
HAL Id: lirmm-00576934
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00576934

Submitted on 15 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Exception Handling and Replication for
Improving the Reliability of Agent Software

Christophe Dony, Selma Kchir, Chouki Tibermacine, Christelle Urtado,
Sylvain Vauttier, Sylvain Ductor, Zahia Guessoum

To cite this version:
Christophe Dony, Selma Kchir, Chouki Tibermacine, Christelle Urtado, Sylvain Vauttier, et al.. Com-
bining Exception Handling and Replication for Improving the Reliability of Agent Software. [Research
Report] RR-11009, ???. 2010, pp.10. �lirmm-00576934�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00576934
https://hal.archives-ouvertes.fr

Combining Exception Handling and Replication

for Improving the Reliability of Agent Software

Christophe Dony1, Sylvain Ductor2, Zahia Guessoum2, Selma Kchir2,
Chouki Tibermacine1, Christelle Urtado3, and Sylvain Vauttier3

1 LIRMM, CNRS and Montpellier University, France
{Christophe.Dony,Chouki.Tibermacine}@lirmm.fr
2 LIP6, Pierre and Marie Curie University, France

{Sylvain.Ductor,Zahia.Guessoum,Selma.Kchir}@lip6.fr
3 LGI2P, Ecole des Mines d’Alès, Nı̂mes, France

{Christelle.Urtado,Sylvain.Vauttier}@mines-ales.fr

Abstract. Exception handling and replication are two complementary
mechanisms that increase software reliability. Exception handling helps
programmers in controlling situations in which the normal execution
flow of a program cannot continue. Replication handles system fail-
ures through redundancy. Combining both techniques is a first step to-
wards building a trustworthy software engineering framework. This paper
presents some of the results from the Facoma project. It proposes the
specification of an exception handling system for replicated agents as an
adaptation of the Sage proposal. It then describes its implementation in
the Dimax replicated agent environment.

1 Introduction

Exception handling and replication are two well-known mechanisms to enhance
software reliability, and more particularly fault-tolerance. Replication handles
system fail-stops. Exception handling enables programmers to dynamically han-
dle situations that prevent software from running normally. These two mecha-
nisms handle complementary causes of untrustworthiness. Associating exception
handling techniques and replication is a first interesting step towards building a
trustworthy software engineering framework. Such association is one of the objec-
tives of the Facoma project4 where it is applied to making reliable multi-agent
software.

The Dimax replicated agent platform [15,9] is a multi-agent platform that
can recover from fail-stops. To do so, the platform seamlessly manages agent
replicas. It is thus able to replace an agent that failed by one of its replicas. This
replacement is as seamless as possible to software users and does not require
any additional code from programmers. A failure is generally detected when
an agent fails to answer messages for a given amount of time, either because

4 The Facoma project (http://facoma.lip6.fr/) is partly financed by the french
national research agency (Anr).

network connections are lost or because the machine on which the agent ran is
down. Active replication systems such as Dimax include algorithms capable of
identifying the most critical agents to automatically replicate them. Messages
sent to a replicated agent are transmitted to all its replicas, which process the
same message in parallel. Responses are all filtered except for those from a single
replica, the leader.

Exceptions are those events signaled when the standard control flow of a
running service cannot continue. An exception is a kind of answer from an agent
running the service. It indicates that the agent is unable to continue its task in
the standard way but that it is still alive. The primitives offered by the excep-
tion handling system (Ehs) enable agent programmers to signal the problem, to
search for handlers and to write handlers that propose alternative behaviors to
put the system back into a consistent running state or smoothly terminate its
execution.

Exception handling and replication do not apply to the same situations and
are of different nature: replication is preventive and exception handling is cura-
tive. Both mechanisms are obviously very complementary. If studies can be found
on how to combine n-versionning and exception handling [14,11,21], combining
exception handling and replication appears to be an original and promising so-
lution. This paper describes X-Sage, a specification and concrete running im-
plementation, achieved in the Dimax [9,15] context of a programming language
running on top of a replication middleware, of such a combination. It extends,
adapts and provides a running implementation to our primary specification de-
scribed in [5]. The main issue raised by this combination are: i) to provide agent
programmers with an exception handling system that behaves correctly in pres-
ence of seamless active replication, and ii) to improve replication strategies, on
the base of information conveyed while propagating exceptions from replicas.

Chouki A relire

The remainder of this paper is structured as follows. Section 2 briefly describes
the Dimax replicated agent platform which is the context of the implementation.
In Section 3, we introduce the Api of our X-Sage exception handling system
and an example of a user-defined program that uses X-Sage within Dimax.
This example will support the case study discussion in section 5 and shows
that replication is seamlessly managed for end-programmers. Section 4 discusses
key issues of the implementation of the combination exception/replication : i)
how to view a replication manager as a broadcasting agent, ii) how to adapt
handlers search to the presence of replication managers and iii) how to deal with
exceptions at the replication manager level. In Section 5 we present a case study
that highlights the interest of exception concertation made at the replication
manager level. Section 4.2 describes the key-aspects of implementation of the X-
Sage Ehs within the DimaX platform. Before concluding with open perspectives
to this work in Section 7, we discuss related works in Section 6.

2 Implementation context : the DimaX Replicated

Multi-Agent System

The context of this work is the programming of reactive, collaborating agents
that are deployed over a middleware which handles agent replication. The con-
cepts exposed in this section are derived from the Dimax software that combines
the Dima multi-agent system [9] and the Darx fault-tolerant middleware [15].

A Dimax agent is an active and autonomous computation entity that exe-
cutes in its own thread. Agents interact by exchanging asynchronous messages.
Each agent holds a message box and a communication interface to send and
receive messages. A specific semantics is associated to messages in order to set
up a request / response interaction protocol between agents. This protocol de-
scribes peer-to-peer collaborations in which a client agent asks a server agent
for a service via a request message. Conforming to a contract-based approach of
software, whenever a server agent accepts a request, it commits to send a result,
either standard or exceptional, back to the client agent, via a response message.
Response messages are correlated with request messages.

Agents are executed on a middleware which provides a fault-tolerant exe-
cution context thanks to a replication mechanism [15]. The execution context
consists of a set of distributed replication servers which manage the execution of
tasks. Every task belongs to a replication group that identifies the set of tasks
which are replicas of a same logical task. All tasks within a replication group
thus have the same behavior. They only differ by the environments in which they
are running (machines of different kinds that have their own resources). Logical
tasks are identified by logical names that are used to send them messages. The
replication middleware is in charge of the location and delivery of messages to
the corresponding replicas. More precisely, messages are delivered first to the
leader of the corresponding replication group. The leader is a replica which has
the specific role to control the replication group. The leader forwards the mes-
sages sent to the task to its active replicas so that they do the same computation
and reach the same new state.

Conversely, all messages sent by replicas are filtered by the replication mid-
dleware. Only messages sent by the leader are actually delivered to other tasks.
This makes replication transparent to other tasks. Whatever the number of repli-
cas of a task is, a unique message is sent to invoke a computation and a unique
message is received as a response. The number and type of replicas is determined
by the replication policy, regarding the criticality of the task and the availability
of resources (memory, Cpu). In case of failures, new replicas can be dynamically
created in order to maintain the redundancy required to provide an expected
level of fault-tolerance.When the leader fails, its responsibility is transferred to
another replica.If no replica still exists, the task has finally been destroyed by
the failure. Every agent executes inside a task. As such, agents can be replicated
by the middleware and benefit from this fault-tolerance mechanism.

3 Exception programming in a multi-agent context

This section describes an exemple of exception handling programming with X-
Sage in the Dimax context that will support the following sections discussions.
The rationale for the Sage exception handling system used in this example can
be found in [6,22]. Its main requirements are:

– to enforce agent encapsulation,
– to take into account collaborative concurrent activities [20] and to provide

mechanisms for their coordination and control [19],
– to look for handlers in the runtime history and to execute handlers in their

lexical definition context;
– to handle concurrent exceptions with resolution functions [11],
– and, to support asynchronous signaling and handler search, in order to pre-

serve agent reactivity.

As an illustration, we use the canonical Travel Agency example (cf. Figures 1
and 2) in which a Client can send to a Broker a reservation message in order
to request a bid for a travel. The contacted broker sends in turn a bid request
to several travel providers and airline companies and collects their responses.
Then, the Broker selects the best offer and requests the Client and the selected
Provider to contract.

Fig. 1. An e-commerce application example with 3 agents : contractual requests and
responses.

The underlying request / response interaction pattern of the agent model
highlights the role of three key entities: the request, the service and the active
agent. The system makes it possible to define handlers at the request, service
and agent level and to define resolution functions at the service and agent groups

Fig. 2. An e-commerce application example with 3 agents : contractual responses.

level. This is illustrated in Figure 3 by the colored squares. The position of these
squares in the figure represents the order in which these handlers are searched
for. The details of handler search, augmented by the adaptation required to take
replication into account, are given in Section 4.

Figure 4 shows some parts of the java code of the three agents that contain
various exampls of handler definitions.

– Exception handlers can be attached to requests using the @requestHandler
annotation. Such handlers can, for example, specify two distinct reactions to
the occurrence of two identical exceptions raised by two invocations of the
same service.

A handler is attached to a request message within the service contractBroker
of class Client (lines 4–6). It states that, for this spcific request, if there is
no place left at the given date, it is possible to change the date.

– Exception handlers can be attached to services. Such handlers can excep-
tions that are raised in the dynamic scope of the service’s execution.

As an example, a handler is attached to the pollProvider service within
the Broker class. It explicitly propagates to the client for him to adapt his
request, the exception NoAirportForDestination raised by providers.

– X-Sage enables resolution functions to be defined at places where concurrent
activities are launched and have to be coordinated, i.e., at the service level)

A programmer can define exception resolution functions (based on a model
inspired by [11]) using the @serviceResolutionFunction annotation as shown
in the example of Figure 4, lines 20-27. such a function is called, is it ex-
ists, before any service level handler, each time an exception is trapped at
a service level. Its standard behavior is, once all called agents have replied,
to aggregate all the exceptions that occurred into a new concerted excep-

Fig. 3. Agents are potentially equiped with three kind of handlers

tion that conceptually abstract them. Other possible behavior and uses are
depicted in [6].

– Finally, exception handlers can be associated to agents (see Figure 4, lines
32–38). Such handlers act as if they were repeatedly attached to all of the
agent’s services. They can be used, for example, to uniformly maintain the
consistency of the agent’s private data.

We think that these capabilities are powerful enough to encompass most
frequent cases the agent programmer is confronted to, and simple enough to be
easy to learn and use. The overall contribution of the present is that this example
will continue to compute correctly and transparently for the users in presence of
replication. The following sections discuss this.

4 Combining Exception Handling and Replication

EHSs leverage the elements of execution models to provide adapted control struc-
tures for managing exceptions. The previous section has presented the X-Sage
exception handling system, initially designed to manage exceptions in multi-
agent systems. It provides means to associate exception handlers to the main
elements of the execution model of agents (the requests, the services and the
agents themselves). To support replication, X-Sage has been extended to take
into account replication groups as a new kind of elements in the execution model.
The exception signaling scheme is modified so that the exceptions signaled by
replicas are sent to the managers of the replication groups they belong to. A
handler and a resolution function are added to the definition of the replication
group managers so that they are able to concert and handle exceptions which

(1) public class Client extends SaGEManagerAgent{ ...
(2)
(3) @service public void contactBroker (...) {...
(4) sendMessage (broker, new SageRequestMessage (pollProvider, destination, date){
(5) @requestHandler public void handle (NoAvailablePlaces exc)
(6) { date = date.nextDay(); retry();}}); }
(7) ...
(8) }
(9)
(10) public class Broker extends SaGEManagerAgent{ ...
(11)
(12) @service public void pollProvider (Destination destination, Date date){ ...
(13) sendMessage(companies, new SageRequestMessage("getPrice", destination, date)
(14) ... }
(15)
(16) @serviceHandler(serviceName="pollProvider")
(17) public void handle (NoAirportForDestination e) { signal(e); }
(18)
(19) // resolution function associated to the pollProvider service
(20) @serviceResolutionFunction(servicename="pollProvider")
(21) public TooManyProvidersException concert() {
(22) int failed = 0;
(23) for (int i=0; i<subServicesInfo.size(); i++)
(24) if (subServicesInfo.get(i).getRaisedException() != null) failed++;
(25) if (failed > 0.3*subServicesInfo.size())
(26) return new TooManyProvidersException (numberOfProviders);
(27) return null;}
(28) ... }
(29)
(30) public class Provider extends SaGEManagerAgent{
(31) ...
(32) @agentHandler
(33) public void handle(NetworkConnectionException e){
(34) signal(new TemporaryTechnicalProblem(...));}
(35)
(36) @agentHandler
(37) public void handle (DatabaseConnectionException e){
(38) signal(new TemporaryTechnicalProblem(...));}
(39) ...
(40) }

Fig. 4. Examples of request, service, agent-level handlers and resolution function defi-
nitions in X-SaGE

reflect the status of whole groups of replicas. Handling exceptions at replication
manager level enhances both the dependability and performance of applications.
Chouki Je pense qu’il faut preciser en quoi cela ameliore les performances.

4.1 Handler Search in a Replicated Multi-Agent Environment

The handler search process for replicated agents is presented on figure 6. As
replication is transparent, a replica is a standard agent. So, when an exception
signaled to a replica, the handler search process begins with the standard Sage
exception handling schemes proposed for agents (see Section 3). A request then
a service and finally agent-level handlers are sought in the replica. When the
exception is not caught by the handlers defined in the replica, the exception is
propagated by the EHS to the manager of the replication group. The handling

Fig. 5. The example with Replicated Agents

of the exception carries on by the execution of the resolution function associated
with the replication manager. The resolution function determines whether it is
worth waiting for the results of other replicas before signaling an exception to
the client of the replicated agent. Indeed, the failure of one replica does not imply
the failure of the whole replication group. This depends on the contextual nature
of the exception, as explained in the following subsection. The resolved exception
is caught by a generic handler defined in the replication manager. Its role is to
signal the resolved exception first to the client of the replicated agent but also
to trigger the replication strategies that determine how the organization of the
replication group must evolve to maintain the dependability of the replicated
agent, depending on the signaled exceptions. Without such a resolution, the
exceptions signaled by the leader of the replication group would be immediately
sent to the client, taking no advantage of the other replicas to provide a more
dependable agent.

4.2 Handling Exceptions at the RM Level

When an agent’s replica raises an exception, the Ehs invokes the replication
manager. The RM will either, as described in the following section, put the
system back into a consistent state, signal a new exception to the request caller
or propagate one of those trapped by the resolution function. In this latter case,
the handler search will continue as explained previously.

Typology of Exceptions. In order to adapt its behavior, the replication-level
resolution function of an agent has to determine whether an exception raised by
one of the agent’s replicas will also be raised by the others. Two categories of
exceptions thus have to be identified: replica-specific exceptions (i.e., exceptions
raised when some resources specific to a given replica become unavailable) and
replica-independent exceptions (i.e., a bad parameter in the request sent to the

Fig. 6. Flowchart for handler search

agent that leads to a division by zero).

We thus have designed our algorithms based on a classification of excep-
tions. Many of such classifications exist. Goodenough’s seminal paper [8] has
proposed a first classification in domain, range and monitoring exceptions. This
classification is based on “the reason why an exception is raised”. It however ap-
pears that we have no way to know whether a range exception (for example) is
replica-specific or replica-independent. A classification in terms of Error (serious
problem that should not be handled) and Exception (business problem that can
be handled) as in Java, inherited from the Flavors system, highlights exception
gravity but does not answer our question.

A more appropriate classification relies on exception semantics and distin-
guishes business (also called domain or applicative) exceptions from system (or
resource) exceptions. Business exceptions are direct consequences of a program-
mer’s code. Assuming all replicas of a given agent have the same deterministic
behavior, exceptions identified as business exceptions can be considered replica-
independent: they are raised by either all replicas of a given agent or by none of
them. System exceptions are raised by the runtime environment and are likely
to reflect a specific communication or resource access problem. In our context,
system exceptions can be raised by the Java virtual machine, the agent language
interpretor or the replication middleware. They can be considered as replica-
specific.

In our system, the question of knowing how to distinguish these two exception
categories has been resolved statically, by typing exception classes with two
distinct interfaces.

Controlling a Set of Replicas. Once the category of the exception is known,
the RM reacts adequately.

Handling a replica-independent exception. When a replica-independent ex-
ception is raised by a replica, it is immediately propagated to the client agent
since all other replicas are expected to raise the same exception. The RM han-
dler does not stop the execution of the request in the other replicas but filters
the exceptions they raise (in order not to send the same exception to the client
agent several times). This strategy makes it possible to check afterwards (when
all requests are processed) if all replicas have actually raised the same exception
and thus are in the same consistent state.

Handling a replica-specific exception. When a replica-specific exception is
raised by a replica, it is logged by the resolution function of the RM. All re-
maining replicas pursue their computation. If a normal response is computed by
any replica, it is forwarded to the client agent. The other subsequent normal re-
sponses are discarded. When all replicas have processed the request (responded
either with a normal value or with a replica-specific exception), the RM destroys
all the faulty (logged) replicas. If the leader is destroyed, a new leader is chosen
among the remaining replicas. If all replicas are destroyed (they all ended with
an exception), a service failure exception is signaled to the client agent.

Overview of the Implementation. To implement our Ehs, we created a
new SaGEManagerAgent class. All agents of our example application are in-
stances of this class (see Figure 4). All the annotations introduced in Sec-
tion 3 (@service, @serviceHandler, @agentHandler, @requestHandler and
@serviceResolutionFunction) are implemented as Java annotation interfaces.
Figure 7 depicts a class diagram of this implementation.

To distinguish request messages from response messages, we have specialized
the sendMessage() method of the SaGEManagerAgent class to directly send re-
quest messages through Darx classes to agent addresses and to redirect response
messages to the DarxCommunicationComponentX class where they will be han-
dled before passing through Darx classes. In the DarxCommunicationComponentX
class, response messages sent by replicas are encapsulated in a kind of response
messages that we call shadow messages. SageShadowMessage is a subclass of
the SageResponseMessage class. Once replicas’ responses have been encapsu-
lated in shadow messages, they are transfered to the leader’s mailbox using the
receiveAsyncMessage(m) method from the AgentManager class.

To summarize, all responses computed by an agent’s replicas, either they be
normal or exceptional, are sent back to their leader agent as shadow messages.
The leader is then able to record, filter, dismiss or concert responses so as to
send a unique response to the client (if needed).

When an exception is signaled by a service of a replica, searching for a
relevant handler is done thanks to the SaGEManagerAgent class for which the
localHandlerSearch(e) method is defined. If no handler is found, the search
process is delegated to the Replication Manager of the leader (represented by
an instance of the SageReplicationManager class). Depending on the excep-

tion category (it being replica-specific or replica-independant), the exception is
logged or signaled to the client agent thanks to the callerHandlerSearch(e)

method of the SaGEManagerAgent class5.

5 Case Study: Search for Flights

Fig. 7. EHS integrated to DimaX

We used our exception handling system in the implementation of the exam-
ple introduced in the previous section (the “search for flights” application). The
execution of the application passes through the Darx layer to create a name
server and to launch the server on local and remote machines. Darx passes then
the control to Dimax for agent creation on the local machines. Each agent is
encapsulated in a TaskShell which contains specific informations to each agent
(identifier, task name, ...) and can manage replication groups.
When an agent of a specific task is created for the first time, it creates a replica-
tion group and it registers itself as a leader of this task. As mentioned previously
in Section ??, the Travel agency and Airline company agents are duplicated.

5 Further details on the implementation are available at the Url:
http://www.lirmm.fr/∼tibermacin/facoma/DimaxX/

Once all agents (leaders and replicas) have been created, the service lookForService()
of the Client is executed and sends a request message to the service getService()
of the Broker. The latter transmits the client’s request to the travel agency and
airline company agents and invoke their getPrice() service. As those agents
are replicated, they forward the message they received from the broker to their
replicas (method deliverAsyncMessage() of ActiveReplicationStrategy).
Each replica executes its service and returns its response to its leader encap-
sulated in a shadow message. While executing its service, one of the replicas of
the agent Travel Agency signaled the exception NoFlightAvailableException

which implements the interface ReplicaIndependant. The execution of the ser-
vice getPrice() is so suspended and a handler is searched in the agent class.
As no handler has been found locally, the search process continues as described
in Section 3. The resolution function detects that the type of the exception
is ReplicaIndependant and the handler of the replication manager sends the
message callerHandlerSearch(e) to the broker which traps the exception in its
request handler.

Regarding the agent Airline Company, one of its replicas signals a ReplicaSpecific
exception: TemporaryTechnicalProblem. The search for a handler passes through
the steps described previously. The resolution function detects that the excep-
tion is ReplicaSpecific, log it and wait for other answers of the replicas. All
replicas have signaled a Replica-Specific exception then the handler of the repli-
cation manager is called. The handler of this RM sends the message callerHan-
dlerSearch(e) to the broker like in the previous case (e is the exception the most
signaled by replicas, which is TemporaryTechnicalProblem).

Without the Ehs, the exception signaled by the replica of the airline company
could not be trapped and logged. Also, the agent travel agency could not send a
response to the broker. Unknown behavior in case of exceptions generates thus
a failure of the system, while it was possible to avoid this situation.

6 Related Work

Multi-agent systems are inherently concurrent, because of the autonomy of
agents [23]. Specific EHS have been designed to handle these concurrency situa-
tions when multiple exceptions are asynchronously signaled [2,12,3,10,16,17,18,1].
Most of these EHS are based on a dedicated entity (called a monitor, guardian,
action, ...) which monitors a group of active concurrent entities and handles the
exceptions signaled by any member of the group This kind of EHS is designed
to handle exceptions that impact collectively a group of entities which share an
execution context. Fewer works study the integration of EHS to asynchronous
service (method) invocation schemes. This kind of EHS are best suitable for man-
aging applicative (business) exceptions pertaining to peer-to-peer collaborations.
However, they are basic EHSs provided by middlewares which lack concurrent
exception resolution and propagation. Our EHS can be considered as an origi-
nal hybrid of these two approaches, able to seamlessly manage the execution of
complex collaborations spawning over groups of agents, while preserving agent

behavior encapsulation and reactivity thanks to the support for contextualized
exceptions handlers defined as part of the applicative behavior of agents.

The work presented in this paper is an extension of Sage which addresses
replicated agents. Replication is a special case of n-versionning, which consists
in executing multiple versions of a given functionality for robustness and fault-
tolerance. All the results returned by the multiple versions are collected and
compared. The effective result of the execution is resolved as a majority vote.
[14,11,21] have studied exception handling in n-versionning frameworks. A main
difference in our work is that the responses returned by a group of agent repli-
cas are not resolved by votes. As all the replicas are identical in a group, they
should return the same responses, as far as their executions are predictable (are
not interrupted by contextual exceptional situations). The responses of the group
leader are thus returned primarily. When the leader undergoes a failure (returns
a contextual runtime exception), the other replicas are used as failovers. The
first replica which succeeds in returning a valid response (whether a result or
an expected business exception) becomes the leader. This resolution strategy
promotes execution performance. A perspective is to compare all the valid re-
sponses of the replicas in order to detect byzantine faults [13] and also address
robustness issues.

7 Conclusion and Discussion

In this paper, we have presented an exception handling system combined with a
replicated agent environment for improving software reliability. This EHS firstly
offers agent programmers an exception signaling and handling mechanism that
works transparently with replicated agents. It second provides to the replication
system programmers the capability to control internal exceptions raised by the
replication algorithms, as proposed in [14]. This last point is not developed in
this paper. We have proposed an original and lightweight programming Api,
using java annotations to define handlers and resolution functions. We detailed
then a handler search and a handler invocation algorithms that relies on service
execution traces. This works asynchronously to improve agent reactivity. All the
propositions have been implemented on the DimaX platform and instrumented
through a case study.

As a future work, we wish to further analyze the interactions between the
replication mechanism and the exception handling system in order to refine repli-
cation strategies (to deal with passive and semi-active replication). Besides, we
will consider comparing the responses (normal responses or exceptions) to a
same request given by several replicas of an agent in order to learn some agent’s
execution behavior. Indeed, if an exception is repeatedly raised by replicas of
a given agent, it might probably indicate that the exception is a business ex-
ception. In such a situation, after a determined number of occurrences of the
same exception, the system might consider it is useless to wait for other repli-
cas’ responses. This allows us to dynamically distinguish between replica-specific
and replica-independent exceptions, without typing statically exception classes.

We plan at last to use replication as a support to give the core implementation
of an EHS that supports a resumption policy. Indeed, even if handler search is
stack destructive, as in most systems, a replica of an agent could restart the
computation where it has been stopped in the original one.

Acknowledgments. Authors wish to thank the French Research Agency
(Anr) that supported this work through the Facoma project of the SetIn 2006
program. They also want to thank A. Romanovsky for his help and all colleagues
from the Facoma project — J.-P. Briot, O. Marin and J.-F. Perrot — for fruitful
and inspiring discussions.

References

1. Cacho, N., Damasceno, K., Garcia, A.F., Romanovsky, A., de Lucena, C.J.P.: Ex-
ception handling in context-aware agent systems: A case study. In: Proc. of SEL-
MAS’06. pp. 57–76 (2006)

2. Campbell, R., Randell, B.: Error recovery in asynchronous systems. IEEE TSE
SE-12 number 8(8), 811–826 (August 1986)

3. Carlsson, R., Gustavsson, B., Nyblom, P.: Erlang: Exception handling revisited.
In: Proc. of the 3rd ACM SIGPLAN Erlang Workshop (2004)

4. Dony, C., Knudsen, J., Romanovsky, A., Tripathi, A. (eds.): Advanced Topics in
Exception Handling Techniques. LNCS, vol. 4119, Springer (2006)

5. Dony, C., Tibermacine, C., Urtado, C., Vauttier, S.: Specification of an exception
handling system for a replicated agent environment. In: Proceedings of WEH ’08,
the 4th international workshop on Exception handling - Atlanta, Georgia. pp. 24–
31. ACM (2008), http://www.lirmm.fr/~dony/postcript/exc-weh08.pdf

6. Dony, C., Urtado, C., Vauttier, S.: Exception handling and asynchronous active
objects: Issues and proposal. In: Dony et al. [4], chap. 5, pp. 81–101

7. Faci, N., Guessoum, Z., Marin, O.: Dimax: A fault-tolerant multi-agent platform.
In: EUMAS (2006)

8. Goodenough, J.B.: Exception handling: Issues and a proposed notation. In CACM
18(12), 683–696 (1975)

9. Guessoum, Z., Faci, N., Briot, J.P.: Adaptive replication of large-scale multi-agent
systems: towards a fault-tolerant multi-agent platform. In: Proc. of SELMAS’06.
Vol. 3914 LNCS, Springer (2006)

10. Iliasov, A., Romanovsky, A.: Exception handling in coordination-based mobile en-
vironments. In: Proc. of COMPSAC’05. pp. 341–350 (2005)

11. Issarny, V.: An exception handling model for parallel programming and its verifi-
cation. In: Proc. of the ACM SIGSOFT’91 Conf. on Software for Critical Systems.
pp. 92–100. New Orleans, LA, USA (1991)

12. Keen, A.W., Olsson, R.A.: Exception handling during asynchronous method invo-
cation. In: Monien, B., Feldmann, R. (eds.) Proc. of Euro-Par 2002, pp. 656–660.
LNCS, Springer (2002)

13. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative
byzantine fault tolerance. ACM Trans. Comput. Syst. 27(4), 1–39 (2009)

14. Mancini, L., Shrivastava, S.: Exception handling in replicated systems with voting.
In: Digest of papers, Fault Tol. Comp. Symp-16. pp. 384–389 (1986)

15. Marin, O., Bertier, M., Sens, P.: Darx—a framework for the fault-tolerant support
of agent software. In: Proc. of ISSRE’03. p. 406. IEEE CS (2003)

16. Miller, R., Tripathi, A.: The guardian model and primitives for exception handling
in distributed systems. IEEE TSE 30(12), 1008–1022 (2004)

17. Mostinckx, S., Dedecker, J., Boix, E.G., Cutsem, T.V., Meuter, W.D.: Ambient-
oriented exception handling. In: Dony et al. [4], pp. 141–160

18. Platon, E., Sabouret, N., Honiden, S.: A definition of exceptions in agent-oriented
computing. In: Proc. of ESAW. pp. 161–174 (2006)

19. Randell, B., Romanovsky, A., Rubira-Calsavara, C., Stroud, R., Wu, Z., Xu, J.:
From recovery blocks to concurrent atomic actions. In: Predictably Dependable
Computing Systems. pp. 87–101 (1995)

20. Romanovksy, A., Kienzle, J.: Advances in Exception Handling Techniques:, LNCS,
vol. 2022, chap. Action-Oriented Exception Handling in Cooperative and Compet-
itive Concurrent Object-Oriented Systems, pp. 147–164. Springer (2001)

21. Romanovsky, A.: An exception handling framework for n-version programming in
object-oriented systems. In: Proc. of ISORC’00. pp. 226–233. IEEE CS (2000)

22. Souchon, F., Dony, C., Urtado, C., Vauttier, S.: A proposition for exception han-
dling in multi-agent systems. In: in Proc. of SELMAS’03 : 2nd International Work-
shop on Software Engineering for Large-Scale Multi-Agent Systems, Portland, Ore-
gon (2003)

23. Wooldridge, M.: An Introduction to MultiAgent Systems - Second Edition. John
Wiley & Sons (2009)

