalence between (23) and the following condition

∀ fy ∈ {fy}, ∃ τ ∈ [τ ] such that Wτ = fy (24)

in which, using the notations of Section IV-B, {fy} denotes

the set of vertices of the box [f ]. A proof of this equivalence

can be found in [18] in the case τimin
= 0.

A single pose x lies outside the WFW if and only if (24)

is false. Hence, a box of poses [x] is fully outside the WFW

if and only if (24) is false for any x ∈ [x], that is, if and only

if

∀ x ∈ [x], ∃ fy ∈ {fy} such that ∀ τ ∈ [τ ],Wτ 6= fy. (25)

In words, [x] is fully outside the WFW if and only if, for any

pose x in [x], there exists at least one vertex fy of the required

wrench set [f ] which cannot be generated by the cables with

tensions in [τ ]. Equation (25) is a necessary and sufficient

condition for a box of poses [x] to be fully outside the WFW

but it appears to be difficult to test it. Instead, we propose to

consider the following condition

∃ fy ∈ {fy} such that ∀ W ∈ [W], ∀ τ ∈ [τ ],Wτ 6= fy
(26)

where [W] = [W]([x]). Since the implication (26) ⇒ (25)

holds, (26) is a sufficient condition for a box [x] to be fully

outside the WFW. The converse implication is generally not

true so that this condition is not necessary. The implication

(26) ⇒ (25) is a consequence of (10) and of the fact that in

(25) the wrench fy which cannot be generated with admissible

tensions τ depends upon the pose x considered in [x] whereas,

in (26), fy does not depend on x, i.e., it cannot be generated

with admissible cable tensions whatever W ∈ [W] and thus

whatever x ∈ [x]. In this sense, (26) is stronger than (25).

B. A Test Based on Consistency

For a given interval wrench matrix [W], (26) can be tested

as follows: the vertices fy of [f ] are considered in turn and,

for each fy, we check if the system of interval linear equations

[W]τ = fy is inconsistent, that is, whether or not

∀ W ∈ [W], ∀ τ ∈ [τ ],Wτ 6= fy. (27)

To this end, one can rely on so-called consistency techniques

applied to continuous domains [42], [45], [46]. These numer-

ical techniques do not aim at solving the system of equations

but rather at narrowing down the size of the box [τ ] such that

no solution is lost. Two examples are hull consistency and

3B-consistency which can be found in [47], for example.

Due to space limitations, details on consistency techniques

applied to continuous domains are not provided in this paper.

The important point for the problem at hand is that applying a

consistency technique to the system [W]τ = fy with variables

τ and associated domain [τ ] yields a new box [τ ]′ such that,

on the one hand, [τ ]′ ⊆ [τ ] and, on the other hand, if

∃ W ∈ [W], ∃ τ ∈ [τ ] such that Wτ = fy (28)

then τ ∈ [τ ]′, i.e., no solution is lost. Moreover, if the con-

sistency technique returns [τ ]′ = {∅} (where {∅} denotes the

empty set), the system of interval linear equations [W]τ = fy
with domain [τ ] is inconsistent, i.e., (27) is true. In summary,

if for one vertex fy of [f ], a consistency technique applied to

[W]τ = fy yields a new domain [τ ]′ such that [τ ]′ = {∅}
then the box of poses [x] is fully outside the WFW. Thus, (26)

together with a consistency technique provides a procedure

denoted Out([W], {fy}, [τ ]) that considers the vertices fy
of [f ] in turn. If for one of these vertices the consistency

technique changes [τ ] so that it becomes the empty set, (27)

is verified, the current box of poses [x] is completely outside

the WFW and the procedure Out() returns true. Otherwise,

Out() returns unknown.

VI. DETERMINATION OF THE WFW:

BRANCH-AND-PRUNE ALGORITHMS

This section presents examples of pseudocodes that illus-

trate how the previously introduced procedures Feasible()

and Out() can be used to determine the WFW by means of

n-dimensional boxes, to test if a given prescribed workspace is

fully included in the WFW and to obtain the total orientation

WFW. These pseudocodes are essentially branch-and-prune

algorithms.
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A. Determination of the WFW

The algorithm shown in Fig. 4 manages a list L of pose

boxes [x] initialized with the search box B. The current box

[x] is found to be either fully inside the WFW (line 5), or

fully outside the WFW (line 7), or else [x] is bisected (line

11) as long as it is not too small according to the threshold

ǫ. In the latter case, the two resulting smaller boxes are put

back in the list L so that each becomes the current box at a

later time during the execution of the algorithm.

This algorithm outputs the lists Lin, Lout and Lneg . The

properties of the procedure Feasible() (resp. Out()) ensure

that all the boxes of Lin (resp. Lout) are fully included in the

WFW (resp. fully outside). The boxes of Lneg are of two

types.

• A box [x] of the first type is a box too small to be bisected

and containing a part of the WFW boundary.

• A box [x] of the second type is too small to be bisected

but does not contain any WFW boundary pose: it is

either fully inside or else fully outside the WFW but not

detected as such at line 5 or 7. Such boxes exist because

the procedures Feasible() and Out() are based on

conditions which are only sufficient (Sections IV and V).

This is a negative consequence of the wrapping effect,

which necessarily comes along with the computation of

[W] (Section III-B), and of the fact that the problem of

finding boxes fully outside the WFW has been relaxed

so as to obtain the procedure Out() (condition (26) is

stronger than (25), see Section V).

Due to the existence of boxes [x] of the second type, Lneg

provides a “thick” representation of the WFW boundary.

The accuracy of the algorithm, i.e. the size of the boxes of

Lneg , can be adjusted by means of the threshold ǫ. Obviously,

the smaller is ǫ the higher the computation time.

The WFW boundary is always contained within Lneg , i.e.,

the boxes of Lneg provides a conservative approximation of

the WFW boundary. Indeed, consider a pose x of B which

lies on the WFW boundary and let us show that x belongs

necessarily to Lneg . Assume to the contrary that x belongs

only to boxes of Lin and/or of Lout. The WFW being a closed

set, x ∈ WFW and thus x cannot belong to Lout. Hence, x

belongs solely to boxes of Lin. Then, either x is an interior

point of a (unique) box of Lin or x lies on the common

boundary of several boxes of Lin. But, in both cases, there

exists a neighborhood of x lying in the union of the boxes

of Lin containing x and consequently fully included in the

WFW. Then, x lies in the WFW interior in contradiction with

the fact that it is on the WFW boundary. In conclusion, a pose

x of B lying on the WFW boundary belongs neither to Lin

nor to Lout and thus necessarily belongs to (a box of) Lneg .

This shows that the part of the WFW boundary lying in the

search box B is necessarily contained in boxes of Lneg .

Finally, note that the structure of the algorithm shown in

Fig. 4—as well as those of the algorithms described in the

two following subsections—makes it well adapted to parallel

computing.

Input: B, [f ], [τ ], ǫ
Output: Lin, Lout, Lneg

1. L ← B % Initialize list L with the search box B
2. while L 6= {∅} do
3. [x]← Extract(L)
4. [W] = Compute_WrenchMatrix([x])
5. if Feasible([W], [f ], [τ ]) then
6. Lin ← [x] % [x] ⊆ WFW
7. else if Out([W], {fy}, [τ ]) then
8. Lout ← [x] % [x] ∩ WFW = {∅}
9. else % Both Feasible() and Out() returned unknown
10. if Size([x]) > ǫ then
11. L ← Bisect([x])
12. else % [x] is too small to be bisected
13. Lneg ← [x]
14. end if
15. end if
16. end while

Fig. 4. A branch-and-prune algorithm to determine the WFW.

Input: W , [f ], [τ ], L, ǫ
Output: L
1. if L = {∅} then
2. L ← W % Initialize list L with the box workspace W
3. end if
4. while L 6= {∅} do
5. [x]← Extract(L)
6. [W] = Compute_WrenchMatrix([x])
7. if Out([W], {fy}, [τ ]) then
8. return false
9. else if Feasible([W], [f ], [τ ]) then
10. continue % [x] ⊆ WFW
11. else
12. if Size([x]) > ǫ then
13. L ← Bisect([x])
14. else % [x] is too small to be bisected
15. L ← [x]
16. return unknown
17. end if
18. end if
19. end while
20. return true

Fig. 5. Testing a prescribed workspace W for full inclusion in the WFW.

B. Test of a Box Workspace W

Fig. 5 shows the pseudocode of an algorithm using the same

ingredients as those of Fig. 4 in order to test whether or not

a given prescribed workspace W (a big box) is fully included

in the WFW. When this algorithm returns true, it ensures that

W is fully included in the WFW since all of the infinitely

many poses of W have been checked for wrench feasibility.

When false is returned, a part of W lies completely outside the

WFW (line 8). Finally, when the state unknown is returned

at line 16, the algorithm is not able to conclude—W may be

fully inside the WFW. In this latter case, the algorithm can be

executed again with a smaller threshold ǫ and with the final

list L of the previous execution as an input.

C. Total Orientation WFW

For parallel cable-driven robots having both translational

and rotational DOF, the total orientation WFW is defined as

the set of positions p of the reference point P such that the
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Input: B, [ψ], [f ], [τ ], ǫpos, ǫori
Output: Lin, Lout, Lneg

1. L ← B % Initialize list L with the search box B
2. while L 6= {∅} do
3. [p]← Extract(L)
4. [x] = ([p], [ψ])
5. state = FullyInside([x],[f ],[τ ],ǫori)
6. if state = true then
7. Lin ← [p] % [p] ⊆ total orientation WFW
8. else if state = false then
9. Lout ← [p] % [p] ∩ (total orientation WFW) = {∅}

10. else % state = unknown
11. if Size([p]) > ǫpos then
12. L ← Bisect([p])
13. else % [p] is too small to be bisected
14. Lneg ← [p]
15. end if
16. end if
17. end while

Fig. 6. A basic algorithm to determine the total orientation WFW.

mobile platform pose x = (p,ψ) belongs to the WFW for

any orientation ψ taken in a given set of orientations [ψ]—
which, in this paper, is a box. The total orientation WFW is

of interest because it can be visualized. Indeed, it is a subset

of the Cartesian space of the robot (the space of the positions

of the reference point P ).

The pseudocode shown in Fig. 6 is a basic algorithm that

computes the total orientation WFW by means of a set of

position boxes [p]. The output list Lin contains these latter

boxes whereas Lout contains boxes covering the exterior of the

total orientation WFW. The output list Lneg contains the boxes

[p] for which the algorithm cannot conclude. The important

fact about Lneg is that it always contains the boundary of the

total orientation WFW since the procedures Feasible() and

Out()—which are used in FullyInside()—never return

true when applied to a box containing a part of the WFW

boundary. The procedure FullyInside() called at line 5

is a slight modification of the algorithm shown in Fig. 5 in

which the bisection (line 13 in Fig. 5) is only applied to the

orientation part of the current box [x] with associated threshold

ǫori. FullyInside() returns true if [x] is fully included in

the WFW, false if a part of [x] is found to be outside the

WFW and unknown otherwise.

D. On the Effect of the Bisections

In the algorithms presented in Fig. 4 to 6, the repeated bi-

sections progressively reduce the size of the boxes [x] (or [p]),
stored in the list L, for which the procedures Feasible() and

Out() (or FullyInside()) cannot conclude. Ultimately, the

current box [x] would be reduced to a single pose x and the

interval wrench matrix [W] = [W]([x]) would consequently

be reduced to the wrench matrix W obtained for x. According

to the definition of the WFW stated in Section II, for such a

unique pose x and associated wrench matrix W, (17) (resp.

(26)) is necessary and sufficient for x to belong to the WFW

(resp. to be outside the WFW), whereas it is only sufficient

in the case of a non-degenerate box [x]. This characteristic of

(17) and (26) is a key property that makes the branch-and-

prune algorithms presented in this section work well.

In order to emphasize this important point, consider for

instance the condition (17). For a box [x] which is fully

included in the WFW, (17) may not be verified because the

enclosure [W] overestimates the set of wrench matrices (11),

i.e., because of the wrapping effect. After the bisection of

[x] which yields two smaller boxes, say [x]1 and [x]2, the

overestimations involved in the computations of the interval

wrench matrices [W]1 = [W]1([x]1) and [W]2 = [W]2([x]2)
are somehow lesser and the condition (17) has more chance

of being true for both [x]1 and [x]2 than for their parent box

[x].
Finally, note that the strategy used for choosing the bisected

variable can play an important role as an appropriate choice

may avoid a large number of bisections. In the present work,

only basic strategies have been tested such as the round-

robin strategy in which variables are bisected alternately. Other

strategies may turn out to be useful, e.g., the maximum smear

heuristic [48].

VII. IMPROVEMENT OF EFFICIENCY

The algorithms presented in the previous section are basic.

In order to improve their efficiency, many tricks can be

employed. For instance, in the algorithm shown in Fig. 5,

one can first verify if one of the vertices of the prescribed

workspace W is outside the WFW. Indeed, in this case, it

is useless to explore the whole workspace W with a branch-

and-prune algorithm. Besides, the efficiency of the proposed

methods can also be improved by modifying equation (1)

with which we work from the outset. The gain in efficiency

is substantial enough to deserve a discussion which is the

purpose of the present section.

A. Wrench Matrix Without Denominators

The computation time of the algorithms presented in Sec-

tion VI is highly dependent upon the quality of the enclosure

of the set (11) by the interval wrench matrix [W]. Sharper

enclosures lead to a lower number of bisections and thus to

a lower computation time. To this end, this section presents

modifications of the problem which allows us to work with

a matrix W∗ whose symbolic expression is simpler than that

of W. Indeed, due to the so-called dependence problem [40]–

[42], the quality of the interval evaluation of an expression

depends highly on the number of occurrences of each variable

for which the expression is evaluated. The fewer occurrences,

the better is the interval evaluation. Hence, it is worth working

with a matrix W∗ whose components w∗
ij have symbolic

expressions containing less occurrences of the pose variables

than those of W. A good candidate for W∗ is the matrix

obtained from the wrench matrix W by removing the denom-

inators appearing in each of its elements, i.e.

W∗ = WD (29)

where D = diag(ρ1, . . . , ρm) is an m × m diagonal matrix

with the cable lengths ρi on its diagonal. In the case of six-

DOF robots, the column vectors of W∗ are given by

w∗

j =

(

lj
bj × lj

)

6×1

. (30)
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Compared to (2), (30) involves li instead of di = li/ρi
such that the denominators ρi have been removed. Since ρi
is a function of the pose variables x, the expressions of

the components of W∗ contain less occurrences of the pose

variables than those of W. For a given box of poses [x], the

quality of the interval evaluation of W∗, [W∗] = [W∗]([x]),
is thereby much better than that of W, i.e. the wrapping effect

is reduced.

B. Modification of the Sufficient Conditions

So as to work with W∗ instead of W, the sufficient

condition (17) for a box of poses [x] to be fully included

in the WFW must be modified as follows

∀ W∗ ∈ [W∗], ∀ f ∈ [f ], ∃ τ ∗ ∈ [τ ∗] such that W∗τ ∗ = f

(31)

with the interval vector [τ ∗] defined by

[τ ∗] =
{

τ ∗ | τ∗i ∈ [τimin
/ρi , τimax

/ρi], ∀ 1 ≤ i ≤ m
}

(32)

where ρi and ρi are, respectively, the lower and upper bounds

of the interval evaluation [ρi] of ρi for the box [x] ([ρi] =
[ρi]([x]) = [ρi, ρi]) whereas τimin

and τimax
are defined in (3).

In (31), the interval matrix [W∗] corresponds to the interval

evaluation of W∗ for the box [x]. We shall note that the

modified set of allowed cable tensions [τ ∗] is properly defined

only if

τimin
/ρi ≤ τimax

/ρi (33)

Thus, the problem can be modified only if (33) is verified for

all i. The fact that (31) is a sufficient condition for [x] to be

fully included in the WFW is proved in the appendix.

Finally, in order to work with W∗ instead of W, the

sufficient condition (26) for a box [x] to be fully outside the

WFW is to be modified as follows

∃ fy ∈ {fy} | ∀ W∗ ∈ [W∗], ∀ τ ∗ ∈ [τ ∗],W∗τ ∗ 6= fy
(34)

where [W∗] = [W∗]([x]) and [τ ∗] is defined by

[τ ∗] =
{

τ ∗ | τ∗i ∈ [τimin
/ρi , τimax

/ρi], ∀ 1 ≤ i ≤ m
}

(35)

with [ρi, ρi] = [ρi]([x]). The proof of the fact that (34) is

a sufficient condition for [x] to be fully outside the WFW

resembles that of (31) and is therefore left to the reader. Note

that the box [τ ∗] defined in (35) is not the same as the one

defined in (32). Note also that, contrary to (32), no condition

such as (33) must be fulfilled for (35) to have a meaning

(provided that ρi 6= 0). Hence, one can (and should) always

use (34) in place of (26).

VIII. EXAMPLES

Our implementation in C++ uses the interval arithmetic of

the BIAS/Profil C++ library, the simplex method of the GNU

Linear Programming Kit (GLPK) and the hull consistency

procedure of ALIAS [47]. The computation times have been

obtained on a DELL XPS laptop (Core 2 Duo CPU T7500,

2.20 GHz).
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Fig. 7. A 3-DOF planar parallel cable-driven robot (left) and its constant-
orientation WFW (right) for orientation φ = π/4 and geometric parameters
lp = 0.2 m, hp = −0.2 m (crossed cables)—computation time of 2 s (right
figure).
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��*
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crossed cables

Fig. 8. Total orientation workspace computations for two values of ǫpos and
ǫori—computation time of 2 s (left figure) and 51 s (right figure).

A. 3-DOF Planar Robots

Let us consider the 3-DOF planar robot driven by four

cables shown in Fig. 7 (left) in its reference orientation.

The actuated reels fixed to the base are located at the ver-

tices of a square of side length 1 m. The mobile platform

is a rectangle of length lp and height hp. We let lp and

hp be negative in order to consider robots with crossed

cables. For instance, the robot obtained for lp = 0.2 m

and hp = −0.2 m is shown in Fig. 8 together with its

total orientation WFW obtained by the algorithm of Sec-

tion VI-C for the set of orientations [−π/5, π/5]. The WFW

is defined here by τmin=1 N and τmax=50 N for each

cable and [f ]=[[−10, 10], [−10, 10], [−0.5, 0.5]]T (N,N,N.m).

A constant-orientation WFW obtained with the algorithm of

Section VI-A is shown in the right subfigure of Fig. 7. Using

the pseudocode of Section VI-B, for lp = 0.2 m, the box of

poses [x]=[[−0.2, 0.2], [−0.2, 0.2], [−π/5, π/5]]T (m,m,rad) is

found not to be fully included in the WFW in less than 1 s

for hp = 0.2, hp = 0.1 and hp = 0 (m). For hp = −0.1 and

hp = −0.2 (m), this box is found to be fully inside the WFW

in 2 s.

B. A 6-DOF Robot

The 6-DOF parallel cable-driven robot considered is shown

in Fig. 9 in its reference orientation. Its base frame is a cube of

edge length 1 m. Its mobile platform, a regular tetrahedron of
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Fig. 9. A six-DOF parallel robot driven by eight cables.

l = 0.2 m l = 0.1 m l = 0.2 m l = 0.2 m
s = 0.2 m s = 0.4 m s = 0.4 m s = 0.6 m

(IN) (IN) (IN) (OUT)

with W∗ 1 s 41 s 47 s < 1 s
(Section VII)

with W 7 s 574 s 663 s < 1 s

TABLE I
COMPUTATION TIMES FOR ǫ = 0.01 (THE MENTION “IN” MEANS THAT W

IS FULLY INCLUDED IN THE WFW WHEREAS “OUT” MEANS THAT IT IS

NOT).

edge length l, is driven by eight cables. Let us also consider the

WFW defined by τmin=1 N, τmax=540 N for each cable and

[f ]=[[−10, 10], [−10, 10], [−10, 10], [−0.5, 0.5], [−0.5, 0.5],
[−0.5, 0.5]]T (forces in N, moments in N.m) together with

a prescribed workspace W . The position components of W
form a cube of edge length s whose center coincides with

that of the base frame whereas its orientation part is a box

of three Euler angles φ, θ and ψ (XYZ convention) such that

φ ∈ [−π/12, π/12], θ ∈ [−π/12, π/12] and ψ = 0 (rad). W
is thus a five-dimensional workspace.

The computation times of our implementation of the pseu-

docode of Fig. 5 that determines whether W is fully included

in the WFW are shown in Table I for various values of l and

s. Table II shows examples of computation times necessary to

test the poses of a discretization of W for various values of

the number of points used to discretize each axis. The results

are consistent as all the poses of the various discretization

grids are found to lie in the WFW. Comparing these results

with those of Table I shows that, in this example, the interval

analysis based method (computation time of 47 s) is more

efficient than a discretization with at least 6 points per axis

which is a remarkable result since the infinitely many poses of

W have been verified to be wrench feasible while only finitely

many of them are checked by a discretization.

Fig. 10 shows the total orientation WFW obtained by

the algorithm of Section VI-C for the set of orientations

φ ∈ [−π/12, π/12], θ ∈ [−π/12, π/12] and ψ = 0 (rad).

For clarity, only the boxes of Lin are shown. The considered

search space (box B) is the whole base frame cube. The corre-

sponding computation time is 1567 s. Despite this computation

time value, the total volume of the boxes in Lneg—0.6 m3 for

a search space volume of 1 m3—remains quite large. This

pi = 4 pi = 6 pi = 8 pi = 10
p = 1024 p = 7776 p = 32768 p = 100 000

Computation
time 11 s 84 s 352 s 1077 s

TABLE II
EXECUTION TIME FOR VARIOUS DISCRETIZATIONS OF W (FOR l = 0.2

AND s = 0.4) WHERE pi DENOTES THE NUMBER OF POINTS IN THE

DISCRETIZATION OF EACH AXIS OF W AND p THE TOTAL NUMBER OF

POINTS (POSES) IN THE DISCRETIZATION GRID, p = p5i .

���*Lin

HHHY
A6

A6A8

A8

Fig. 10. Total orientation workspace computation for ǫpos = ǫori = 0.05
and l = 0.2 m (Lin, Lout and Lneg total volumes are equal to 0.22 m3,
0.18 m3 and 0.6 m3, respectively).

is an example in which the wrapping effect has a negative

impact on the efficiency since most of the boxes in Lneg

do not contain any boundary pose of the total orientation

WFW (boxes referred to as being of the “second type” in

Section VI-A).

C. Including Uncertainties

Let us consider again the WFW, the prescribed workspace

W and the 6-DOF parallel cable robot of Section VIII-B (for l
= 0.2 m). Let us assume that each ai and each bi, which define

the geometry of the robot (see Fig. 2), are not exactly known.

Instead, the end point of each of these vectors is only known

to lie in a small box. Such an uncertainty box is illustrated in

Fig. 9 in the case of a7. In Section III-B, a vector u collecting

all the geometric design parameters has been defined. The

uncertainties on ai and bi yields a (small) box [u] of uncertain

design parameters.

The procedures of Section VI can easily be modified so as to

handle such boxes [u]. For instance, in the algorithm of Fig. 5,

at line 6, it suffices to compute the interval wrench matrix [W]
by interval evaluating W for the current box [x] and for [u].
Note that, since ∀ x ∈ [x], ∀ u ∈ [u], W(x,u) ∈ [W],
when Feasible() (resp. Out()) returns true, it means that

for all u in [u], the box of poses [x] is fully included in the

WFW (resp. fully outside). In other words, [x] is guaranteed

to be fully included in the WFW (resp. fully outside) for any

value of the geometric design parameters in their respective

uncertainty boxes.

For example, for uncertainty boxes of edge lengths 0.002 m,

0.004 m and 0.006 m, a modified version of the algorithm of

Fig. 5 shows that W is fully included in the WFW in 128 s,

297 s and 1095 s, respectively. For larger uncertainty boxes,

because bisections in the high-dimensional space of geometric

design parameters would be required (u has dimension 48 for a
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6-DOF robot with 8 cables), the computation time can be very

high. Note however that, even for small uncertainty boxes for

which the method proposed in this paper is able to conclude,

a discretization of each uncertainty box (even very coarse),

besides providing no guarantee on the result validity, leads to

prohibitive computation times due the dimension of u.

IX. CONCLUSION

An interval analysis based approach to the WFW determi-

nation of n-DOF parallel robots driven by n or more than

n cables has been proposed. The WFW considered is such

that the required wrench set is a box. The main novelty of

our approach is to provide two tests. The first one enables to

find boxes guaranteed to be fully inside the WFW whereas

the second one enables to detect boxes guaranteed to be fully

outside the WFW. The paper has then discussed the use of

these two tests within standard branch-and-prune algorithms.

Moreover, the use of a wrench matrix without denominators

has been proposed as a means of reducing the so-called

wrapping effect thereby significantly improving computation

time.

The distinctive characteristic of our approach is that none

of the infinitely many poses of the search space is disre-

garded. The results are thus always of better quality since

full-dimensional sets of poses (here boxes) are returned, in

comparison to a discrete finite set of individual poses in the

case of a discretization. Let us also point out that testing all

the poses of a fine enough discretization grid always leads to a

computation time higher than the one of the approach proposed

in this paper. Besides, our approach turns out to be particu-

larly suited to test whether a given prescribed workspace is

fully included in the WFW, a problem for which it offers

competitive computation times. Hence, it is a valuable tool

for the dimensional synthesis framework introduced in [49].

Additionally, it has been briefly illustrated how the proposed

approach can deal with small uncertainties on the geometric

design parameters of a parallel cable robot. A drawback of the

proposed approach is that its computation time can hardly be

predicted.

The approach to the WFW determination proposed in this

paper may also return boxes of poses for which no conclusion

could be drawn (at the current algorithm resolution). The

set of these boxes has the important property of always

containing the part of the WFW boundary included in the

search space thereby providing a conservative approximation

of this boundary. Note however that, among these boxes,

some of them are either fully inside or else fully outside the

WFW but not detected as such due to the wrapping effect. In

this paper, we have proposed and shown how to work with

a wrench matrix without denominators so as to reduce this

effect. Further improving efficiency by mitigating the negative

consequences of the wrapping effect remains an important

research issue and is part of our future works.

APPENDIX

Proof of (31): let x be any pose lying in the box [x].
According to (31), for each f ∈ [f ] there exists a τ ∗ in [τ ∗]

such that W∗τ ∗ = f where W∗ = W∗(x). If W = W(x)
is the wrench matrix associated with the pose x, according to

(29), we have W∗ = WD. Then, W∗τ ∗ = f implies that

Wτ = f with τ := Dτ ∗ = (ρ1τ
∗

1 , . . . , ρmτ
∗

m)T (36)

where ρi is the length of cable i for the pose x at hand. Now,

since τ ∗ is in [τ ∗], for each of its component τ∗i we can write

τimin
/ρi ≤ τ∗i ≤ τimax

/ρi. (37)

Moreover, by definition of ρi and ρi, for each i we have 0 ≤
ρi ≤ ρi ≤ ρi which, assuming ρi > 0 (i.e., ρi 6= 0), implies

1 ≤ ρi/ρi and ρi/ρi ≤ 1 (38)

and consequently

τimin
≤ (τimin

ρi)/ρi and (τimax
ρi)/ρi ≤ τimax

(39)

since τimax
≥ τimin

≥ 0. Multiplying both inequalities of (37)

by ρi, according to (39) and since τi = ρiτ
∗
i , we obtain

τimin
≤ τi ≤ τimax

. (40)

In other words, τ is in [τ ], the system Wτ = f is feasible and,

consequently, x belongs to the WFW. Since this reasoning is

valid for any pose x in [x], (31) is a sufficient condition for

[x] to be fully included in the WFW. �
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