
HAL Id: lirmm-00574947
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00574947v1

Submitted on 24 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Introduction to Multi-Core System on Chip - Trends
and Challenges

Lionel Torres, Pascal Benoit, Gilles Sassatelli, Michel Robert, Fabien
Clermidy, Diego Puschini

To cite this version:
Lionel Torres, Pascal Benoit, Gilles Sassatelli, Michel Robert, Fabien Clermidy, et al.. An Introduction
to Multi-Core System on Chip - Trends and Challenges. Hübner, Michael; Becker, Jürgen. Multipro-
cessor System-on-Chip - Hardware Design and Tool Integration, Springer, pp.1-21, 2011, Chapter 1,
978-1-4419-6459-5. �10.1007/978-1-4419-6460-1_1�. �lirmm-00574947�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00574947v1
https://hal.archives-ouvertes.fr


Chapter 1

An Introduction to Multi-Core System

on Chip – Trends and Challenges

Lionel Torres, Pascal Benoit, Gilles Sassatelli, Michel Robert,

Fabien Clermidy and Diego Puschini

1.1 From SoC to MPSoC

The empirical law of Moore does not only describe the increasing density of

transistors permitted by technological advances. It also imposes new require-

ments and challenges. Systems complexity increases at the same speed. Nowa-

days systems could never be designed using the same approaches applied 20

years ago. New architectures are and must be continuously conceived. It is clear

now that Moore’s law for the last two decades has enabled three main revolu-

tions. The first revolution in the mid-eighties was the way to embed more and

more electronic devices in the same silicon die; it was the era of System On Chip.

One main challenge was the way to interconnect all these devices efficiently. For

this purpose, the Bus interconnect structure was used for long time. Anyway, in

the mid-nineties the industrial and academic communities faced a new challenge

when the number of processing cores became two numerous for sharing a single

communication medieum. A new interconnection scheme based on the Network

Telecom Fabrics, the Network On Chip was born; over the past decade intense

research efforts have led to significant improvements. The last breakthrough was

due to the need to interconnect a set of processors on the same chip, in early 2000.

When previously developed systems embedded a single processor, the master of

the chip, multiple masters must now share the overall control. The first Multi-

processors System-on-Chip (MPSoCs) emerged [1]. They combine several

embedded processors, memories and specialized circuitry (accelerators, I/Os)

interconnected through a dedicated infrastructure to provide a complete

integrated system. Contrary to SoCs, MPSoCs include two or more master

processors managing the application process, achieving higher performances.

Since then, an important number of research and commercial designs have been

developed [2]. They have started to get into the marketplace and are expected to

be widely available in even greater variety in the next few years [3]. It is now

L. Torres (*)

University of Montpellier 2, UMR CNRS, France

e-mail: Lionel.Torres@lirmm.fr

1M. Hu¨bner and J. Becker (eds.), Multiprocessor System-on-Chip: Hardware Design 
and Tool Integration, DOI 10.1007/978-1-4419-6460-1_1



clear that this third revolution will change drastically the way to consider System

On Chip Architecture. Figure 1.1 summarizes these 3 revolutions that occured in

less than 20 years.

1.2 General Structure of MPSoC

This section describes a generic MPSoC, only introducing the key elements in order

to formulate valid assumptions on the architecture. In general MPSoC is composed

of several Processing Elements (PE) linked by an interconnection structure as it is

presented in Fig. 1.2.

1.2.1 Processing Elements

The PEs of an MPSoC are related to the application context and requirements. We

distinguish two families of architectures. From one side, heterogeneous MPSoCs are

composed of different PEs (processors, memories, accelerators and peripherals).

These platforms were certainly pioneered: the C-5 Network Processor [4], Nexperia

[5] and OMAP [6], as shown in [2]. The second family represents homogeneous

MPSoCs, pioneered by the Lucent Daytona architecture [2, 7], where the same tile is

instantiated several times. This chapter targets both families and Fig. 1.2 represents

either a homogeneous or heterogeneous design. For instance numerousworks consider

that processors as well as flexible hardware such as reconfigurable fabrics compose

heterogeneous PEs.

Fig. 1.1 From SoC to MPSoC

2 L. Torres et al.



1.2.2 Interconnection

The PEs previously described are mostly interconnected by a Network-on-Chip

(NoC) [8–11]. A NoC is composed of Network Interfaces (NI), routing nodes and

links. The NI implements the interface between the interconnection environment

and the PE domain. It decouples computation from communication functions.

Routing Nodes, also called routers, are in charge of routing are arbitrating the data

between the source and destination PEs through the links. Several network topolo-

gies have been studied [12, 13]. Figure 1.2 represents a 2D mesh interconnect. The

sizing of the offered communication throughput must be enough for the targeted

application set.

The NoCs facilitate the design of Globally Asynchronous Locally Synchronous

(GALS) property by implementing asynchronous-synchronous interfaces in the NIs

[14, 15]. In Fig. 1.2, an example of an asynchronous router is presented to highlight

this property.

1.2.3 Power Management

One of the major challenges nowadays is the way to achieve energy efficiency for

embedded systems. The GALS feature allows partitioning the MPSoC into several

voltage/frequency islands (VFI) [16]. In this example, each VFI contains a PE

clocked at a given frequency and voltage. This approach allows fine-grain power

management [17]. As in [18, 19], the considered MPSoC incorporates distributed

Dynamic Voltage and Frequency Scaling (DVFS): each PE includes a DVFS

device. The power optimization consists in adapting the voltage and frequency of

Fig. 1.2 General MPSoC architecture

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 3



each PE in order to balance power consumption and performance. In more

advanced MPSoCs, a set of sensors integrated within each PE provides information

about consumption, temperature, performance or any other metric needed to

manage the DVFS. Anyway, due to the cost of adding dedicated circuitry, coarser

grain power management including multiple PEs in one VFI are used in many

MPSoCs, providing a different level of control for the power management.

1.3 Power Efficiency and Adaptability

As presented in the introduction, MPSoCs are following Moore’s law [20]. This

empirical law has demonstrated to be true during several decades. Figure 1.3 shows

some examples of processor with their transistor counts. But for MPSoCs, what are

the challenges coming with Moore’s law? More transistor density also means more

performance (but also increased power consumption) thanks to a multiplication of

the number of cores. But it also means more power consumption. During recent

years power optimization has become one of the hottest design topics not only for

battery-powered devices but also for large variety of application domains such as

household electronic to high performance computing. The ITRS [21] predicts an

increase by a factor of 2 for the next five years in the power consumption of

stationary consumer devices (see Fig. 1.4). Moreover, it is predicted that leakage

and dynamic power consumption will be equivalent for such devices for both logic

and memory parts. These trends, combined with the increasing performance demand,

turn the problem into a real challenge for MPSoC architects [5, 4]. How can we

manage the power/performance trade-off on multi-million transistor designs? It is

Fig. 1.3 CPU transistors count (http://www.ausairpower.net/moore-iw.pdf )

4 L. Torres et al.



admitted that advanced energy management is mandatory to achieve efficiency, not

only for mobile devices but also for all kind of electronic equipments.

WhileMPSoC should be designed to be power efficient, the operating environment

can no more be considered as static. Let’s take a simple example to understand the

concept considering fourth generation of telecommunication applications. Compu-

tation-intensive complex channel estimation algorithms are needed to sustain a high

throughput with bad quality transmission channels. Anyway, when the mobile

terminal goes near to a base station a simpler scheme can be used to save energy.

How can we manage these modifications in the environment?

A second example of the environmental conditions considers technological

variability. Moore’s law predicting more and more transistors with improved per-

formance also carries variability problems. Variability is a phenomenon, which

always existed in the manufacturing process of CMOS transistors and has been

historically taken into account with design margins using statistics of discrepancy

between chips of the wafer. However, as transistor size shrinks this phenomenon

increases, coping with variability has become a real challenge: the dispersion of

parameters within the same chip has now an unquestionable impact on system

operation. MPSoCs are affected by this phenomenon. For example, not all PEs of

the same system are able to run at the same clock frequency. As a consequence, two

specimens of the same MPSoC often achieve unequal performance levels. Hence,

how can designers guarantee the performance management under such variations in

the manufacturing process?

In order to improve power efficiency in dynamic environments under variability,

the answer can be self-adaptability. In other words, the solution can be a system able to

adjust itself according to changes in its environment or in parts of the system itself in

order to fulfill the requirements.

Fig. 1.4 SoC consumer stationary power consumption trends [21]

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 5



1.4 Complexity and Scalability

As stated in the introduction, the advances predicted by Moore’s law have also

accelerated the complexity by multiplying the number of processing elements. To

illustrate this increasing complexity, Fig. 1.5 shows the trends predicted by the

ITRS [21]: the number of processing cores in SoC consumer portable equipments

will increase by a factor of about 3.5 times in the next five years. Moreover, the

memory size and logic size will follow the same trends. In this context, how will we

manage the more than six hundred processors predicted in 10 years?

There is an underlying problem to the complexity wall: the scalability. Scalability

is a property of a system, which indicates its ability to be scaled uo to larger

realizations. For MPSoCs, it refers to the capability of a system to increase the

total computational power when resources are added. A system, whose performance

improves after adding hardware, proportionally to the capacity added, is said to be a

scalable system. An algorithm, design, networking protocol, program, or other

system is said to scale if it is suitably efficient and practical when applied to large

situations.

The good solution for today is probably not the good solution for tomorrow:

platform based design and core reuse have driven industrial system designers for

obvious productivity and performance reasons. Thes design techniques are increa-

sigly questioned and may not scale any further. One major drawback is that these

solutions are poorly scalable in terms of software and hardware. We strongly

believe that an alternative is possible from a basis of a scalable hardware and

software framework. For this, the distribution of the management functions of an

MPSoC is crucial.

Fig. 1.5 SoC consumer portable design complexity trends [21]

6 L. Torres et al.



1.5 Heterogeneous and Homogeneous Approaches

In the context of scalability requirement associated with self-adaptability need,

MPSoCs are becoming an increasingly popular solution that combines flexibility of

software along with potentially significant speedups. As stated in the introduction

section, we will make a difference between:

– Heterogeneous MPSoC, also referred to Chip Multi-Processing or Multi (Many)

Core Systems: these systems are composed of PEs of different types, such as one

or several general purpose processors, Digital Signal Processors (DSPs), hard-

ware accelerators, peripherals and an interconnection infrastructure like a NoC.

– Homogeneous MPSoC, in this approach, the basic PE embeds all the elements

required for a SoC: one or several processors (general purpose or dedicated),

memory and peripherals. This tile is then instantiated several times, and all these

instances are interconnected through a dedicated communication infrastructure.

Basically, the first approach offers the best performance on power consumption

trade-off and the second one is obviously more flexible and scalable but less power

efficient. Due to their good power efficicency, heterogeneous MPSoC approaches

are used for portable systems, and more generally embedded systems, while

homogeneous approaches are commonly used for video game consoles, desktop

computers, servers and supercomputing.

1.5.1 Heterogeneous MPSoC

AheterogeneousMPSoC is a set of interconnected coreswith different functionalities.

The Fig. 1.6 provides an overview of a generic heterogeneousMPSoC, composed of a

set of general-purpose processor (CPU), several accelerators (video, audio, etc.),

memory elements, peripherals and an interconnection infrastructure.

Beyond its hardware architecture, an MPSoC system is generally running a set of

software applications divided into tasks and an operating system devoted to manage

Memory

CPU

Video
Accelerator

Audio
Accelerator Power

management

B
ridge

USB

UART

Bluetooth

GPIO

Wifi

Fig. 1.6 Simplified overview of a heterogeneous MPSoC

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 7



both hardware and software through a middleware layer (e.g. drivers). Figure 1.7

illustrates an abstract view of an MPSoC, and the interaction between software and

hardware.

In order to illustrate the general principles presented in the previous section, we

can cite The Philips Nexperia, or ST Nomadik or the well-known TI OMAP

Platform, or the MORPHEUS MPSoC [22] from the MORPHEUS European

project. The functional and structural heterogeneity of these platforms permits

obtaining good performance and energy efficiency, allowing them to be integrated

in portable devices such as mobile phones.

The term “platform” also confers some flexibility to this approach. Indeed, it is

possible with the same platform to customize the system for some specific applica-

tions thanks to a basic processor-memory-bus infrastructure, and a library of

optional accelerators and peripherals. This approach allows reducing NRE costs

and the Time-to-Market, but also presents some drawbacks. The flexibility is limited

to the design phase or to some minor extent after fabrication since dedicated

accelerators functionalities cannot be reconfigured. The scalability is also a problem

of such platforms, since required communication bandwidth depends on the number

and types of accelerators and thus can require some adaptation for each design.

1.5.2 Homogeneous MPSoC

As discussed in the previous section, heterogeneous MPSoC systems provide today

the best performances/power efficiency tradeoffs and are natural choice for embedded

systems, but they also suffer from limited flexibility and scalability.

Software part

Hardware part

DSP CPU1 CPU2 MEM HW IP

Network interconnection

Middleware
Hardware/Software Interface

T1 T2 T3 Tj Tn

Software application

Fig. 1.7 MPSoC abstract view

8 L. Torres et al.



An alternative lies in building a homogeneous system based on the same

programmable building block instantiated several times. This architectural model is

often referred in the literature to as parallel architecture model. Parallel architectures

were particularly studied in Computer Science and Computer Engineering during the

past 40 years. There is nowadays a growing interest for such approaches in embedded

systems. The basic principle of an architecture that exhibits parallel processing

capabilities relies on increasing the number of physical resources in order to divide

the execution time of each resource. Theoretically, an architecture made of N proces-

sing resources may provide a speedup of at most N; however this speedup is difficult

(or impossible) to obtain in practice. Another benefit of using multiple processing

elements versus a single one is that this allows decreasing the frequency correspond-

ingly; and therefore the power supply voltage: as the consumed power is bound to

voltage to the power of 2, this decreases the dynamic power consumption signifi-

cantly. The dynamic power consumption is: Pdyn ¼ a.CLOAD.VDD
2.FCLK with Pdyn

the dynamic power consumption, a is the activity factor, i.e., the fraction of the circuit

that is switching, Cload the circuit equivalent capacitance,VDD the supply voltage, and

fclock the clock frequency.Assuming that it is possible to reduce the clock frequency by

a factor r (with 0 < r <1), it is then possible to reduce the supply factor by the same

factor thanks to DVFS techniques (DynamicVoltage and Frequency Scaling). Finally,

the dynamic power consumption is: Pdyn ¼ a.CLOAD.(r.VDD)
2.(r.FCLK); with

r ¼ 0,8, the dynamic power is almost divided by 2.

A homogeneous MPSoC based on programmable parallel processors could

provide performance thanks to the “speed-up” and a reduced power-consumption

by decreasing the operating frequency and the power supply and could be consid-

ered as a real alternative to heterogeneous MPSoC. Moreover, their inherent

structure is more flexible and more scalable than heterogeneous systems. Practi-

cally, exploiting efficiently the parallelism is not straightforward; flexibility and

scalability could also be limited due to several factors such as the organization of

the memory, the interconnection infrastructure, etc.

Parallel architectures have been studied intensively during the past 40 years;

there is consequently a huge amount of books and references related to this topic

and we will therefore only focus on general concepts.

The first famous classification was proposed by Flynn [23]. He classifies archi-

tectures according to the relationship between processing units and control units.

He defines four execution models: SISD (Single Instruction Single Data), SIMD

(Single Instruction Multiple Data), MISD (Multiple Instruction Single Data) and

MIMD (Multiple Instruction Multiple Data). The SISD model is the classical Von

Neumann model [24], where a single processing resource executing a single

instruction per unit time processes a single data flow. In SIMD architecture, a

single control unit shares the data flows and distributes data to each processing

resource. The MISD architectures execute several instructions simultaneously on a

single data flow. Finally, several control units manage several processing units in

the MIMD architectures.

In Fig. 1.8, Flynn’s classification has been extended to take into account the

organization of the memory that can be shared (8.a) or distributed (8.b). In shared

memory architecture, processes (executed by different processors) can easily

exchange information through shared variables; however it requires handling

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 9



carefully synchronization and memory protection. In distributed memory architec-

ture, a communication infrastructure is required in order to connect processing

elements and their memories and allow exchanging information.

Based on the memory and the control organization, the Fig. 1.9 depicts an

architecture classification of parallel homogeneous processing architectures. It

distinguishes the centralized control (SIMD) and decentralized control (MIMD),

shared and distributed memories.

It is important to observe here that the organization of the control and the

memory will provide different trade-offs in terms of scalability and management

of the system. For instance, an architecture based on a fully distributed control and

Interconnection network

PE PE PE PE PE

Memory

a - Shared Memory b - Distributed Memory 

Interconnection network

PE PE PE PE PE

M M M M M

Local memory

Fig. 1.8 Memory organization

Control

SIMDMIMD

M
em

o
ry

 t
yp

e

S
h

ar
ed

 m
em

o
ry

Shared memory 
architecture

Vector architecture

D
is

tr
ib

u
te

d
 m

em
o

ry

Messages passing 
architecture

Cellular architecture 
and systolic

Stage 1

Stage 2

Stage 3

Stage 4

Pipelined
ALU

Data Data

Memory

PE

M

PE

M
PE
M

PE
M

Central
Control

unit

Central
Control

unit

PE

M

PE
M

PE

M
PE
M

PE
M

PE

M
PE
M

PE
M

Interconnection network

Interconnection network

Memory

PE PE PE PE PE

PEPE PE PE PE

M M M M M

Fig. 1.9 Architecture taxonomy

10 L. Torres et al.



memory organization, will be more scalable but less flexible to manage, than

architecture based on a centralized control and a shared memory.

1.6 Multi variable Optimization

Due to the increasing complexity of MPSoC architectures, optimization is a real

challenge since it may target multiple opposite objectives: application performance,

power consumption/energy, temperature, load balacing, etc. In the literature, there

are several methods developed to address this problem. Classical approaches are

static and try to optimize the system at design time. More recent techniques

are employed at run-time and try to adapt the system dynamically. Most advanced

methods aim at taking advantage of the distributed decision capabilities of the

processing elements in order to improve the scalability of the system.

1.6.1 Static Optimization

In the context of MPSoC, a static optimization approach is a way to improve the

system at design time. Several authors have proposed static optimization techniques

to improve the power efficiency. For example, in [25] authors use genetic algo-

rithms to solve the optimization problem at design time. They explore metrics

including communication traffic, memory occupation and throughput aspects.

In [26], authors analyze three static optimization methods: greedy algorithm,

tabu search and simulated annealing. The problem of how to find a task schedule

with the minimum power consumption while satisfying some timing constraints is

studied as a part of the design space exploration process. Firstly, the system

description is decomposed into Synchronous Data Flow (SDF) graphs [27] in a

single frequency domain including timing constraints. Then, an extension of tradi-

tional SDFs to multi-frequency domain graphs is proposed.

In [28], a static policy based on linear models is proposed to optimize the power

consumption while guaranteeing real-time constraints. The problem of selecting the

best operating frequency for each block of a distributed design is studied. The

author models a set of frame-based pipelined applications by using SDF graphs.

Then, applications are mapped on a distributed platform integrating fine-grain

DVFS.

1.6.2 Dynamic Optimization

Static explorations are always necessary to make design-time decisions. Neverthe-

less, considering the increasing uncertainty of implementation technologies and

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 11



applicative scenarios of such systems, dynamic optimizations are becoming man-

datory to provide flexible approaches and reliable designs [29]. Centralized and

distributed approaches are reported in the following subsections.

1.6.2.1 Centralized Approaches

Contrarily to static optimization, dynamic approaches offer adaptability. Figure 1.10

shows a schematic view representing the common dynamic approaches existing for

MPSoC: a centralized optimization subsystem is in charge of the whole system

management. It analyzes global information and optimizes each processing element

in the system.

In [30], the frequency and voltage selection for GALS systems based on VFIs is

addressed. A centralized method based on non-linear Lagrange optimization is used

to select the frequencies and voltages. They present static and dynamic algorithms.

Moreover, authors affirm that ideally in latency-constrained systems, the assign-

ment of optimal voltages would need a global strategy decision.

Similarly, in [31, 32], authors propose a centralized energy management using

models inspired by Kirchhoff’s current law. They argue that while local energy

dissipation of each PE can be minimized using DVS techniques based on workload

predictions, it can be shown that these local minimums usually do not represent the

Fig. 1.10 Centralized dynamic optimization on MPSoC

12 L. Torres et al.



global optimum. Moreover, the global optimum can be reached by considering the

relative timing dependencies of all tasks running in the system. Their approach is

based on an online global energy management unit that controls the PEs through a

power source and a clock generator. The block diagram of such approach is

represented in Fig. 1.11. Authors exploit the analogy between the energy minimi-

zation problem under timing constraints in a general task graph and the power

minimization problem under Kirchhoff’s current law constraints in an equivalent

resistive network.

In [33], authors use convex optimization for temperature-aware frequency

assignment on MPSoC. Firstly, they present a complex temperature model. Then,

the problem is formulated for both, steady-state and dynamic-state: assign a single

frequency to each processor, maintaining the temperature and power consumption

below user-defined thresholds. In steady state, frequency and voltage are assigned

once and remained constant, without taking advantage of DVFS. In dynamic state,

the frequencies and voltages are varied over time to better optimize the system

performance.

Authors formulate both scenarios as convex optimization problems. Then, they

propose the steady state and dynamic-state optimization procedures. For the

dynamic case, a 2-phase algorithm is used. Nevertheless, authors only present the

mathematic formulation. Using a Matlab convex-optimization solver solves

the demonstrative scenario shown in this work. The same authors propose in [34]

to pre-calculate some valid solution at design time by using the convex-optimization

method, and to implement a control to choose at run-time the best solution for each

case. Figure 1.12 shows the flow for the design-time table construction.

In [35], authors survey some studies for energy-efficient scheduling in real-time

systems on platforms integrating DVFS. After a long review of techniques applied to

single-processor systems, the article divides multiprocessor platform into

homogeneous and heterogeneous ones. For the first one, it briefly describes

some techniques applied to frame-based real-time task scheduling, periodic real-time

Fig. 1.11 Centralized online global energy management [32]

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 13



scheduling, leakage-aware energy-efficient scheduling and slack reclamation

scheduling. For heterogeneous systems, it presents some techniques for periodic

real-time tasks and allocation cost minimization under energy constraints.

In [36], heuristics for optimal task mapping are discussed in a NoC-based hetero-

geneous MPSoC. There are several approaches where tasks are moved in order to

balance computation workload and homogeneously dissipate the power, for example

in [37]. In that sense, in [38], hot-spot avoidance and thermal gradient control become

an important optimization problem regarding the reliability of MPSoC.

In [38], authors investigate dynamic OS-based schedulers for thermal manage-

ment of MPSoCs. In [39], thermal gradients are also minimized. They focus on

MPSoCs where workload is not known a priori and generally not easy to predict.

They propose an OS-based task migration and scheduling policy that optimizes the

thermal profile of the chip by balancing the system load. Authors claim to obtain

significant reductions in temporal and spatial temperature variations.

In [40, 41], authors propose a design time Pareto exploration and characterization

combined with run-time management. They firstly make a multi-dimensional design-

time exploration. The space includes costs (e.g. energy consumption), constraints

(e.g. performance) and used platform resources (e.g. memory usage, processors,

clocks, communication bandwidth). A low-complexity run-time manager implemen-

ted in the OS takes critical decisions during a second phase.

Fig. 1.12 Design-time table construction by convex optimization [34]

14 L. Torres et al.



In [42], the interest is how to select at run-time an energy-efficient mapping on

heterogeneous multi-processor platforms. Considering that many different possi-

ble implementations per application can be available and the selection must meet

the application deadlines under the available platform resources, authors model as

a NP-hard problem: the Multi-dimension Multi-choice Knapsack Problem. In

order to find a near-optimal solution, they propose a heuristic-based OS imple-

mentation.

1.6.2.2 Distributed Approaches

With forecasted hundreds of processing elements (PE), scalability is also a major

concern for the optimization process. For this reason, an alternative approach is to

handle optimization dynamically in a distributed way. Static optimization does

not provide adatability at run-time. On the contrary, existing dynamic approaches

provide reactivity during execution time but they are centralized solutions. They do

not provide scalability since they are not based on distributed models

An alternative solution to centralized approaches is to consider distributed

algorithms. One interesting approach is to conceive the architecture illustrated in

Fig. 1.13: each processing element of an MPSoC embeds an optimization subsys-

tem based on a distributed algorithm. This subsystem manages the local actuators

(DVFS in the figure) taking into account the operating conditions. In other words,

the goal is to conceive a distributed and dynamic optimization algorithm.

Fig. 1.13 Distributed dynamic optimization on MPSoC

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 15



To avoid hotspots and control the temperature of the tiles, dynamic voltage-

frequency scaling (DVFS) can be applied at PE level. At system level, it implies to

dynamically manage the different voltage-frequency couples of each PE in order to

obtain a global optimization. In [43], an original approach based on game theory is

presented, which adjusts at run-time the frequency of each PE. It aims at reducing

the tile temperature while maintaining the synchronization between the tasks of the

application graph. A fully distributed scheme is assumed in order to build a scalable

mechanism. Results show that the proposed run-time algorithm find solutions in

few calculation cycles achieving temperature reductions of about 23%. In [44],

results show that the proposed run-time algorithm requires an average of 20

calculation cycles to find the solution for a 100-processor platform and reaches

equivalent performances when comparing with an offline method.

In [45], this adaptive technique is applied to reduce power consumption. It

optimizes the frequencies of local processors while fulfilling applicative real-time

constraints. The obtained power consumption gains on a telecommunication test

case are between 10% and 25%, while the reaction time to temporal variations due

to application reconfiguration is less than 25ms.

1.7 Static vs Dynamic Centralized and Distributed Approaches

Table 1.1 summarizes the optimization methods described in the previous section.

Several approaches have been considered, representing the directions of MPSoC

optimizations. This table allows a qualitative comparison. The methods are com-

pared regarding the off-line and dynamic phases, their complexities, and their

implementations (centralized or distributed). Approaches presented in [34, 33]

and [30] have complex off-line optimization phases. In [40, 41, 42], most of the

work is done at design time. These approaches can be hardly used at run-time due to

their high complexity.

The solution proposed in [30, 32] operates with a dynamic optimization subsystem

with a low complexity. In the same direction, approaches [38, 39] and [40, 41, 42]

provide run-time management. Nevertheless, all these approaches fail when

distributed aspects are considered. When OS-based implementation is used ([38, 39]

and [41, 42, 43]) a distributed implementation can be imagined. However, we do not

consider doing that since they are not based on distributedmodels. The approach based

onGameTheory [44, 45] is intrinsically based on a distributedmodel, which improves

the scalability of the system. Furthermore, this low complexity method can be easily

implemented at run-time, which implies a good adaptability required by dynamic

systems.

Finally, Table 1.1 also compares the metrics used in each case. One can note

that not every approach includes constrained scenarios but all of them propose

multi-objective optimization. Some of these models can be reused in novel for-

mulations.

16 L. Torres et al.



T
a
b
le

1
.1

M
P
S
o
C
o
p
ti
m
iz
at
io
n
sy
n
th
es
is

E
P
F
L

S
ta
n
fo
rd

&
E
P
F
L

C
ar
n
eg
ie

M
el
o
n

S
U
N
&

U
.

C
al
if
o
rn
ia

IM
E
C

L
IR
M
M

&
C
E
A

L
E
T
I

R
ef
er
en
ce

[3
2
,
3
3
]

[3
4
,
3
5
]

[3
1
]

[3
9
,
4
0
]

[4
1
,
4
2
,
4
3
]

[4
3
,
4
4
,
4
5
]

M
o
d
el

K
ir
ch
o
ff
’s

cu
rr
en
t
la
w

an
al
o
g
y

C
o
n
v
ex

O
p
ti
m
iz
at
io
n

N
o
n
-l
in
ea
r

L
ag
ra
n
g
e

O
p
ti
m
iz
at
io
n

In
te
g
er

L
in
ea
r

P
ro
g
ra
m
m
in
g

O
ff
-l
in
e
ex
p
lo
ra
ti
o
n

G
am

e
T
h
eo
ry

O
ffl
in
e
p
h
as
e

Y
es

Y
es

Y
es

N
o

Y
es

N
o

C
o
m
p
le
x
it
y

M
ed
iu
m

H
ig
h

H
ig
h

–
V
er
y
H
ig
h

–

D
y
n
am

ic
P
h
as
e

Y
es

–
–

Y
es

Y
es

Y
es

C
o
m
p
le
x
it
y

L
o
w

–
–

M
ed
iu
m

M
ed
iu
m

L
o
w

D
is
tr
ib
u
te
d
Im

p
.

N
o

N
o

N
o

P
o
ss
ib
le

P
o
ss
ib
le

Y
es

D
is
tr
ib
.
m
o
d
el

N
o

N
o

N
o

N
o

N
o

Y
es

O
b
je
ct
iv
e

m
et
ri
cs

E
n
er
g
y

P
er
fo
rm

an
ce

E
n
er
g
y
,

T
h
ro
u
g
h
p
u
t

H
o
t-
sp
o
t,
T
em

p
.

g
ra
d
ie
n
t

M
u
lt
ip
le

M
u
li
tp
le

C
o
n
st
ra
in
ts

L
at
en
cy

T
em

p
er
at
u
re

L
at
en
cy

–
–

L
at
en
cy
,
E
n
er
g
y

A
ct
u
at
o
r

G
lo
b
al

p
o
w
er

m
an
ag
er

D
V
F
S

V
d
d
&

fr
eq
.

O
S
-b
as
ed

ta
sk

m
ig
ra
ti
o
n

sc
h
ed
u
li
n
g

O
S
-b
as
ed

L
o
ca
l
D
V
F
S

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 17



1.8 Conclusion

Semiconductors currently undergo profound changes due to several factors such as

the approaching limits of silicon CMOS technology as well as the inadequacy of the

machine models that have been used until now. These challenges require devising

new design approaches and programming of future integrated circuits. Hence,

parallelism appears as the only solution for coping with the ever-increasing demand

in term of performance. The solutions that are suggested in the literature often rely

on the capability of the system to take online decisions for coping with these issues,

such as scaling supply voltage and frequency for increasing energy efficiency, or

testing the circuit for identifying faulty components and discarding them from the

functionality.

MPSoCs are certainly the natural target for bringing these techniques into

practice: provided they comply with some design rules they may prove scalable

from a performance point of view. Further, since they are in essence distributed

architectures they are well suited to locally monitoring and controlling system

parameters.

In this chapter, we have studied multiprocessor systems and proposed an over-

view of a template that we believe is representative of tomorrows’ MPSoCs. The

important characteristics that have been considered are mostly flexibility, scalability

and adaptability, considering decentralized control, Homogeneous or Heteroge-

neous array of processing elements, Distributed memory, Scalable NoC-style com-

munication network.

Finally, we think that adaptability is an approach that will in the near future be

widely adopted in the area. Not only because of the herementioned limitations such as

technology shrinking, power consumption and reliability but also because computing

undoubtedly go pervasive. Pervasive, or ambient computing is a research area on its

own and in essence implies using architecture that are capable of self-adapting to

many time-changing execution scenarios. Be it mobile sensors deployed for monitor-

ing various natural phenomena or computing devices embedded in clothes (wearable

computing), such systems have to cope with many limitations such as limited power

budget, interoperability, communication issues, and finally, scalability.

GLOSSARY

SoC System On Chip

MPSoC Multiprocessor System On Chip

NoC Network On Chip

HPC High Performance Computing

ASIC Application Specific Integrated Circuit

PE Processing Element

SW Software

18 L. Torres et al.



HW Hardware

OMAP Open Multimedia Applications Platform

DVFS Dynamic Voltage and Frequency Scaling

GALS Globally Asynchronous Locally Synchronous

NI Network Interfaces

VFI Voltage/Frequency Islands

ITRS International Technology Roadmap for Semiconductors

CPU Central Processing Unit

SISD Single Instruction Single Data

SIMD Single Instruction Multiple Data

MISD Multiple Instruction Single Data

MIMD Multiple Instruction Multiple Data

OS Operating System

References

1. Ahmed Jerraya and Wayne Wolf. Multiprocessor Systems-on-Chips. Elsevier Inc, 2004.

2. Wayne Wolf, Ahmed Jerraya, and Grant Martin. Multiprocessor system-on-chip (MPSoC)

technology. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 27(10):1701–1713, Oct. 2008.

3. Wayne Wolf. The future of multiprocessor systems-on-chips. In DAC ’04: Proceedings of the

41st annual Design Automation Conference, pages 681–685, New York, NY, USA, 2004.

ACM.

4. Freescale Semiconductor, Inc. C-5 Network Processor Architecture Guide, 2001. Ref. manual

C5NPD0-AG http://www.freescale.com.

5. S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multiprocessor SOC for advanced set-top

box and digital TV systems. Design & Test of Computers, IEEE, 18(5):21– 31, Sep-Oct 2001.

6. Texas Instruments Inc. OMAP5912 Multimedia Processor Device Overview and Architecture

Reference Guide, 2006. Tech. article SPRU748C. http://www.ti.com.

7. B. Ackland, A. Anesko, D. Brinthaupt, S.J. Daubert, A. Kalavade, J. Knobloch, E. Micca,

M. Moturi, C.J. Nicol, J.H. O’Neill, J. Othmer, E. Sackinger, K.J. Singh, J. Sweet, C.J.

Terman, and J. Williams. A single-chip, 1.6-billion, 16-b MAC/s multiprocessor DSP.

Solid-State Circuits, IEEE Journal of, 35(3):412–424, Mar 2000.

8. P. Guerrier and A. Greiner. A generic architecture for on-chip packet-switched interconnec-

tions. In DATE ’00: Proceedings of the 2000 Design, Automation and Test in Europe

Conference and Exhibition, pages 250–256, 2000.

9. William J. Dally and Brian Towles. Route packets, not wires: on-chip inteconnection net-

works. In DAC ’01: Proceedings of the 38th Design Automation Conference, pages 684–689,

New York, NY, USA, 2001. ACM.

10. L. Benini and G. De Micheli. Networks on chips: a new SoC paradigm. IEEE Computer, 35

(1):70–78, Jan 2002. [cited at p. 3]

11. Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of Network-

on-chip. ACM Comput. Surv., 38(1):1, 2006.

12. Partha Pratim Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Perfor- mance evaluation

and design trade-offs for network-on-chip interconnect architec- tures. Computers, IEEE

Transactions on, 54(8):1025–1040, Aug. 2005.

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 19

http://www.freescale.com
http://www.ti.com


13. D.BertozziandL.Benini.Xpipes:anetwork-on-chiparchitectureforgigas-cale systems-on-chip.

Circuits and SystemsMagazine, IEEE, 4(2):18–31, 2004.

14. E. Beigńe, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin. Asynchronous

NOC Architecture Providing Low Latency Service and Its Multi-Level Design Framework.

In ASYNC ’05: Proceedings of the 11th IEEE International Symposium on Asynchronous

Circuits and Systems, pages 54–63, Washington, DC, USA, 2005. IEEE Computer Society.

15. J. Pontes, M. Moreira, R. Soares, and N. Calazans. Hermes-glp: A gals network on chip router

with power control techniques. In Symposium on VLSI, 2008. ISVLSI ’08. IEEE Computer

Society Annual, pages 347–352, April 2008.

16. Umit Y. Ogras, RaduMarculescu, Puru Choudhary, and DianaMarculescu.Voltage- frequency

island partitioning for GALS-based Networks-on-Chip. In DAC ’07: Proceedings of the 44th

Annual Design Automation Conference, pages 110–115, New York, NY, USA, 2007. ACM.

17. James Donald and Margaret Martonosi. Techniques for multicore thermal man- agement:

Classification and new exploration. In ISCA ’06: Proceeding of the 33rd International

Symposium on Computer Architecture, pages 78–88, 2006.

18. Edith Beigńe, Fabien Clermidy, Sylvain Miermont, and Pascal Vivet. Dynamic voltage and fre-

quency scaling architecture for units integration within a gals noc. In NOCS, pages 129–138, 2008.

19. Edith Beigńe, Fabien Clermidy, Sylvain Miermont, Alexandre Valentian, Pascal Vivet,

S Barasinski, F Blisson, N Kohli, and S Kumar. A fully integrated power supply unit for

fine grain dvfs and leakage control validated on low-voltage srams. In ESSCIRC’08: Proceed-

ing of the 34th European Solid-State Circuits Conference, Edinburg, UK, Sept. 2008.

20. G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics, 38

(8):114–117, April 1965.

21. The International Technology Roadmap for Semiconductors. International Technology Road-

map for Semiconductors 2008 Update Overview. http://www.itrs.net.

22. Davide Rossi, Fabio Campi, Antonello Deledda, Simone Spolzino and Stefano Pucillo,

A Heterogeneous Digital Signal Processor Implementation for Dynamically Reconfigurable

Computing, IEEE Custom Integrated Circuits Conference (CICC) September 13 - 16 2009,

23. M. Flynn. Some Computer Organizations and Their Effectiveness, IEEE Trans. Computer,

vol. 21, pp. 948, 1972

24. A.W. Burks, H. Goldstine, and J. vonNeumann. Preliminary Discussion of the Logical Design of

an Electronic Computing Instrument, Inst. Advanced Study Rept., vol. 1, June, 1946

25. Issam Maalej, Guy Gogniat, Jean Luc Philippe, and Mohamed Abid. System Level Design

Space Exploration for Multiprocessor System on Chip. In ISVLSI ’08: Proceedings of the

2008 IEEE Computer Society Annual Symposium on VLSI, pages 93–98, Washington, DC,

USA, 2008. IEEE Computer Society.

26. Bastian Knerr, Martin Holzer, andMarkus Rupp. Task Scheduling for Power Opti- misation of

Multi Frequency synchronous Data Flow Graphs. In SBCCI ’05: Proceedings of the 18th

annual symposium on Integrated circuits and system design, pages 50–55, New York, NY,

USA, 2005. ACM.

27. Edward Ashford Lee and David G. Messerschmitt. Static scheduling of synchronous data flow

programs for digital signal processing. IEEE Trans. Comput., 36(1):24–35, 1987.

28. Philippe Grosse, Yves Durand, Paul Feautrier: Methods for power optimization in SOC-based

data flow systems. ACM Trans. Design Autom. Electr. Syst. 14(3): (2009)

29. A. K. Coskun, T. Simunic Rosing, K. Mihic, G. De Micheli, and Y. Leblebici. Analysis and

Optimization of MPSoC Reliability. Journal of Low Power Electronics, 2(1):56–69, 2006.

30. Koushik Niyogi and Diana Marculescu. Speed and voltage selection for GALS sys- tems

based on voltage/frequency islands. In ASP-DAC ’05: Proceedings of the 2005 Conference on

Asia South Pacific Design Automation, pages 292–297, New York, NY, USA, 2005. ACM.

31. Zeynep Toprak Deniz, Yusuf Leblebici, and Eric Vittoz. Configurable On-Line Global Energy

Optimization in Multi-Core Embedded Systems Using Principles of Analog Computation.

In IFIP 2006: International Conference on Very Large Scale Integration, pages 379–384, Oct.

2006.

20 L. Torres et al.

http://www.itrs.net


32. Zeynep Toprak Deniz, Yusuf Leblebici, and Eric Vittoz. On-Line Global Energy Optimization

in Multi-Core Systems Using Principles of Analog Computation. In ESSCIRC 2006: Proceed-

ings of the 32nd European Solid-State Circuits Conference, pages 219–222, Sept. 2006.

33. Srinivasan Murali, Almir Mutapcic, David Atienza, Rajesh Gupta, Stephen Boyd, and Gio-

vanni De Micheli. Temperature-aware processor frequency assignment for MPSoCs using

convex optimization. In CODESþISSS ’07: Proceedings of the 5th IEEE/ACM International

Conference on Hardware/Software Codesign and System Synthesis, pages 111–116, New

York, NY, USA, 2007. ACM.

34. Srinivasan Murali, Almir Mutapcic, David Atienza, Rajesh Gupta, Stephen Boyd, Luca

Benini, and Giovanni De Micheli. Temperature control of high-performance multi-core plat-

forms using convex optimization. In DATE’08: Design, Automation and Test in Europe,

pages 110–115, Munich, Germany, 2008. IEEE Computer Society.

35. Jian-Jia Chenand Chin-Fu Kuo. Energy-Efficient Schedulingfor Real-Time Systems on

Dynamic Voltage Scaling (DVS) Platforms. In RTCSA ’07: Proceedings of the 13th IEEE

International Conference on Embedded and Real-Time Computing Systems and Applications,

pages 28–38, Washington, DC, USA, 2007. IEEE Computer Society.

36. Ewerson Carvalho, Ney Calazans, and Fernando Moraes. Heuristics for dynamic task

mapping in noc-based heterogeneous MPSoCs. In RSP ’07: Proceedings of the 18th IEEE/

IFIP International Workshop on Rapid System Prototyping, pages 34–40, Washington, DC,

USA, 2007. IEEE Computer Society.

37. G. M. Link and N. Vijaykrishnan. Hotspot prevention through runtime reconfiguration in

Network-on-Chip. In DATE ’05: Proceedings of the 2005 Conference on Design, Automation

and Test in Europe, pages 648–649, Washington, DC, USA, 2005. IEEE Computer Society.

38. Ayse Kivilcim Coskun, Tajana Simunic Rosing, and Keith Whisnant. Temperature aware task

scheduling in MPSoCs. In DATE ’07: Proceedings of the conference on Design, automation and

test in Europe, pages 1659–1664, San Jose, CA, USA, 2007. EDA Consortium.

39. Ayse Kivilcim Coskun, Tajana Simunic Rosing, Keith A. Whisnant, and Kenny C. Gross.

Temperature-aware mpsoc scheduling for reducing hot spots and gradients. In ASP-DAC ’08:

Proceedings of the 2008 conference on Asia and South Pacific design automation, pages

49–54, Los Alamitos, CA, USA, 2008. IEEE Computer Society Press.

40. Ch. Ykman-Couvreur, E. Brockmeyer, V. Nollet, Th. Marescaux, Fr. Catthoor, and

H. Corporaal. Design-Time Application Exploration for MP-SoC Customized Run- Time

Management. In SOC’05: Proceedings of the International Symposium on System-on-Chip,

pages 66–73, Tampere, Finland, November 2005.

41. Ch. Ykman-Couvreur, V. Nollet, Fr. Catthoor, and H. Corporaal. Fast Multi-Dimension

Multi-Choice Knapsack Heuristic for MP-SoC Run-Time Management. In SOC’06: Proceed-

ings of the International Symposium on System-on-Chip, pages 195–198, Tampere, Finland,

November 2006.

42. Ch. Ykman-Couvreur, V. Nollet, Th. Marescaux, E. Brockmeyer, Fr. Catthoor, and H. Corpor-

aal. Pareto-based application specification for MP-SoC Customized Run-Time Management.

In SAMOS’06: Proceedings of the International Conference on Embedded Computer Systems:

Architectures, MOdeling, and Simulation, pages 78–84, Samos, Greece, July 2006.

43. D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, and L. Torres. Temperature-Aware

Distributed Run-Time Optimization on MP-SoC Using Game Theory, Symposium on VLSI,

2008. ISVLSI ’08. IEEE Computer Society Annual, 2008, pp. 375-380.

44. D. Puschini, F. Clermidy, P. Benoit, and G. Sassatelli. A Game-Theoretic Approach for Run-

Time Distributed Optimization on MP-SoC, International Journal of Reconfigurable Comput-

ing, vol. 2008, 2008, p. 11.

45. D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, and L. Torres. Adaptive energy-aware

latency-constrained DVFS policy for MPSoC, 2009 IEEE International SOC Conference

(SOCC), IEEE, 2009, pp. 89–92.

1 An Introduction to Multi-Core System on Chip – Trends and Challenges 21


