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Abstract—This paper is focused on the exploitation of intrinsic
nonlinear dynamics toward novel measurement systems and read-
out methodologies. In particular, sensors that can be represented
as nonlinear dynamical systems and are often reducible to systems
described by a static nonlinearity are considered; the nonlinear
behavior therefore reduces to the dynamics of a system character-
ized by two or more (meta)stable equilibrium states (or attractors)
separated by energetic thresholds to be overcome to transition
from one attractor to the other. The presence of a weak unknown
target signal is assessed via the monitoring of the “residence
times” in the attractors. This operational scenario that is based on
the monitoring of suitable “events” avoids an “amplitude-based”
readout and provides a very simple and sensitive readout-
processing scheme. Many noise effects are also mitigated by the
intrinsic decoupling between the amplitude domain of the input
signal and the event or time domain of the output signal. We
present here the general transduction methodology for this class
of “residence-times difference” sensors, together with the experi-
mental results obtained from the working versions of these sensors
(in particular, a simple fluxgate magnetometer). We then introduce
some novel dynamical behavior that occurs when the active nonlin-
ear (in this case, bistable) elements are coupled using well-crafted
coupling topologies. Sensors based on these coupling schemes
provide several advantages over their single-element counterparts.
We discuss the dynamics of the coupled-element device, sum-
marizing recent theoretical and experimental results. Finally, we
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describe the construction and performance of working devices
(magnetic- and electric-field sensors) based on these concepts.

Index Terms—Amorphous magnetic materials, ferroelectric
devices, magnetometers, nonlinear dynamical systems, sensor
phenomena and characterization.

NOMENCLATURE

SNR Signal-to-noise ratio.
RTD Residence-times difference that is used as a quantifier

of the sensor output.
RTR Residence rimes ratio.
RTDF Residence-times density function.
ΔT Symbol used for the RTD in the equations.
ΔTR Symbol used for the RTR in the equations.
ROC Receiver operating characteristic, which is a parame-

ter used to quantify the attitude of a sensor to detect a
target.

Hx Target magnetic field to be measured.
He Bias magnetic field produced by the current Ie driven

into the bias coil of a fluxgate.
Ĥe Amplitude of excitation magnetic field.
Hc Coercive field of a ferromagnetic core.
Vo Output voltage.
x Magnetization of a fluxgate ferromagnetic core.
U Potential energy function used for the mean-field de-

scription of both the ferromagnetic U(M, t) and the
ferroelectric device U(P, t).

h(t) Generic alternating magnetic field considered in the
expression of the potential energy function and in
the consequent differential equation; it includes both
the bias and the target field contributions.

SCFG Single-core fluxgate.
CCFG Coupled-core fluxgate.
T± Time spent by the magnetization in each of the two

saturation states.
Tob “Observation time,” this is the time over which the

fluxgate output is cumulated and averaged to produce
a useful output.

R Resolution.
2D Noise variance.
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τ Device time constant.
λ Coupling gain in the CCFG.
λc Critical value of the coupling gain, i.e., the value

above which oscillations start.
τe Time constant in the dynamic model of the ferroelec-

tric device.
Êe Amplitude of the excitation electric (E) field.
PFE Polarization of the ferroelectric material.
AFE Area of the ferroelectric capacitor electrode.

I. INTRODUCTION: THE “FOOTPRINT” OF THIS PAPER

A LARGE class of dynamic sensors have nonlinear
input–output characteristics, often corresponding to a

bistable (or multistable) potential energy function that under-
pins the sensor dynamics. These sensors include magnetic-field
sensors, e.g., simple fluxgate sensor [1], [2] and superconduct-
ing quantum interference device (SQUID) [3], [4], ferroelectric
sensors [5], [6], and mechanical sensors, e.g., acoustic trans-
ducers, made with piezoelectric materials [7].

In many cases, the detection of a small dc or low-frequency
target signal is based on a spectral technique[1], [2], [8] wherein
a known periodic (usually sinusoidal or triangular) bias signal is
applied to the sensor to switch it between its two locally stable
attractors which correspond to the minima of the potential
energy function, when the attractors are fixed points. In higher
dimensional systems (e.g., the dc SQUID [3], [4]), bistability
may correspond to a transition between an excitable steady state
(characterized by a single fixed point) and an oscillatory steady
state (characterized by a limit cycle). Usually, the amplitude
of the bias signal is taken to be quite large, i.e., above the
deterministic switching threshold which is itself dependent on
the potential barrier height and the separation of the minima, in
order to render the response largely independent of the noise.
In this configuration, the switching events between the stable
attractors are controlled by the signal.

In the presence of background noise, and the absence of the
target signal, the power spectral density (PSD) of the system
response contains only the odd harmonics of the bias signal
frequency ω. The spectral amplitude at nω (where n is even)
is zero unless the asymmetrizing dc signal is present; hence,
the appearance of power at 2ω and its subsequent analysis
have been proposed as a detection/quantification tool for the
target signal [9], given that ω is known a priori. In practice,
a feedback mechanism is frequently utilized for reading out
the asymmetry-producing target signal via a nulling technique
[1]–[3], [8].

The aforementioned (PSD-based) readout scheme has some
drawbacks. The chief among them is the requirement of large
onboard power to provide the high amplitude (typically, taken
to be much greater than the energy barrier separating the
metastable attractors of the system) and high frequency (usually
selected based on the inherent sensor properties, e.g., the var-
ious time constants associated with the dynamics) bias signal.
The feedback electronics can also be cumbersome and intro-
duce their own noise floor into the measurement, and finally,
the bias signal generator often increases the noise floor in the
system.

The aforementioned preamble provides an outline of readout
schemes based on a computation of the PSD or an informa-
tion transfer metric as an appropriate measure of the system
response; this readout methodology has been widely studied,
optimized, and used for the analysis of the output signal in
fluxgate magnetometers [1], [2].

Alternatively, one can invoke a purely “event-based” descrip-
tion of the system response with an output quantifier expressed
in the time domain. A similar strategy has been developed for
the family of frequency output sensors [10], [11]. In this paper,
we focus not on the frequency output but on a measurement
technique that is based on the evaluation of system “residence
times” in its steady states [12], [13]. For a two-state system,
the residence time in one of the stable steady states is defined
as the time elapsed between the crossing of one threshold
(a crossing “event”) and the crossing of the opposite threshold
(the following “event”).

In the presence of a noise background, the residence times in
the stable states have random components. The residence time
statistics in a bistable system were proposed for the first time in
[14] as a quantifier for the stochastic resonance (SR) [15] phe-
nomenon which involves subthreshold driving signals, so that
the threshold crossing events are, because of necessity, noise
assisted. They have also been studied in a prototype bistable
model system [16], [17]. The important features of residence-
times distributions are often seen in neurophysiological ex-
perimental data; it is widely believed that the “point process”
generated by successive neural “firing” events contains much
relevant information about the stimulus that leads to the firing
[18]–[20]. Under the appropriate conditions on the spike train,
most importantly a “renewal” characterization, corresponding
to uncorrelated threshold crossing events, [21] it is possible to
connect the “interspike interval histogram” (the RTDF, in the
language of this paper) to the output PSD [22], [23].

The RTD-based readout has some advantages compared
to the conventional (PSD-based) readout scheme: It can be
implemented without the knowledge of the (computationally
demanding) PSD of the system output, which is the most crit-
ical component needed being an adequate counter. We hasten
to note that threshold statistics underpin the class of “level-
crossing detectors” that have been available for a variety of
applications for almost 50 years [24]. The method outlined
before has, in different forms, been used in nonlinear sensors
(particularly sensors that have a hysteretic output–input transfer
characteristic), albeit without much effort paid in considering
the effects of sensor noise on the measurement process [8].

In this paper, we will describe the use of threshold crossing
statistics [24] to gain information regarding the presence of
small unknown target signals in a nonlinear dynamic detec-
tor, taken to be a two-state system (i.e., underpinned by a
bistable potential energy function). We will see that the specific
(E- and magnetic-field) sensors considered in this paper are,
in fact, underpinned by dynamics that fall under the two-state
paradigm.

Recently [25], [26], we have demonstrated that coupling an
odd number N ≥ 3 of overdamped bistable elements in a ring,
with unidirectional coupling, and ensuring that at least one
of them has an initial state that is different from the others
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can lead to oscillatory behavior when the coupling strength
exceeds a critical value. The characteristics of the bifurca-
tion to oscillatory behavior depend on the system dynamics
and, more importantly, the manner in which the elements
are coupled. For the case of Duffing dynamics with additive
interelement coupling [25], the system undergoes a Hopf-like
bifurcation to oscillatory behavior; the oscillation frequency is
nonzero infinitesimally past the bifurcation point and increases
as one goes deeper into the bifurcation regime. In [25] and
[26], we considered a system of coupled elements having
“soft-potential” dynamics, characteristic (for example) of hys-
teretic single-domain ferromagnetic cores. This work has led
to exploiting the emergent oscillatory behavior for signal de-
tection purposes: Specifically, an external symmetry-breaking
dc target signal having small amplitude (usually, much smaller
than the energy barrier height of a single element) can be de-
tected and quantified via its effect on the oscillation frequency
and (temporal) asymmetry of the oscillation waveforms.

We reiterate that the previously outlined behavior (the anal-
ogy to a frustrated spin system comes to mind) occurs only for
an odd number of elements N ≥ 3 with cyclic unidirectional
coupling and initial conditions selected so that at least one state
point is different from the others. For even N , the oscillatory
behavior occurs only when N exceeds a critical value; we do
not consider this situation in this paper.

We start with a prototypical system, a single ferromagnetic
element (which would be the active material or core in a
single-core magnetometer) which we treat as an overdamped
dynamical system whose response to a very weak (compared to
the energy barrier height) target magnetic field is quantified via
the RTD readout strategy involving a sinusoidal or triangular
suprathreshold bias signal. Along the way, we describe the RTD
and its ramifications, including the effects of a noise floor, and a
phenomenological “SNR” that depends on the noise floor, and
the observation time. We then describe how this measurement
strategy is implemented in an SCFG magnetometer, providing
a detailed description of the actual experimental device and the
dependence of its performance on various parameters that enter
into the characterization and measurement process. The SCFG
magnetometer is placed in context with existing magnetometers
that do the same task, but with a conventional (i.e., based on the
response PSD) readout.

Following the treatment of the single-core magnetometer,
we continue to sensors that are underpinned by coupled active
elements. We provide an overview of the dynamics, stemming
from our choice of coupling scheme, and describe how a small
external perturbation consisting of a dc target signal can be de-
tected via its effects on the aforementioned emergent oscillatory
behavior in the system response. We describe how the response
(of single- and coupled-core sensors) can be quantified in the
presence of a noise floor by considering the device “resolution”
as a (noise-dependent) figure of merit. We also describe qualita-
tively the effects of increasing the number of active elements, as
well as the effects of the noise floor on the system response. Our
treatment is extended to a coupled-element E-field sensor (EFS)
with each active element consisting of a ferroelectric capacitor.

Wherever necessary, we introduce new physical and math-
ematical ideas and tools in the specific context of the system

under consideration. It will become clear that one can use a
reductionist approach to describe the qualitative features of
the dynamics of a class of nonlinear sensors (for N = 1, as
well as the coupled case N ≥ 3); however, there are important
differences that set the individual sensor types (e.g., magnetic
and E fields) apart, e.g., the structure and functional form
of the (bistable) potential energy function that underpins the
specific kind of system under consideration. Put succinctly,
the reductionist approach serves a useful purpose insofar as
it allows us to study the qualitative features of the response
that are endemic to a rather wide class of systems; however, it
does have its limitations, and these are revealed when one takes
into account the (important) differences in the dynamics of the
individual elements that comprise separately the magnetic-field
sensor and EFS.

II. SCFG MAGNETOMETER

Fluxgate magnetometers, which are one of the sensors con-
sidered in this paper, have always been of interest to the tech-
nical and scientific communities as practical and convenient
sensors for magnetic-field measurements requiring a resolution
around 1 μT at room temperature; they have found applica-
bility [2], [27]–[29] in fields such as space and geophysical
exploration and mapping, and nondestructive testing, as well
as assorted military applications. Recently, the possibilities
offered by new technologies and materials in realizing minia-
turized devices with improved performance have led to renewed
interest in a new generation of cheap, compact, and low-power
fluxgate sensors. However, their miniaturization is complicated
by the rapid increase of magnetic noise with the reduction of
the device dimensions and the general practical requirements
for achieving high sensitivity (large number of windings, large
cross-sectional sensor area, and large bias current) which, how-
ever, are at odds with the desired characteristics (low cost,
power, and noise) of the miniaturized sensors. Nonetheless,
despite the difficulties manifested in integrated devices with
better performance, the literature does contain good examples
of fluxgate sensors in printed circuit boards (PCBs) [30], [31]
and even CMOS [32]. In particular, CMOS affords the possi-
bility of realizing the sensing part (fluxgate) and the readout
circuit on the same chip, resulting in enhanced reliability and
lower costs in batch production.

Today’s highly specialized fluxgate devices boast laboratory
noise floors as low as 10 pT/

√
Hz and are used in a variety

of magnetic remote sensing applications [33]–[38]. However,
one must take these performance quantifiers with the caveat
that, when operated unshielded in a practical application, the
detection of target signals above the noise floor is limited by
the ambient magnetic field (which, in the case of the terrestrial
magnetic field, can have nonstationary, as well as random, com-
ponents). Hence, various techniques often involving a reference
magnetometer for the purposes of subtraction of the noise floor
from the output of the target-sensing device must be employed
[39] if one wishes to take advantage of the low noise floor.

One of the earliest fluxgate designs was due to Forster [2];
it consists of two detection coils connected in a differential
arrangement and two excitation coils, as shown in Fig. 1. Two
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Fig. 1. (a) Arrangement for a traditional (single-core) fluxgate magnetometer.
(b) Qualitative time evolution of signals with zero external target magnetic field
(the output is zero). (c) In the presence of a nonzero target magnetic field. In
particular, the magnetizing field H , the corresponding magnetic flux B, the
voltages induced at the pickup coils V , and the resulting output voltage Vo(t)
are shown in the (b) absence and (c) presence of the target magnetic field Hx

(figure reproduced with permission from [40]).

periodic counterphased magnetic fluxes are induced through the
excitation currents Ie, driving the magnetic cores periodically
into saturation in opposite senses: The pulsed signals Vi(t),
where i = A,B, given by each pickup coil, oscillate back and
forth at the forcing frequency. The time waveforms of these
signals are shown in Fig. 1(b) and (c), respectively. For a
symmetric core magnetization and in the absence of the target
signal, the output voltage signal, denoted by Vo(t) = VA(t) −
VB(t), is zero. An external (assumed to be dc or extremely
low frequency) magnetic field Hx leads to an asymmetry in
the core magnetization and hence produces a nonzero output
voltage Vo(t) [bottom panel in Fig. 1(c)]. Today’s instruments
are usually operated in a “locked” mode wherein a feedback
mechanism is utilized to readout the asymmetry produced by
the target signal via a nulling technique.

Among recent advances in fluxgate sensor technology,
the so-called “fluxset” devices [41] (see also [28] for good
overviews), which differ from a conventional fluxgate in the
way they convert the magnetic field into an output electrical
signal, are noteworthy. The fluxset magnetometer is based on

Fig. 2. Schematic representation of the RT-fluxgate device.

the influence of the external magnetic field on the time neces-
sary to produce the reversal magnetization of the ferromagnetic
core under a periodic magnetic excitation. Given an optimal
core design and an excitation field, the time shift depends only
on the value of the external (target) magnetic field. Hence,
the measurement of the magnetic-field amplitude via a voltage
measurement in the fluxgate is replaced by a high-accuracy
time measurement that can be rendered more impervious to
clutter signals and noise via an understanding of the device
response in the presence of a noise floor. Such a (deterministic)
“time-domain” description was first introduced by Strycker and
Wulkan [42]. The simplest implementation of our “residence-
times” fluxgate (RT-fluxgate) is shown in Fig. 2. It is based on a
two-coil structure (a primary coil and a secondary coil) wound
around a suitable magnetic core. The magnetization of the core
is governed by the excitation field He produced in the primary
coil, and the core is composed of a ferromagnetic material
with the characteristic “sharp” input-output hysteresis loop,
corresponding to a bistable potential energy function, which
underpins the system dynamics; the minima of this potential
energy function correspond to the two (stable) steady magne-
tization states. In order to reverse the core magnetization, a
suprathreshold excitation field is required. Here, the “threshold”
represents the minimum field required to switch the saturation
of the material; mathematically, it corresponds to the inflection
point(s) in the potential, it being tacitly assumed that, once this
point is crossed, the state point will relax to the stable attractor
on that side, on a timescale (dependent on the time constant τ )
far smaller than the other time constants (the signal period and
the inverse noise bandwidth) that govern the bias signal and
noise dynamics.

With an alternating excitation (or bias) magnetic field He,
the output voltage Vo at the secondary coil will be alternating
and symmetric in time. The presence of an external “target”
magnetic field Hx (taken to be dc throughout this paper) will
break this symmetry, and the resulting temporal asymmetry can
be used to monitor the target field amplitude. In the following
section, we elucidate the RTD approach via a simple model.

Before proceeding further, it is instructive to schematize
the relationship between the representative dynamics of an
overdamped system (in this case, a ferromagnetic sample char-
acterized by an average magnetization variable) underpinned by
a potential energy function and the familiar hysteresis behavior
of the ferromagnetic sample: This relationship is shown in
Fig. 3(a) and (b), while Fig. 3(c) shows the effect, on the
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Fig. 3. Qualitative depiction of the dynamics of a typical overdamped bistable
system (in this case, a ferromagnetic sample described by the mean-field
theory) with state point (the “average” magnetization variable M ) evolving as
τ(dM/dt) = −∇U(M). (a) Potential energy function U(M). (b) Hysteresis
characteristic. The (stable) potential minima correspond to the saturation states
±Msat of the hysteresis cycle; the locations of these stable minima correspond
to the points ±Hsat. Hc is the coercivity of the sample; it corresponds roughly
to the deterministic switching threshold and can be calculated in terms of the
potential energy parameters (see text). (c) When a dc magnetic field Hx is
present, the effect on the potential function, at a given time instant, is additional
skewing which reflects itself in the (unequal) mean residence times in the
two stable steady states. Dimensionless units are implied on all axes (figure
reproduced with permission from [43]).

potential energy function, of an external (dc) applied magnetic
field.

We now turn our attention to the (single-core) fluxgate mag-
netometer, with the goal of arriving at a device that exploits
the intrinsic nonlinear dynamics of the active material (the
ferromagnetic core).

A. Deterministic Mean-Field Dynamics in a Ferromagnetic
Sample: The Working Principle of the SCFG

One of the best known systems that exhibits hysteresis
[44] is a ferromagnetic material, usually described by the
Ising-type models [44], [45] and exhibiting a phase transition
to the paramagnetic state when the temperature T exceeds
the Curie temperature Tc. One may describe the ferromagnet
by a Ginzburg–Landau free-energy function that incorporates

the relevant order parameter (in this case, the core magne-
tization); this potential energy function is then bistable in
the ferromagnetic phase, becoming monostable in the para-
magnetic phase. The transition to monostability can also
be achieved by applying an external magnetic field which
breaks the symmetry of the potential, causing one of the
metastable states to disappear when the field amplitude ex-
ceeds a critical value; the system returns to bistability as
soon as this field is turned off. The aforementioned consid-
erations beg the question of having a continuum model in
which one may incorporate the dynamical behavior of the
ferromagnet, including the effects of time-dependent external
magnetic fields. This is accomplished through the mean-field
theory [45] which allows one to use a master equation for
the averaged magnetization x(t) and arrive at the dynamic
equation

τ
dx

dt
= −x + tanh

[
x + h(t)

T

]
≡ −∇xU(x, t) (1)

where τ is a system time constant and T is a dimensionless
temperature. h(t) is an external magnetic field that may be
time dependent, having the dimension of x(t). We have also
expressed (1) in terms of the gradient of a potential energy
function (the analog of the free-energy function mentioned
earlier)

U(x, t) =
x2

2
− 1

c
ln cosh [c {x + h(t)}] (2)

where we set c = T−1. Note that, in these units, the Curie
temperature is Tc = zJ/kB , where z is the number of the
nearest neighbors, J is the strength of the exchange interaction,
and kB is Boltzmann’s constant. The potential energy function
(2) is bistable for c > 1; the typical behavior of this system has
already been depicted (in the absence of the time-dependent
bias signal h(t)) in Fig. 3. A dynamical hysteresis in the system
(1) and other systems with qualitatively similar potential energy
functions, with h(t) often taken to be time sinusoidal, has
been the subject of much recent study [46]–[49]; cooperative
phenomena, e.g., SR, arising in the presence of background
fluctuations [48]–[50] have also been examined in the literature.
The role of background fluctuations has been ignored in the
derivation of (1); however, later in this paper, we will discuss
the effects of noise on the device performance.

For the purpose of making contact with experimental results,
we are interested in a “macroscopic” magnetic description of
the fluxgate dynamics rather than a detailed micromagnetic
description based on individual domain dynamics; a detailed
derivation of mean-field dynamics of the form (1) is not our
intent. Rather, we use an equation of the form (1) to model
the dynamics of the entire core, assuming the applicability of
the mean-field description. Such modeling has been used in the
literature [1], [8], and we find that the model yields good (given
that it is, at best, an approximation to a detailed micromagnetic
description of the domain dynamics) agreement with the exper-
imental results, thereby validating our description. Specifically,
we assume that our ferromagnetic sample is only one magnetic
domain thick, this being the rigorous limit of the applicability
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of the dynamics (1). Other collective approaches to the sto-
chastic dynamics of aggregates of monodomain ferromagnetic
particles do exist in the literature [51], usually starting from
the Landau–Gilbert equations [52] for a single-domain element
with thermal noise included; SR in such a system has also been
studied [53].

In practice, the time constant τ is very important, particularly
in the presence of noise. If τ is the smallest timescale in the
system, i.e., both the noise bandwidth (defined, for Gaussian
noise, as the inverse of the correlation time τc) and the bias
signal period are well within the system bandwidth τ−1, then
the device behaves like a static nonlinearity. Hence, the dynam-
ics are reduced to following the dynamics of the noise plus the
signal, as they traverse two static thresholds, given essentially
by the fixed points of the potential (2); in the presence of a time-
periodic bias signal, these “deterministic switching thresholds”
are functions of the signal amplitude and frequency [54]. It is
convenient to start our description [13], [55] of the deterministic
dynamics with this assumption and a suprathreshold bias signal
He(t) which can be sinusoidal or triangular. We note that, in
practical devices, the bias signal is known and controllable;
hence, we will assume always that its parameters can be varied
at will. The bias signal plays an important role. In most practical
detection scenarios, the target magnetic field (assumed dc) is
too small to engineer transitions between the stable steady
states of the potential energy function (2); hence, one applies
the known suprathreshold time-periodic bias signal to force
the dynamics to switch between the stable steady states (on a
timescale that depends on the amplitude and frequency of the
bias signal). In the presence of the target dc signal Hx, the
potential energy function is a priori skewed with one energy
well being shallower than the other, as noted earlier [Fig. 3(c)].
This asymmetry manifests itself in the (now unequal) residence
times in the two steady states. In conventional (frequency-
domain-based) readout schemes, the output PSD contains only
odd harmonics of the bias frequency ω when the target signal
is absent; this is easily apparent when one realizes that the
dynamics (1) contain only odd terms in the state variable
in this case. As already outlined, the presence of a nonzero
target signal leads to the appearance of even harmonics of the
frequency ω in the output PSD so that the occurrence of power
in the 2ω bin is an indication of the presence of the target
signal, and the spectral amplitude at 2ω yields a measure of the
strength Hx of the target signal. Hence, conventional fluxgate
magnetometers that use this quantifier of the target magnetic
field are often called “second-harmonic fluxgates” [1], [2], [8],
[27], [28]. We note, in passing, that the forcing term h(t) + Hx

(with the definition h(t) = Ĥe sinωt) is inside the nonlinearity
in (1), which is a direct consequence of the mean-field nature
of the magnetic interaction [45].

We now obtain simple expressions for the RTD ΔT =
|T+ − T−|, with T± denoting the residence times in the two
stable steady states. Consider first the simplest possible man-
ifestation of a two-state system, which is the Schmitt trigger
(ST) [56], characterized by a two-state output and a hysteretic
transfer characteristic. Its output rests in one state as long as
the input is less than a threshold. The switch to the other state
is almost instantaneous (the ST can be considered the limiting

Fig. 4. RTD readout scheme schematized for a sinusoidal bias signal h(t) and
(a) target signals Hx = 0 and (b) Hx > 0 (figure reproduced with permission
from [40]).

case of a dynamical system [57] with very small time constant
τ ), occurring when the input exceeds the threshold.

In the device considered here, let ±Hc be the upper and lower
thresholds, with h(t) being the suprathreshold time-sinusoidal
bias signal having period T0. Hx(� Hc) is a dc target signal
whose effect is to “shift” the sinusoidal signal upward by an
amount Hx.

In Fig. 4, the qualitative behavior of the signals involved
is shown in order to help demonstrate the working princi-
ple for the RTD fluxgate, also denoted by us as the SCFG
magnetometer.

Crossings of the upper and lower thresholds occur at times t1
and t2 computed via

Hx + Ĥe sin(ωt1) =Hc

Hx − Ĥe sin
[
ω

(
t2 −

T0

2

)]
= − Hc (3)

so that the residence times are given by T+ = t2 − t1 and
T− = t3 − t2. This yields for the RTD (the subscript s denotes
the sinusoidal bias signal)

ΔTs =
2
ω

[
arcsin

(
Hc + Hx

Ĥe

)
− arcsin

(
Hc − Hx

Ĥe

)]
.

(4)

One may define a “sensitivity” via Ss = dΔTs/dHx (this is
readily seen to have the form of the slope of an input-output
transfer function)

ωĤe

2
Ss =

(
1−

(
Hc + Hx

Ĥe

)2
)−1/2

+

(
1−

(
Hc − Hx

Ĥe

)2
)−1/2

(5)
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which clearly increases with Hx, saturating at H̄x = Ĥe −
Hc. Note that (as expected) ΔTs vanishes when Hx = 0 and
ΔTs → (4Hx/ωĤe) for large (compared to the threshold loca-
tion) Ĥe, so that the sensitivity is rendered independent of the
target signal in this limit. In the large Ĥe regime, we can also
show that the residence time T+ → (1/ω)(π + (2Hx/Ĥe)),
which approaches T0/2 at very large Ĥe, as expected. A
completely analogous set of limiting values exists for the other
residence time T−.

As evident in Fig. 4, the sensitivity depends on the slope
of the total signal Hx + Ĥe sin(ωt) at its intersection with the
threshold value Hc, which is the coercive field of the magnetic
core. Referring to the signal slope at the intersection if, as
assumed here, the external (target) signal Hx is constant or, at
least, very slow with respect to the bias signal Ĥe sinωt, the
slope at the intersection will depend only on the bias signal.
Therefore, in the context of the system sensitivity, one observes
that a fixed change in Hx, i.e., a reduction of the bias signal
slope at the crossing point, corresponds to an increase in the
RTD and, therefore, to an increase in the device sensitivity.
However, the sensitivity Ss depends on the (instantaneous)
value of the target signal Hx, which is not always desirable
in a practical device. Note however that, for Hx � Ĥe, one
may expand the right-hand side of (4) and (5) to first order in
Hx/Ĥe, which leads to a sensitivity that is independent of Hx.
Another option is to use a triangular bias signal given by

ht(t) = αt − T0

4
< t <

T0

4
+ nT0

ht(t) = − α

(
t − T0

2

)
nT0 +

T0

4
< t <

3
4
T0 + nT0 (6)

with n(> 0) being a positive integer. The slope α is conve-
niently given by α = dht(t)/dt = 4Ĥt/T0, with Ĥt being the
maximum amplitude of the (triangular) bias signal. As before,
one writes down the crossing times via the relations

Hx + αt1 = Hc Hx − α

(
t1 −

T0

2

)
= −Hc (7)

which lead, as before, to the RTD (the subscript t denotes the
triangular bias waveform)

ΔTt =
4Hx

α
(8)

so that the sensitivity is given by

St =
4
α

=
2π

ωĤt

(9)

with Ĥt > Hx + Hc. This sensitivity is always independent
of the target signal Hx, and this is usually a desirable device
feature. It is important to note that too large a value of the target
signal Hx will effectively render the potential energy function
monostable, thereby eliminating switching events completely;
of course, such large target signals can be easily detected
by far simpler techniques. In order for switching events to
occur reliably, one can readily see that the constraint |Hx| <
(Ĥt − Hc) must be fulfilled; for the sinusoidal bias signal, the

same condition applies, with Ĥt replaced by the sinusoidal bias
amplitude Ĥe.

To complete the aforementioned discussion, it is necessary
to provide a definition (in terms of the parameters of an actual
device) of the critical magnetic field Hc and to make contact
with the actual device dynamics, as represented by (1) and
(2). In practice, Hc represents the coercivity of the core; it
can be thought of as a (deterministic) switching threshold and
represents the minimum value of the applied field that would
permit a switch to the opposite potential energy well. Clearly,
in order for this to happen, the saddle point and one of the
potential minima must coalesce into a point of inflection, at
the value of Hc. To compute the coercivity, we assume that
h(t) = Hc and note that the potential (2) has inflection points
at xfsp =

√
c − 1/c = −xfsm. We can readily show that the

positive and negative values of the coercivity (depending on
which branch of the hysteresis loop is under consideration) are
given by

xfsp =

√
c − 1

c
Hc =

1
c

tanh−1 xfsp − xfsp

xfsm =−
√

c − 1
c

Hc = −1
c

tanh−1 xfsp+xfsp (10)

whence the RTD ΔTs can be readily calculated via (4).
It is important to reiterate that the preceding treatment rests

on the assumption of the magnetometer as a near-static non-
linearity. In the presence of a suprathreshold bias signal that
effectively sets the “clock” for the transitions between the
steady states, and whose frequency is well within the sensor
bandwidth τ−1, one would expect the aforementioned expres-
sions for the RTD and sensitivity to provide a good description
of the temporal behavior of the device. The important point is
that, in the RTD approach, “events” (corresponding to threshold
crossings) are considered rather than “signal amplitudes” (as
necessary in a conventional PSD-based readout). This approach
leads to an extremely simple readout circuitry, mainly based
on a fast clock and counterkeeping a running arithmetic mean
(necessary when a noise floor is present) of the RTD.

It is instructive to carry out a more formal comparison
between the two readout techniques. We address this point now,
using the deterministic framework developed so far. The com-
putation of the RTD and associated sensitivity in the presence
of a noise floor is deferred to a later section and will, as we shall
see, depend on the relative magnitudes of certain important
timescales in the dynamics.

B. Comparing the RTD Readout to Traditional (PSD-Based)
Readout Techniques

The working principle of the Forster magnetometer [2] has
been described by Primdahl [58] and is shown in Fig. 1(a).
Two cylindrical cores A and B are exposed to the target dc
field Hx and the excitation (or bias) field He(t) = Ĥe sinωt
induced in opposite phases through an exciting current Ie

flowing in the coils. If the core material has a hysteretic B–H
loop, the working point P describes the magnetic state of both
cores, with B being the induction in each of them and the net
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induction through a common secondary coil being zero, since
the fluxes are opposed in the two cores. When the dc target
field Hx is applied, it splits the working point P into two points
BA and BB representing cores A and B, respectively, on the
B–H curve. For very small Hx, we can linearize around He,
obtaining a constant permeability (μ) value, with the induction
through the common secondary being

ΔB = BA − BB ≈ 2
Hx

1 + Dμ

dB

dH
= 2

Hx

1 + Dμ
μ (11)

where B is generically considered as a function of H(t). D is
the demagnetizing factor [44], [58]. It arises from the tendency
of the applied bias field to introduce magnetic poles at the ends
of the cores, and these poles distort the field; effectively, the
magnetic poles tend to lower the coil field. The output voltage
is calculated from (11)

Vo = − NsAs
dΔB

dt
= −2NsAs

(1 + Dμ) − Dμ

(1 + Dμ)2
dμ

dt

= − 2
NsAsHx

(1 + Dμ)2
d2B

dH2

dH

dt
(12)

where Ns denotes the number of turns of the secondary coil
and As is the cross-sectional area. If we now consider a sinu-
soidal biasing current Ie(t) = Îe sinωt that induces a biasing
magnetic field expressed as He(t) = Ĥe sin ωt, an analytical
expression for the induced output voltage can be computed once
the analytical expression for B(H) is available. Here, Îe and
Ĥe represent the bias current amplitude and the corresponding
magnetic-field amplitude, respectively. The procedure for doing
so has been described in [58] and results in the following
expression for the amplitude at the second harmonic of the bias
frequency:

Vo = ωNsAsHx

(
3a2Ĥ

2
e + 5a5Ĥ

4
e + . . .

)
sin 2ωt. (13)

The second-harmonic component is used as a good quantifier
of the target dc signal since, in the absence of the target
signal, the response would contain only the odd harmonics of
ω, as is well known for a symmetric transfer characteristic.
The sensitivity, characterized via the appearance of the second
harmonic in the response, is computed as

S2 =
∂Vo

∂Hx
= ωNsAs

(
3a2Ĥ

2
e + 5a5Ĥ

4
e + · · ·

)
. (14)

It is evident that the conditions that lead to the optimal
response in the RTD readout strategy are not applicable in the
aforementioned case where sensitivity is proportional to both
the bias signal frequency and (the powers of) the amplitude.
In fact, for an integrated version of the magnetometer, it can
be observed that the very parameters (e.g., the frequency ω
and the dimension parameters Ns and As) that, on the basis
of (14), could be adjusted to enhance the sensitivity in the
second-harmonic readout scheme could degrade the sensor
performance when the RTD readout strategy is adopted; here,
we recall (see Section II-A) that the sensitivity in the case of
the RTD readout strategy does not depend on the geometrical
parameters of the core. Finally, it is seen that the requirements

Fig. 5. (a) Raw output waveform corrupted by noise. The sinusoidal curve is
the (sinusoidal in this case) bias signal He(t). (b) Filtered output signal after
postprocessing (figure reproduced with permission from [40]).

for improving sensitivity in the RTD approach allow for simul-
taneously reducing the power budget of the device; this latter
feature is particularly appealing for practical realizations of the
device.

C. RTD Readout in the Presence of a Noise Floor

A noise floor is usually present in the magnetometer and
forces one to adjust the RTD readout to take note of its presence.
In the experimental magnetometers (which will be described
later in this paper), considerable trouble is taken to lower the
noise floor, e.g., employing ultralow-noise components in the
readout circuitry, using low-noise cores, etc. Despite these pre-
cautions, there is a noise floor which is clearly visible, in Fig. 5,
for example. This figure shows a typical acquired (voltage)
waveform from the experimental setup. The noise does not
introduce a significant degradation (at least in the experiments
that produced this waveform) in the readout, since the latter is
no longer based on the output signal level but on the position
of the peak value. In the presence of noise, the procedure for
estimating the residence times from the output voltage peaks
involves repetitive observations of the output and is based on
averaging and resampling postprocessing; the filtered signal is
shown in the bottom panel, and the noise (which is filtered from
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Fig. 6. (a) Residual between filtered and unfiltered output signals. (b) His-
togram of the residual between the raw output signal and the filtered data (figure
reproduced with permission from [40]).

the output waveform) is seen to have a symmetric distribution
(Fig. 6) which is reminiscent of a Gaussian but only becomes
Gaussian in the singular limit of extremely low noise variance.

Based on the aforementioned (and other similar) results
of quantifying the noise in the output waveform, we assume
the noise to be Gaussian and exponentially correlated, i.e.,
it is derived from a white-noise-driven Ornstein–Uhlenbeck
process [59]

ζ̇(t) = −τ−1
c ζ + F (t) (15)

where F (t) is a “white” noise process having zero mean
and variance 2D: 〈F (t)〉 = 0, and 〈F (t)F (t′)〉 = 2Dδ(t − t′).
The correlation function of the colored Gaussian noise is
〈ζ(t)ζ(t′)〉 = 〈ζ2〉 exp[−|t − t′|/τc], where 〈ζ2〉 = Dτc. In the
limit of vanishing correlation time (τc → 0), the band-limited
Gaussian noise ζ(t) becomes delta correlated or “white” [59].
We also assume that the bias signal frequency ω is well within
the noise band, i.e., the noise ζ(t) is wideband vis-a-vis the sig-
nal. It will become evident that it may be possible to somewhat
mitigate problems arising from the noise statistics by adaptively
increasing the bias signal amplitude in real scenarios.

For Ĥe suprathreshold, the threshold crossings to the stable
states are controlled by the signal, but the noise does introduce
some randomness into the interspike intervals. The result is
a broadening of the (left- and right-well) RTDFs. For Ĥe

far above the deterministic switching threshold and moderate-
to-low noise (

√
2D � Ĥe), the RTDF assumes a symmetric

narrow shape with a mean value (the mean residence time) that
is nearly the same as the most probable value or mode (this
is the value around which most experimental observations are
likely to be clustered). As the signal amplitude decreases and/or
the noise intensity increases, the RTDF starts to develop a tail,
so that the mean and mode get separated; the appearance of the
tail is an indication of the increased role of noise in producing
switching events, although the suprathreshold signal is still the
dominant mechanism. When the signal amplitude falls below
the deterministic crossing threshold, the crossings are driven
largely by the noise. The RTDF can assume a characteristic
multipeaked structure [14], [16], [19] that shows a “skipping”
behavior since the noise can actually cause the crossings to
occur at different multiples nT0/2 (where n is odd), where T0

is the bias signal period, and the SR scenario can come into
play [60] through a synchronization of characteristic timescales
in the system; the noise determines the tail of the RTDF and
introduces a broadening or dispersion in individual lobes of
the RTDF, since the individual crossing events do not always
occur precisely at times nT0/2. We will not consider this
subthreshold case in this paper since, as already noted, the bias
signal is always taken to be suprathreshold due to the “soft”
core material.

It is important to note that, with zero target signal, the
crossing statistics to the left or right minimum of the potential
are identical with coincident RTDFs, as should be expected.
However, throughout this paper, we focus on a nonzero but
small dc target signal Hxx0 � U0 (U0 being the energy barrier
height and ±x0 denoting the locations of the minima of the
potential energy function, in the absence of noise and bias
signal). We will also consider the presence of a noise floor
and of the suprathreshold bias signal h(t) = Ĥe sin ωt that
was already introduced in the preceding section. The following
observations can then be made.

1) The potential (2) is now a priori skewed even for Ĥe =
0. Hence, the mean residence times in the two stable
states will be different (the energy barrier that has to be
overcome in making a switch is different, depending on
the direction of the switch). We denote these times by the
ensemble-averaged quantities 〈T±〉, respectively.

2) For very large bias signal amplitudes and moderate noise
intensity, the RTDFs are two well-separated symmetric
near-Gaussian distributions centered about modes that
coincide with their means; for signal amplitudes much
larger than the rms noise amplitude, the distributions tend
to coincide.

3) The separation 〈ΔT 〉 = |〈T+〉 − 〈T−〉| of the mean val-
ues yields a direct measure of the asymmetry-producing
target signal. It can be calculated for the zero noise case,
as well as with weak noise and bias signal amplitude A
that is well suprathreshold. We find, in fact, that, in
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the large Ĥe/
√

2D limit, q is well approximated by its
deterministic analog and is proportional to the asym-
metrizing signal Hx.

4) In the presence of increasing amounts of noise, the RTDs
broaden, tending to merge, and their mean values (which
are now well separated from the modes) also may be
difficult to distinguish since 〈ΔT 〉 → 0 with increasing
noise. However, increasing the bias signal amplitude (this
could be done adaptively in a real application) once again
leads to the signal as the dominant mechanism for cross-
ing events, and the distributions “sharpen” somewhat
and have less overlap, becoming more resolvable, even
though the separation 〈ΔT 〉 may actually decrease.

5) For very special situations, primarily those in which
there is a small amount of noise, one can carry out the
aforementioned procedure with a very weak bias signal.
In this case, the RTDs for each potential well are almost
unimodal with long tails. The mean values and modes
are again dependent on the target signal; however, in this
case, the slopes of the long-time tails of the density func-
tions are different for the two wells, and this difference
can also be used as an identifier, if needed, of the target
signal. The limiting case of zero bias signal has also
been studied [12]; our studies indicate that this operating
mode may be optimal even for small target signals Hx,
with 〈ΔT 〉 proportional to Hx. This operating mode
relies on the presence of background noise that is strong
enough to initiate interwell switching events without the
presence of a suprathreshold bias signal. Of course, in
practical applications, the presence of assorted (often
non-Gaussian and nonstationary) noise sources, as well
as readout issues, could make the zero bias signal mode
a possibility for only very specialized scenarios. For
these more complicated noise backgrounds, the renewal
assumption for the crossing events cannot be expected
to hold. This operation mode may be particularly well
suited for applications wherein the potential barrier height
can be adjusted during an experiment. It does afford
the attractive possibility of significantly reduced onboard
power.

6) Our calculations to date indicate that a sinusoidal bias
signal is not always optimal; in some operational sce-
narios, better sensitivity may be obtained by using other
signal waveforms, e.g., the triangular waveform already
discussed earlier, and using this waveform leads to “local
linearity” at the crossing points of the bias signal and
the thresholds. Another waveform obtained through a
combination of square and triangular signals is described
in [13]; it can be adjusted to have a stepwise linear
behavior at the intersection with the threshold.

Note that, in an experiment, under any of the aforementioned
scenarios, it is not necessary to actually accumulate successive
RTDs. One simply maintains a running arithmetic mean of
the residence times. Then, an important issue is the amount
of data (dependent on the response time of the electronics),
the amount of time (the observation time Tob to be addressed
hereinafter) one can “look” at the target signal, as well as

the bias frequency ω required to obtain reliable estimates of
〈ΔT 〉. It is clear that increasing the bias signal amplitude, in
order to better discriminate the RTDs, can lead to enhanced
detection probabilities. In this context, it is important to point
out that the aforementioned technique may be implemented
with bias signal amplitudes that are not substantively larger than
the potential barrier height and also with relatively low bias
frequencies. In practice, however, one should expect to confront
a tradeoff between the bias signal amplitude (this is a function
of the onboard power in a practical sensor) and the concomitant
degree of resolution of the peaks of the histograms, and what
is necessary for a reliable estimate, usually with a limited
observation time, of the target signal from 〈ΔT 〉; as already
noted, for a slightly suprathreshold bias signal, the background
noise degrades the measurement, and this can be readily seen at
the level of the RTD, which, for a slightly suprathreshold bias
signal, has a distinctive noise-dependent tail which shrinks as
the bias signal is raised further above the threshold.

The aforementioned observations are well backed by numeri-
cal simulations [13], [61]; in the interests of space conservation,
we do not show these results here. Instead, after a semirigorous
discussion of performance measures, we will describe some
experimental results with laboratory devices.

D. Theoretical Performance Measure

Following the results of the preceding section, one may ask
the logical question: What is the optimal detector configuration
for a given target signal in a noise background? In general, of
course, the optimal detector would be a linear (energy) detector
unless (as in the current case) the sensor is inherently nonlinear.
As discussed in earlier theoretical work [12], one can obtain
(theoretically, at least) a measurable 〈ΔT 〉 for zero bias signal,
provided that the noise is sufficiently large to cause the sensor
to switch between its stable steady states without the need for
the externally applied bias signal; this scenario would also have
the added benefits of lower onboard power and a lower noise
floor since a substantial part of the noise floor arises from the
bias signal generator. In real-life applications, of course, one
is usually constrained by a finite observation time Tob, so that
in a sensor which has been painstakingly constructed to have
the lowest possible noise floor, the noise-induced switching
events might be too few and far between to take advantage of
the noise-activated nonlinear dynamic sensor [12] scenario. Put
differently, the noise intensity must be high enough to yield an
acceptable (for the purpose of computing a reliable measure
of the response) switching rate; else, the controlled bias signal
becomes necessary.

When considering the optimal bias signal amplitude, one
must note that increasing the bias signal amplitude reduces ΔT
even as it renders the RTDs somewhat more resolvable for large
noise. This indicates that, in a practical application, it may not
necessarily be of benefit to apply an extremely large bias signal;
as already mentioned before, bias signals having amplitude not
much larger than the barrier height will suffice. Our simulations
show that, past a certain value, increasing the bias signal
amplitude has no effect on the detection probability [13], [61].
This point has been discussed in some detail in recent articles by
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Dari et al. [62], [63], wherein the response of the nonlinear
sensor is characterized via its ROCs, which are plots of detec-
tion versus false-alarm probabilities as a function of the detec-
tion threshold for different operating conditions. These authors
compute and plot the area under the ROC as a function of the
bias signal amplitude. For a “perfect” sensor, this area would be
unity, corresponding to a unit detection probability and a zero
false-alarm probability; in practice, there is usually a nonzero
false-alarm probability, with a concomitant reduction of the
detection probability, that lowers (below unity) the area under
the ROC. The ROC-based analysis shows that the detection
probability decreases rapidly when the bias signal amplitude
decreases below the deterministic switching threshold. Hence,
using a bias signal that is at or beyond the deterministic switch-
ing threshold will improve the sensor detection performance
with the added caveat that this enhanced performance will re-
quire a concomitant increase in the onboard power budget. This
tradeoff (between an acceptable false-alarm rate and onboard
power) is thus an important point in the design and operation of
practical sensors; it also has implications in the sensor noise
floor, with a larger amplitude bias signal (usually) bringing
along an increase in the noise-floor stemming directly from the
signal generator. Other exceptional cases, e.g., large noise or
non-Gaussian and/or nonstationary noise, may also necessitate
the application of larger bias signals. An ROC analysis for
the RTD magnetometer described in this paper has recently
been carried out [64]. Finally, we note a recent work [65]
wherein a neural-network-based processor is used to construct
the input signal from the output of a nonlinear sensor. The
technique involves the construction of an “error model” which
incorporates the error sources in the measurement chain, as well
as the propagation of the errors through the chain.

We now introduce a quantifier that closely resembles a
response SNR, computed in terms of 〈ΔT 〉 and Tob. We discuss
this SNR in light of our earlier (numerically inspired) observa-
tions on the behavior of the RTDF. We start by assuming that
we have collected N samples for each of the residence times
T±

n . The mean values of the two RTDs are 〈T±
n 〉; as discussed

earlier, these may be computed directly from the crossing-time
data sets (the subscript n denotes an experimental or simulated
quantity). The actual mean values 〈T±〉 are then given by

〈T±〉 =
〈
T±

n

〉 〈
δT±

n

〉
=

σTn±√
N

(16)

where σT±
n

is the standard deviation of each distribution and
〈δT±

n 〉 represents the uncertainty inherent in the measurement
process. Then, the mean difference in residence times may be
written in terms of the experimentally obtained quantities

〈ΔT 〉 = 〈ΔTn〉 (17)

where 〈ΔTn〉 = 〈T+
n 〉 − 〈T−

n 〉, and the uncertainty δ〈ΔTn〉 can
be obtained from (16) as

δ〈ΔTn〉 =
√

δT+2
n + δT−2

n =

√
σT+2

n
+ σT−2

n

N
≈ σTn

√
2/N

(18)

where we set σT+
n
≈ σT−

n
= σTn

, since the intervals T±
n are

assumed to be uncorrelated, with their distributions being iden-
tical and the separation of means being the only manifestation
of the presence of the target signal.

The aforementioned treatment leaves us with an experi-
mental observable (the mean RTD 〈ΔTn〉), together with the
(noise-induced) uncertainty δ〈ΔTn〉 in its measurement. It is
convenient to combine these quantities into a dimensionless
ratio that serves the role of a response “SNR”

SNR =
〈ΔTn〉
δ〈ΔTn〉

=
〈ΔTn〉
σTn

√
N

2
. (19)

We assume that we are given a finite observation time Tob =
2N(T+ + T−/2), whence we can obtain

N =
Tob

T+ + T− =
Tob

〈ΔTn〉 + 2〈T−〉 ≈ Tob

2〈T−〉
. (20)

Hence, we finally obtain for the SNR (note that it is a function
of all the system parameters and, specifically, of the bias signal
amplitude A)

SNR =
1
2
〈ΔTn〉
σTn

√
Tob

〈T−
n 〉 . (21)

Note that the inverse quantity SNR−1 in (21) is occasionally
referred to as the relative standard uncertainty [66].

It is of interest to (theoretically) compute and analyze the
SNR (21) as a function of the bias amplitude A and other system
parameters as a means to optimize performance. The simple
threshold description given in Section II affords us an analytic
computation of the SNR, which we now describe. It is impor-
tant to reiterate, at this point, the stringent constraints on our use
of the threshold representations of the magnetometer dynamics.
The noise standard deviation must be small compared to the
threshold “height,” with A being suprathreshold; the latter also
affords the replacement of the dynamics (1) by the simple
static threshold description that leads to the deterministic results
(4) and (8). Finally, the overriding constraint of the sensor
time constant τ , being the smallest timescale in the dynamics,
must be satisfied. To get an analytical estimate of the SNR
(21), we can then resort to our simple ST model described in
Section II. We assume the noise floor to be small (compared
to the threshold setting or height) and to manifest itself in a
fluctuating threshold with mean value Hc (see Fig. 4); the small
(compared to all other timescales in the problem) sensor time
constant τ ensures that, in fact, this is the case (this is also seen
in experiments). The threshold (ψ) fluctuations are assumed to
be Gaussian

P (ψ) =
1√

2π σ2
exp

{
− (ψ − Hc)2

2σ2

}
. (22)

Fig. 6 shows that the Gaussian stationarity assumption is not
a bad one. In (22), the variance parameter (associated with the
threshold fluctuations) would be roughly the same as the equal-
time correlation function 〈ζ2〉 of the (Gaussian colored) noise
parameter ζ(t) in (15).

Let us consider the case of sinusoidal bias signal. Assuming
that we start at t = 0, the first t1 to the upper threshold (at +Hc)
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is now a random variable; its probability density function may
be readily computed [24] via a change of variables, wherein the
mean crossing time is well approximated by the deterministic
crossing time, as derived in Section II

P (t1)=
ωĤe√
2πσ2

cos ωt1 exp

{
− Ĥ2

e

2σ2
(sin ωt1 − sin ωt10)2

)}
(23)

which is normalized to unity over the interval 0 ≤ t1 ≤ T0/4,
which contains the first crossing to the upper threshold. Note
that P (t1) = 0 outside this interval. In an analogous manner,
we obtain the first crossing-time probability for the lower
threshold

P (t2)=
ωĤe√
2πσ2

cos ωt2 exp

{
− Ĥ2

e

2σ2
(sin ωt2 − sin ωt20)2

)}
(24)

normalized to unity in T0/2 ≤ t ≤ 3T0/4. Note that these den-
sity functions tacitly assume a deterministic threshold crossing
picture of the form described in Section II. The bias signal must
be well suprathreshold, and the noise intensity σ2 also should
be small compared to the threshold height. In (23) and (24), the
deterministic crossing times t1,20 are obtained by solving the
(3) for t1,2.

In terms of the density functions (23) and (24), we may write
down formal expressions for the mean crossing times 〈t1〉th
and 〈t2〉th, the subscript denoting the theoretical (in this case,
approximate) quantity

〈t1〉th =

T0/4∫
0

P (t1)t1 dt1 (25)

〈t2〉th =

3T0/4∫
T0/2

P (t2)t2 dt2. (26)

The theoretical difference in residence times is then

〈ΔT 〉th = 〈T+〉th − 〈T−〉th
= 2 (〈t2〉th − 〈t1〉th) − T0 (27)

in terms of the definitions (25) and (26). The standard deviation
in the denominator of (21) is computed via the second moment
of t1

σTn
≈

√
2 (〈t21〉th − 〈t1〉2th) ≡

√
2σ2

t1
(28)

and the remaining term in the denominator of the square root
factor in (21) is replaced by the difference in the mean crossing
times.

The aforementioned integrals must be computed numerically,
in general. We then readily observe that, in the limit of small
noise variance and large bias amplitude, the averaged quantities
are well approximated by their deterministic counterparts

〈t1,2〉th ≈ t1,20 〈ΔT 〉 ≈ ΔT (29)

where the deterministic RTD is given in (4) and (8) for the
sinusoidal bias signal and the triangular one, respectively. We
may also, in the regime of validity of the correspondences (29),
approximately evaluate [13] the integrals (25) and (26) using a
second-order Laplace expansion [67], in which we retain terms
up to O(σ2) only. We then obtain

〈t1〉th = t10 +
σ2

Ĥ2
e

sec ωt10G10(t10) + h.o.t.

〈t2〉th = t20 +
σ2

Ĥ2
e

sec ωt20G20(t20) + h.o.t. (30)

For the variance σ2
t1

, we obtain

σ2
t1

≈ σ2

Ĥ2
e

sec ωt10 {G2(t10) − 2t10G10(t10)} (31)

where the functions G have been computed in [13] and are not
rewritten here; they are not essential to our description of the
behavior of the RTD in the strong bias signal (and/or weak
noise) regime.

The mean crossing times (30) agree very well (in the limit of
small σ/Ĥe) with the values obtained by numerically evaluat-
ing the integrals (25) and (26). Good agreement is also obtained
between the standard deviation σt1 and its numerically obtained
counterpart. In fact, a glance at the equations (30) shows that,
at large signal amplitude (and/or small noise intensity), the
crossing times approach their deterministic values t1,20; in turn,
these behave as 1/Ĥe for large Ĥe. In this regime of operation,
the crossing-time density functions (23) and (24) collapse into
Gaussians, having the form

P (t1) ≈
1√

2πΣ2
exp

{
− 1

2Σ2
(t1 − t10)2

}
(32)

which is normalized to unity on [−∞,∞] and where Σ2 =
σ2/Ĥ2

e ω2, a “dressed” variance that is seen to decrease rapidly
with decreasing σ and/or increasing Ĥe. A corresponding ex-
pression is obtained for P (t2). Note that simple differentiation
of the densities (23) and (24) shows the modes approaching
the mean values in the large Ĥe/σ limit. Of course, we have
already observed (30) that the average crossing times approach
their deterministic counterparts in this limit.

In the Gaussian limit, we can find a theoretical expression for
the SNR. We start by computing the RTDF for the upstate (i.e.,
the right hand or positive well of the potential energy function)
for which individual residence times are denoted by T+ = t2 −
t1, with t1,2 being the individual crossing times. The density
function of the residence times is obtained via the convolution

P (T+) =

∞∫
−∞

P1(T+ − t2)P2(t2) dt2 (33)

which, after some manipulations, yields

P (T+) =
1√

4πΣ2
exp

{
− 1

4Σ2
(T+ − t10 + t20)2

}
. (34)
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An analogous expression may be computed for the RTDF in
the downstate. Then, using (4), setting σ2

Tn
= 2Σ2, and taking

〈T+〉 ≈ t20 − t10, we obtain the theoretical SNR as

SNR =
1
2

Ĥeω

σTn

ΔT√
T0 − ΔT

√
Tob. (35)

We note the Ĥe/σ dependence of the (theoretical) SNR for
the sinusoidal bias signal considered here; this implies im-
proved performance with increasing Ĥe and/or a lowered noise
standard deviation. The former must be, however, balanced
against the (possible) need for low onboard power in a practical
system, as well as the increased noise floor contributed by the
(sinusoidal) waveform generator. With increasing Ĥe, 〈ΔT 〉
decreases, and the lobes of the RTD converge to a single sharp
peak at T0/2; in essence, a very large (and suprathreshold) Ĥe

linearizes the device. The SNR increases as
√

Tob; increasing
the observation time leads to better statistics (and averaging).
However, in practical applications, the observation time could
be limited. At this point, the observation time should be care-
fully defined. Tob is the interval during which the temporal
averaging window (that one “slides” over the data) is updated.
Finally, we recall that the target signal Hx enters via the
deterministic crossing times t1,20.

The aforementioned SNR computation was achieved without
a (direct) calculation of the RTDF. If necessary though, this
density can be calculated via the convolution of the individual
densities P (T±), and it can be evaluated in the large Ĥe/σ limit
via the convolution and a Laplace expansion of the integrals
[67]. The result is [13], [55]

P (ΔT ) =
1√

8πΣ2
exp

[
− (ΔT − ΔTd)2

8Σ2

]
(36)

with the subscript d denoting the deterministic value.
We note in passing that, in light of the result shown in Fig. 5,

the Gaussian (in the limit considered in this section) nature of
the density function P (ΔT ) should not occasion any surprise.

To conclude this section, we introduce a (noise-dependent)
performance measure, called the resolution. This quantity is
the minimum magnetic-field change that can be discriminated
by the sensor against the background, after ambient static
(homogeneous) magnetic fields have been nulled out, as is done
when the sensor is deployed in the mode of detecting small
changes in the ambient magnetic field. The resolution is defined
as [66]

R = STD(ΔT )/ [∂〈ΔT 〉/∂Hx] (37)

where 〈ΔT 〉 represents the averaged RTD, STD(ΔT ) is the
standard deviation of ΔT , and the denominator is simply the
slope of the output-input transfer characteristic (the plot of
〈ΔT 〉 versus the target signal Hx) and represents the device
responsivity. For small target signals, we expect this slope to
be independent of Hx (i.e., 〈ΔT 〉 ∝ Hx); this is, of course,
convenient for practical applications and has been discussed
earlier. The numerator in (37) is the standard deviation of
the RTD. The resolution is seen to be roughly the inverse
of an SNR. In laboratory characterizations involving actual

Fig. 7. (Top) Drawing of the fluxgate structure realized via a modified
PCB technology. (Middle) Photograph of the fluxgate fabricated by using the
magnetic ribbon. (Bottom) Photograph of the fluxgate fabricated by using the
100-μm magnetic microwire.

sensors, the resolution is computed inside the shield. Hence,
it is a function only of the sensor and its noise floor. It is
independent of the operating environment of the sensor when
used in an application, and the threshold. Hence, it is a number
that can be used to characterize the sensor performance, much
like the noise-floor characterization that is usually used for
magnetometers that are read out via the response PSD. We will
return to the resolution later in this paper; at the end of the
next section, we describe how this quantity is obtained through
experiments.

E. RTD Fluxgate Fabrication: “Ribbon” and “Microwire”

Several sensor prototypes have been fabricated to demon-
strate the suitability of the RTD readout methodology, and
different technology solutions have been explored for this task.
In particular, the attention has been focused on the choice of the
core material, which is required to have very high permeability
and very low coercivity in order to satisfy the hypotheses
made previously (e.g., instantaneous switching that can result
in a nearly digital device). Two major solutions have been
identified: one based on a “ribbon” magnetic core [68] and
the other based on a magnetic microwire [69]. In Fig. 7, we
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Fig. 8. Comparison of experimentally obtained resolutions for the (dashed
curve) PCB and (solid curves) microwire fluxgate prototypes. The devices were
driven by a triangular excitation signal of 5-mA amplitude at 80 Hz (figure
reproduced with permission from [43]).

show (top) the “skeleton” of the fluxgate, together with (mid-
dle) the ribbon material produced by Metglas, and (bottom)
the microwire fluxgate prototype. These experimental sensor
prototypes have been characterized in terms of performance
[43], spatial resolution [70], demagnetization [71], and perming
[72]. In Fig. 8, the results obtained during the experimental
evaluation of the resolution of the two sensor releases as a
function of the the time window length over which the output
is averaged are shown. It is clear that the microwire fluxgate
shows better resolution performance, and this is mainly due to
the absence of damage to the core material magnetic domains;
therefore, it is the best candidate when one wants to detect very
weak magnetic signals. As shown in the Fig. 8, a resolution
[66] of a few hundreds of picotesla has been obtained for these
devices when averaging over a time window of 30 s. The results
shown here have been obtained by using an excitation current
of 5 mA at 80 Hz.

A careful choice of the system parameters leads to even better
performances both in terms of resolution and power budget.
More recent, carefully optimized experimental devices have
yielded resolutions around 100 pT, at 1 mA and 320 Hz [64]. In
Fig. 9(a), we show one of the most recent results obtained for
the SCFG: the PSD, expressed in pT/

√
Hz, of the magnetic-

field response in the absence of the dc target signal. From the
PSD, one can quantify the noise floor at 1 Hz of the device;
it is around 100 pT/

√
Hz. This value represents the amplitude

of the “apparent” noisy external magnetic signal when the
sensor is placed in a clean and quiet (magnetic) environment
corresponding to a nominally “zero” target signal. It is prudent
to reiterate that, in our mode of operation (via the RTD rather
than the PSD) of the device, the bias signal is applied at
relatively low frequency [320 Hz for the device characterized
in Fig. 9(a)], compared to what would be the case for a
standard commercial device readout via the PSD (in this case,
the bias frequency is typically around 104 kHz). In the RTD
approach, the optimal bias will always be a low-frequency and
small-amplitude signal, thus significantly reducing the power
consumption of our fluxgate. However, increasing the bias
frequency to 320 Hz yields faster responses than those shown

Fig. 9. (a) PSD (divided by the sensitivity, i.e., the ratio 〈Δt〉/Hx) of the
response in an SCFG driven at 320 Hz; the data are smoothed to better
evaluate the noise floor at 1 Hz. (b) Resolution experimentally obtained for
the SCFG as a function of the time frame over which the output data are
averaged (observation time); resolution values well below 1 nT are obtained
with increasing observation times (Fig. 9(b) reproduced with permission
from [64]).

in Fig. 8; in fact, in Fig. 9(b), the resolution (37) is plotted
against the observation time. The figure shows that resolution
values (below 1 nT) are obtained with a 1-s observation time.
In particular, the PSD shown in Fig. 9(a) has been obtained
by using an observation time of 300 ms, where the resolution
is around 2.5 nT; better resolution values will require longer
observation times, of course.

The aforementioned performance, taken together with the
very low cost of the device and, also, the inherent simplicity
of the device and of its conditioning circuit, puts RTD fluxgates
at, or near, the forefront of the current state of the art [32], [35],
[38]. Our results make clear that the tradeoff between resolution
and observation time is the ultimate decider of the efficiency
and viability of these sensors in practical operating scenarios.

III. CCFG MAGNETOMETER

While unforced dynamical systems of the general form (2) do
not oscillate, by coupling N > 2 elements of the general form
(1) in a specific configuration and by ensuring that the initial
state of at least one of them is different from the others, the
system dynamics transit to oscillatory behavior [25], [26] when
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a suitably chosen control parameter exceeds a critical value;
this control parameter can be either the coupling coefficient or
a dc applied signal. We now focus our attention on a real device
that exploits these properties (with a specific topology that is
believed to occur in some biological systems).

As discussed in the introduction, the idea is to couple an
odd number N of wound ferromagnetic cores in a ring con-
figuration, i.e., the coupling is unidirectional and the boundary
conditions are cyclic; this means that the bias signal needed to
switch the ith element (i.e., to have its state point transition
its energy barrier) will be provided by the output of the one
that it is coupled to. This affords the possibility of being able
to generate the reference oscillations, needed in the case of
the SCFG, in the circuit itself, without the necessity of the
externally applied bias signal. In turn, this could result in a
reduced noise floor since, in the single-core magnetometer, the
bias signal generator accounts for a significant percentage of
the noise floor.

This model realization of a “CCFG magnetometer” can then
be described via the following equations [25], [26] for N = 3
coupled cores:

ẋ1 = − x1 + tanh (c(x1 + λx2 + Hx))

ẋ2 = − x2 + tanh (c(x2 + λx3 + Hx))

ẋ3 = − x3 + tanh (c(x3 + λx1 + Hx)) (38)

where xi(t) represents the (suitably normalized) core magne-
tization of each unit and Hx is the external dc magnetic field
to be sensed. The parameter c has already been defined in the
context of (2), while the time constant τ has been set equal to
unity for convenience. It is important to note that the oscillatory
behavior occurs even for Hx = 0; however, when Hx �= 0,
the oscillation characteristics change, and these changes can
be exploited for signal quantification purposes. The elements
in (38) are assumed to be identical for theoretical simplicity;
however, in practice, the cores and circuit elements are not
the same, and this situation has been addressed in [73]. Notice
that the unidirectional coupling term, having strength λ, which
is assumed to be equal for all three elements, is inside the
nonlinearity, which is a direct result of the mean-field nature
of the description.

Under the aforementioned conditions, the system (38) dis-
plays an oscillatory behavior [25], [26] which commences when
the coupling coefficient exceeds a threshold value

λc = −Hx − xinf +
1
c

tanh−1 xinf (39)

with xinf =
√

(c − 1)/c; note that, in our convention, λ < 0, so
that oscillations occur for |λ| > |λc|. The individual oscillations
(in each elemental response) are separated in phase by 2π/N
and have period [25], [26]

Ti =
Nπ√
cxinf

[
1√

λc − λ
+

1√
λc − λ + 2|Hx|

]
(40)

which shows a characteristic dependence on the inverse square
root of the bifurcation “distance” λc − λ, as well as the target

Fig. 10. Emergent oscillatory behavior in the coupled system (38) for N = 3.
The top panel shows the oscillations near the critical point. The summed
response is indicated by the thick black lines, and the individual element
responses follow the gray lines in all panels. The amplitudes are fully grown
at the start of the bifurcation, and the frequency is low. At the birth of the
oscillations, the frequency is zero. The parameters are set at λ = −0.60
and Hx = 0. The second panel shows the oscillations for a higher coupling
strength λ = −0.75, and Hx = 0. Contrasted with the top panel, the frequency
increases significantly. The frequency scales as a square root of |λ| and Hx.
The third panel shows the individual element oscillations for λ = −0.60
and Hx = 0.05. Notice that the sum signal (last panel), obtained from the
individual oscillations in the third panel, is greatly offset between the upper
state (above zero) and the lower state (below zero). Also notice the decrease in
frequency when the target signal Hx is nonzero compared to the top panel. The
initial conditions for all simulation runs are (x1, x2, x3) = (1.0, 0.0,−1.0)
and c = 3, and the time step size is 0.00268. For each panel, the critical
coupling λc, at the onset of the oscillations, may be determined from (39)
(figure reproduced with permission from [25]).

signal Hx; these oscillations can be experimentally produced
at frequencies ranging from a few hertz to high kilohertz. The
summed output

∑
i xi(t) oscillates at period T+ = Ti/N . Note

that the “oscillations” are actually switching events between
the stable states of each core; they occur as long as at least
one element has an initial condition that is different from the
remaining elements (clearly, in any practical system, this con-
dition is almost always satisfied). The setup clearly eliminates
the need to apply the reference bias signal, as required for
the single fluxgate. Increasing N changes the frequency of
the individual elemental oscillations, but the frequency of the
summed response is seen to be independent of N . Fig. 10 shows
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Fig. 11. Response curve of the CCFG to an applied target dc magnetic
field Hx versus coupling strength. As λ approaches the critical value λc =
−0.5345, the response curve rises almost vertically, which suggests that the
sensitivity of the device increases dramatically in this regime. c = 3, Hx =
0.1, and −1.0 ≤ λ ≤ −0.54. The RTD (ΔT ) response is plotted (figure
reproduced with permission from [25]).

the oscillatory behavior, obtained via numerical simulations
of the coupled system (38). The RTD for this system can be
computed, in the absence of a noise floor, as [25], [26]

ΔT ≈ π√
cxinf

[
1√

λc − λ
− 1√

λc − λ + 2|Hx|

]
(41)

which vanishes (as expected) for Hx = 0, and can be used
as a quantifier of the target signal, which is analogous to the
time-domain operation of the SCFG. Using the last expression,
we can obtain an approximation to the RTD in the small Hx

limit

ΔT ≈ πHx√
cxinf

(λc0 − λ)−3/2 (42)

where we set λc0 = λc(Hx = 0). We observe that the sensi-
tivity ∂(ΔT )/∂Hx is significantly enhanced as we get closer
to the critical point; this is shown in Figs. 11 and 12. It is
worth reiterating that a sensitivity ∂T+/∂Hx, defined via the
(summed) oscillation period T+, is actually proportional to H2

x

(for small Hx), as can readily be calculated from (40). This may
not be desirable in practical sensors where one would like to
develop the optimal sensor configuration independently of the
target signal. Hence, from this standpoint, the RTD constitutes
the more desirable measure.

The system sensitivity, defined previously, is seen to sig-
nificantly increase when the critical point in the oscillatory
regime is approached; this suggests that careful tuning of the
coupling parameter so that the oscillations have very low fre-
quency could offer significant benefits for the detection of very
small target signals. The preceding statement must, however,
be qualified by an important caveat: In practical setups, the
oscillation frequency cannot be set too low in order to ensure
good coupling between the cores and the circuit components; in
turn, this places an upper bound on the sensitivity. In addition,
sensor noise (both from the electronics and the core material) is
likely to be somewhat larger in amplitude at low frequencies.
Despite these caveats, however, it is clear that our coupling
scheme affords the exploitation the target-signal dependence

Fig. 12. RTD plotted as a function of the (weak) dc target signal Hx with
a fixed coupling parameter λ = −0.8. The sensitivity is now given by the
slope of the response curve and is seen to increase as Hx approaches the
potential energy barrier height, as expected (figure reproduced with permission
from [25]).

of the emergent oscillations for detection and quantification
purposes.

A recent twist [74] to the aforementioned coupling scheme
has led to a substantial improvement in the performance of the
CCFG. The idea is to reverse the orientation of successive cores
so that the sign of the Hx term in (38) alternates; for an odd N ,
this guarantees that there will be two adjacent elements with
the same sign of Hx. This alternating configuration [alternate
output (AO)] arrangement is described (with i = 1, . . . , N ,
where N is odd) by

ẋi = −xi + tanh
(
c(xi + λxi+1modN + (−1)i+1Hx)

)
.
(43)

One can readily calculate [74] the oscillation period Ti
AO of

an individual element, as well as the threshold value λAO
c for

the onset of oscillations; these quantities are identical to those
given previously for the conventional arrangement. However,
this does not apply to the RTD. We find that this quantity
changes, depending on the particular element under consider-
ation. Focusing on the element i = 1, which has the same sign
of Hx as the element that it is back coupled to (namely, the
i = 3 element), we find [74]

ΔT1 = NΔT (44)

with the result generalized to the arbitrary N (odd) case. In
(44), the quantity ΔT represents the RTD obtained via the
elements N = 2 or 3; in turn, we can show that ΔT is the same
result that would accrue in the standard configuration [standard
output (SO)], i.e., using the AO and carefully selecting the
appropriate element whose RTD response is computed provide
enhanced sensitivity to a given target dc signal. This departure
from the standard behavior in the arrangement (38) is evident
in Fig. 13. In fact, recalling that ∂ΔT/∂Hx measures the
sensitivity of a CCFG, it follows that the sensitivity of the
AO configuration improves linearly by a factor of N when
compared to the best sensitivity that can be achieved by the
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Fig. 13. Time series from simulations on (above) a standard CCFG arrange-
ment and (below) an AO arrangement. The RTD Δ1(t) (see text) of the element
x1 in the AO arrangement is seen to be N times the corresponding quantity in
the standard arrangement. N = 3, c = 3, λ = −0.54, and Hx = 0.07 [A/m]
(figure reproduced with permission from [74]).

standard CCFG configuration, given the same external signal
and core parameters. For best performances, the output signal
considered is the one gathered at the “inverted” core.

The dependence of the RTD and, consequently, of the sen-
sitivity on the size (i.e., number of coupled dynamic elements)
of the ring in the AO configuration is in direct contrast to the
sensitivity response of the standard configuration, in which in-
creasing N beyond N = 3 does not lead to additional benefits.
The aforementioned observations are confirmed in Fig. 14, in
which we calculate numerically the RTD for a CCFG system
with standard (SO), as well as alternating (AO), configuration.
As expected, near the onset of coupling-induced oscillations,
the RTD response of the i = 1 element in a standard CCFG
configuration remains constant, while that of the AO configura-
tion increases linearly with N .

A. CCFG Magnetometer Implementation

The experimental coupled-core device involves three wound
coupled cores (similar to those used in the SCFG) and the
coupling circuit that connects them together to conform to the
model equation (43). Fig. 15 shows the block diagram, as an

Fig. 14. RTD response (ΔT1) of the x1 element in a CCFG as a function
of the number of elements N in the ring and coupling strength λ. (Above)
Standard configuration and (below) AO configuration. Near the onset of
coupling-induced oscillations, in particular, the RTD response of the standard
configuration remains constant (as expected), while that of the AO configura-
tion increases linearly as a function of N . c = 3, Hx = 0.07 a.u. In each case,
the maximum RTD is realized infinitesimally past the critical coupling λc. The
response has been computed, in both figures, via a numerical integration of
the full system dynamics (38) and (43). Note the (substantial) difference in the
vertical scales (figure reproduced with permission from [74]).

overview, of the setup. The cores are mounted on the faces of
a structure with a triangular section for orienting all of them
in the same direction (the device is effectively a single-axis
sensor with the target field measured along each core axis) and
then coupled through electronic circuits wherein the voltage
readout (i.e., the time derivative signal of the flux detected by
one of the sensing coils) is amplified by a voltage amplifier.
Next, the signal is passed through an integrator to convert the
derivative signal seen by the sensing coil back to the “flux”
form so that the experimental system closely conforms to the
model. The signal then passes through an amplifier to achieve
adequate gain to drive the adjacent fluxgate. Following this,
the signal passes through a voltage-to-current converter (V –I
converter) in its final step to drive the primary coil of the
adjacent fluxgate. The setup is repeated for the other two
coupling connections for the remaining cores, and all values
of the coupling circuit parameters are closely matched from
one set to the other. Each stage of the coupling circuit also
employs high-speed and high-precision operational amplifiers
(op-amps) to minimize the time delay in order to conform
closely to the model, since the knowledge of the state variable
xi must be available instantly in any application. Once the
coupled-core device is configured, as described previously, the
outputs of the three stages are sent for processing in order to
extract the information about the target field being detected.
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Fig. 15. Flow diagram of the coupled system as an overview for the device
realization (figure reproduced with permission from [25]).

The signals are taken from each of the integrator stages and
passed through a summing circuit; the output of the summing
circuit is then passed through an ST. If the signal is greater
than the upper threshold value of the ST, then the output is
a HIGH, corresponding to +10 V. The output remains HIGH
until the input signal falls below the lower threshold value of
the ST, which then outputs a LOW, corresponding to −10 V. In
essence, the ST converts the output into a clean dichotomous
signal, retaining only the all-important information about the
locations (along the time axis) of the switching events. The
output from the ST is passed through a voltage divider and
a diode to convert the signal to transistor–transistor logic in
which +5 V corresponds to a HIGH and 0 V corresponds
to a LOW. These HIGH and LOW states are then passed to
a programmable integrated circuit microcontroller for further
processing. Then, the residence time is determined as follows:
The lower residence time (T−) is the time difference between
the crossing time of the upper threshold and the crossing time
of the previous lower threshold; the upper residence time (T+)
is the time difference between the crossing (in the upward
direction) time of the lower threshold and the next crossing
(in the negative direction) of the upper threshold. Clearly, the
rapid time constant τF ensures that the crossing events are near
instantaneous.

Fig. 16. Time series from (left column) the experimental CCFG system for
Hx = 0 and (right column) a small dc target signal Hx = 6.0 A/m. The top
panel shows the traveling wave pattern, illustrating the oscillation of the three
coupled fluxgate cores. Each one has the same amplitude and frequency, but
each is phase shifted by 120◦, as observed in the numerical model. The bottom
panel shows the outputs as seen by the sensing coils of the coupled device. The
response matches the numerical observations (Fig. 10) (figure reproduced with
permission from [26]).

The oscillations observed from the experimental prototype
are in very good qualitative agreement with the theoretical ex-
pectations (Fig. 16). The system readily oscillates in a traveling
wave pattern, and each wave is phase shifted by exactly 2π/3,
as predicted by the model. The comparison of the oscillations
from the experiment to the numerical results shows good agree-
ment with the caveat that, since the values of c and the time
constant τ in the actual device (we set τ = 1 in the model for
convenience) are not known, we cannot correctly compare the
timescales in the model and the experimental observations. The
amplitudes of the oscillations in the experiment are also arbi-
trary in comparison to the model because the recorded voltages
depend on the gains set in the coupling circuit. On the other
hand, the magnetic flux in the model saturates between ±1, but
in the devices, this quantity cannot be measured directly.

Further illustration of good agreement between the numerical
and prototype systems is the frequency scaling (Fig. 17), as
a function of the coupling strength and also as a function of
the applied (dc) field. As expected from (40), the frequency
of the coupled sensor system should rise as the square root of
the coupling strength or the applied field magnitude. As the
coupling strength increases, the frequency decreases until the
coupling strength is at the critical value, where the oscillations
cease to exist. Increasing the coupling values beyond this
point will not produce any oscillation. We recall that, in the
convention adopted in the theoretical description of this system,
the coupling is negative, so that an “increase” of coupling im-
plies that the coupling coefficient λ approaches zero. Similarly,
increasing the applied field in either direction away from zero
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Fig. 17. Experimentally obtained frequency scaling with respect to the cou-
pling strength, expressed as a gain, and the applied dc target magnetic field. The
curves scale as

√
λc − λ in accordance with the theory.

Fig. 18. Experimentally obtained family of responsivity curves, in terms of
RTD as a function of the applied field for different coupling strengths (figure
reproduced with permission from [26]).

will reduce the frequency of the oscillations, as predicted by the
model. The oscillations cease to exist when the applied field is
too large, because the field moves the system past the critical
point of the onset of the oscillation. In fact, for a given coupling
strength, the maximum detectable field magnitude is equal to
the separation between the coupling strength and the critical
value.

Fig. 18 shows a family of responsivity curves as a function
of the applied field for different coupling strengths; the figure
should be compared to the theoretically generated Fig. 12. The
slopes of the curves indicate how responsive the coupled system

Fig. 19. Power spectrum of the moving-window averaged coupled-core mag-
netometer output in the 0.003–55.395-Hz frequency range.

is to the applied field. As the coupling strength is increased to-
ward the critical value, the responsivity curve becomes steeper.
The greatest sensitivity is realized when the coupling strength
is set closest to the critical value, but in this regime, it can only
detect a very small target field amplitude. Hence, the ability
to tune the coupling to detect a range of target field strengths
must be a central feature of this mode of operation; when
implemented, it presents a capability where one may tune the
excitation amplitude to reduce the sensitivity and increase the
operating range. The experimental sensitivity obtained for
the laboratory prototype is S = 0.000531 s/(A/m). We remark
that 0.000531 s is the variation of the RTDs when a field of
1 A/m is applied; this implies that, by using a 200-MHz counter
to estimate the RTD, the uncertainty from the counter alone
would correspond to 10−5 A/m or, referring to the magnetic
flux in vacuum, to about 12 pT. Of course, a faster clock can
alleviate this resolution limitation of the device, but that is
not the point. The result must be viewed in context with the
fluctuations in the RTD produced by magnetic and E noises;
the actual resolution of the device is indeed limited by the total
system noise. In the experiments, the noise is estimated from a
time series (270 s) of the magnetometer output with the sensor
placed in a three-layer Metglas [68] magnetic shield, with no
target field applied (Fig. 19).

B. Cooperative Behavior for Increasing N : Mitigating the
Effects of Background Noise

The noise floor in the CCFG (and the SCFG) can arise from
a contamination of the external target signal, as well as from the
readout electronics, magnetic core, etc. Regardless of the source
of the noise, we have treated it as being Gaussian band-limited
noise, as already formally defined in (15).

A small additive noise floor (arising from internal sources)
manifests itself in fluctuations of the “rest” states of each core,
about the deterministic mean values ±b (the minima of each
core potential energy function in the absence of coupling).
The numerical simulations [75] of the coupled system, for this
case, show that the threshold crossings are quite sharp and
unambiguous in the presence of this noise term, as long as the
noise is not too strong; this is a direct consequence of the very
low time constant τ (usually, � τc) of each core; to all intents
and purposes, each element behaves like a static nonlinearity,
with near-instantaneous switching events.

We now consider the situation wherein the target dc signal is
noise contaminated. In this case, one augments additively the
dc target signal with a correlated noise term ζ(t) [of the form
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Fig. 20. Simulation results showing the difference in SNR responses between
AO and SO configurations. The graphs are plotted against the coupling strength
λ and the noise parameter D [see discussion after (15)]. Observe that, near the
onset of coupling-induced oscillations, the SNR response of the AO configu-
ration is significantly better. The maximum SNR in each case is obtained just
barely past the critical point (defined by λc). The improvement in the SNR as
a consequence of the increase in the number N of coupled elements should be
observed: Top figure refers to N = 3, while bottom figure refers to N = 7.
Other parameters are c = 3, τc = 150.0, and ε = 0.07. In each case, the SNR
has been evaluated for the element with the maximal response (see text) (figure
reproduced with permission from [26]).

specified in (15)] in (38) and (43). Our simulations in this case
[74] have focused on a comparison of the spectral response
(quantified by an SNR obtained at the spectral feature at the
oscillation frequency in the oscillatory regime), the intention
being to compare the response of the coupled system (38) with
the one (AO) where the sign inversion has been introduced in
the coupling factor. These comparisons are well summarized in
Fig. 20, wherein we plot the SNR difference (at the oscillation
frequency) between the standard (SO) and alternating (AO)
configurations (given by (38) and (43), respectively). One read-
ily finds that the AO configuration provides far better SNR per-
formance when operated close to the onset of switching, i.e., in
the low-frequency oscillation regime just past the critical point.
The improvement is enhanced for increasing N . The AO con-
figuration therefore offers a tangible way of improving the sen-
sor responsivity (or resolution) by exploiting large-N effects.

The resolution R for one element of the coupled-core
arrangement can be computed from (37) [76]. This expression
has been theoretically derived under the small noise approxima-

tion. Using the AO arrangement and considering the “favored”
element (which yields the best response) x1, we arrive at the
following:

R ≈
√

σ2

2N2

(
1 − 9

16
σ2

δ2
0

)1/2

1 + 15
8

σ2

δ2
0

. (45)

In deriving (45) [76], we have represented the noise as a
contamination of the threshold or, equivalently, the dc target
signal, with δ0 being the bifurcation distance |λc − λ|. The
sensor noise floor is seen (in experiments) to manifest itself as
fluctuations superimposed on the upper and lower thresholds
given roughly by the inflection points of the underlying poten-
tial of the active element that is assumed to be isolated during
the switch. Here, we insert an important conceptual point:
The coupled system (38) is not derivable from the gradient
of a potential energy function because of the unidirectional
coupling. However, during a switching event, the switching
element may be regarded as stemming from a single-body po-
tential energy function since the remaining elements are in their
steady states. This visualization of the sequential switching
dynamics allows us to effectively decouple the dynamics during
a switching event; in turn, we can derive [25], [26] the closed-
form expressions (39)–(41) for the deterministic system. The
aforementioned approximation breaks down in the presence of
large amounts of noise; in this case, one can no longer assume
that two of the elements will remain confined to their steady
states while the third element is switching.

The very small (compared to the other timescales in the sys-
tem) sensor time constant guarantees that, once the switching
event is underway (i.e., the state point has reached a switching
threshold), the duration of the switch is near instantaneous and
quite “clean,” i.e., there are no fluctuations about the unstable
saddle point. For very large noise, this description breaks down,
of course; however, practical sensors are specifically engineered
so that the sensor noise floor is extremely low. Under the same
assumptions, the RTD density can also be derived [76]; as
expected, this density has a noise-dependent tail which gets
longer (i.e., the mode of the density function shifts to smaller
values) with increasing noise intensity. For very weak noise
intensity, the tail shrinks with the density function approaching
a Gaussian; this has also been corroborated in our laboratory
experiments. We note that the resolution is independent of the
target signal Hx and improves with increasing N . In practice,
however, increasing the number of elements adds to the engi-
neering complexity and also results in a higher noise floor due
to the additional cores and circuit elements, together with an
increased power budget; hence, one always must strike a fine
balance between these issues and the resolution that might be
appropriate for a particular application.

C. Experimental Measurement of the CCFG Resolution

We conclude this section with a brief description of how
the resolution (37) is measured experimentally in a CCFG
consisting of N = 3 cores, following the AO dynamics (43),
i.e., the “favored” element for measuring the RTD is x1(t). The
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procedure parallels that used in the SCFG to obtain Figs. 8
and 9. We use an observation time (recall that this is the
interval at which our measurement window is updated) and
an oscillation frequency that is adjusted (via the coupling λ)
to yield 15–20 cycles of the response during this observation
window. Of course, the observation time can be increased, but
this would depend on the circumstances of the particular appli-
cation and, more importantly, on the statistics and stationarity
(or lack thereof) of the ambient noise. Keeping Hx fixed, we
compute the time-averaged RTD Δ1 by averaging the RTDs
obtained in the observation window. The experiment is then
repeated several times for the same Hx; each repetition yields
a time-averaged (over the observation window) RTD which is
not necessarily the same as the others due to fluctuations. In
this way, one obtains a large number of time-averaged RTDs
corresponding to the fixed value of Hx. The quantity 〈Δ1〉 is
then the statistical average of these points (for the same value
of Hx). The process is repeated for different values of Hx.
A plot of 〈Δ1〉 versus Hx shows clusters of discrete points
(each point corresponding to an average over the observation
window) for each value of Hx. The locus of the statistical
means of each cluster of points then yields a straight line
for small Hx. In Fig. 21, we have shown the “return map”
of the (experimentally obtained) RTDs. For a given Hx, each
data point in a cluster represents the (window-averaged) RTD
at two successive observation intervals; thus, we generate a
cluster of points corresponding to a plot (actually, a “residence-
times return map”) of Δ1(n + 1) versus Δ1(n). Each cluster
of points corresponds to one value of the target field Hx (in
the absence of background noise, each cluster would collapse
into a single point for that particular value of Hx); in this
experimental sequence (Fig. 21), the point clusters correspond
to values of Hx that are approximately 2.0 nT apart. One can
use a smaller separation of Hx values; however, this separation
has been chosen for the purposes of elucidation (with smaller
separation, the clusters tend to merge). The density function of
each cluster is near Gaussian, with a mean value corresponding
to the averaged RTD over all the discrete points and a standard
deviation that can be computed from the observations. The lo-
cus of the mean values is the straight line. When one plots these
mean RTD values as a function of Hx (not shown), the slope
of this line [the responsivity, i.e., the denominator of (37)] is
229.83sT−1. In the figure, the standard deviations of the point
clusters are (from left to right) 0.057315, 0.054994, 0.065573,
and 0.04463 μs, corresponding to resolutions [calculated from
(37)] of 250, 240, 286, and 195 pT, respectively, resulting in
a mean resolution of 242 pT for this particular sensor. The
resolution is approximately constant (the deviations arise from
experimental uncertainties and fluctuations) in this regime of
low target signal.

It is important to realize that, as Hx increases, the target
signal becomes more easily “resolved.” However, the analytic
description of the response breaks down when Hx becomes
comparable to (or exceeds) the energy barrier height of a
single-element (isolated) potential function; in this regime, the
resolution becomes Hx dependent. One expects, at least in the
linear response regime (Hxx0 � ΔU , where ΔU is the energy
barrier height of a single isolated element), that the distribution

Fig. 21. Return map of the (experimentally obtained) RTDs; each cluster
corresponds to a different Hx, and the straight line is the locus of the means.
Each individual point in a cluster corresponds to an average of 15–20 values
of the RTD taken in an observation time window (updated every 0.1 s).
The standard deviation of each cluster is a function of Hx, while the mean
value is proportional to Hx so that the responsivity [denominator of (37)] is
an Hx-independent number (see text). At low signal values, the resolution
is approximately constant (see text). The parameters are N = 3 cores and
G = −0.8. G is an experimentally realized (via the ratio of two resistors in
the coupling circuit) gain parameter corresponding to the coupling coefficient
λ in the theoretical description (figure reproduced with permission from [26]).

of the discrete points corresponding to a given Hx will be near
Gaussian; this is, in fact, observed in our experiments. The
numerator in (37) is also computed, directly from the data, for
each value of Hx. It is important to note that the quantity in (37)
incorporates the effects of the noise on the sensor performance
in a simple manner that can be easily implemented in practice;
we can, in fact, use this quantity to make comparisons between
different sensor versions.

IV. COUPLED FERROELECTRIC CAPACITORS: AN EFS

It is well known [5] that ferroelectric materials exhibit hys-
teresis in their polarization versus applied E-field response.
This suggests that one might be able to exploit this behavior
to realize an EFS with dynamics qualitatively similar to the
(single- and coupled-core) fluxgate magnetometer.

EFSs find utility in a number of applications, e.g., geo-
physical exploration, oceanography, and biomedical imaging/
mapping. The EFSs, used in these applications, usually rely
on a computation of (changes in) the potential difference be-
tween two electrodes attached to a conducting medium (e.g.,
the sea bottom for oceanographic experiments); the sensitivity
improves with increased baseline, but this also makes the sen-
sors somewhat cumbersome and expensive. Nonetheless, they
remain an important imaging tool largely because the terrestrial
E-field fluctuations/pulsations are on a far smaller scale than
their magnetic counterparts.
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Fig. 22. Simple realization of the “Sawyer–Tower” circuit.

The synergetic exploitation of ferroelectric materials and
micromachining technologies affords a route to quantifying
charge density amplification in a nonlinear active medium (the
ferroelectric material); in turn, this leads to a novel sensing
strategy based on coupling nonlinear elemental cells. Essen-
tially, the elementary cell consists of a micromachined capacitor
whose core is a ferroelectric material, polarized via an imposed
bias E field. The polarization status is altered when the target E
field (taken to be dc) is superimposed on the (known) bias field.
Furthermore, a suitably fabricated external receptor allows
amplification of the target field to the sensing element [77].

The nonlinear ferroelectric devices considered in this paper
can be modeled by the following differential equation in the
polarization PFE :

τeṖFE = aPFE − bP 3
FE + cEx + Ee sin ωt. (46)

Again, the over dot denotes the time derivative, and a, b, and
τe denote the material-dependent system parameters governing
its bistable behavior; c is a coefficient that characterizes the
“strength” of the coupling between the external E fields and
the dielectric sample. It is important to note that (46) is, in fact,
derived [77], [78] from a mean-field description of the system;
we do not reproduce this here, however. The potential energy
for the given material is therefore expressed as

U(PFE , t) = −a

2
P 2

FE +
b

4
P 4

FE − cExPFE − EePFE sinωt.

(47)

The E field in the sample can be seen as the result of the con-
tributions coming from an auxiliary E field (the time-sinusoidal
bias field) and an external E field to be detected. The presence
of a target signal results in the asymmetry of U(PFE , t), and
detection techniques are aimed at quantifying this asymmetry.
Furthermore, in order to characterize the ferroelectric device, a
suitable circuit is required; it is based on a charge amplifier and
is the “Sawyer–Tower circuit” [6], [79] shown in Fig. 22.

In this circuit, the polarization PFE of the ferroelectric
capacitor CFE is proportional to the circuit output voltage Vo.
The definitions of the polarization as a function of E field and
the E flux as a function of capacitance lead to

Vo = −CFE

Cf
Ve (48)

Fig. 23. (Thin red curve) Experimental characterization and (thick black
curve) parameter estimation of the hysteresis in the ferroelectric sample; a time-
periodic signal having 10Vpp amplitudes and 100-Hz frequency has been used
to produce the E field across the capacitor.

that can be rewritten as

Vo = −CFE

Cf

PFEAFE

CFE
(49)

and finally lead to

Vo = −AFE

Cf
PFE . (50)

Equation (50) expresses the proportionality between the circuit
output and the polarization of the ferroelectric capacitor, where
AFE is the ferroelectric capacitor area.

One of the relevant technological issues addressed here is the
realization of an integrated ferroelectric capacitor in which the
bias-electrode geometry must be such to polarize the ferroelec-
tric sample while allowing the target electric field to perturb this
dielectric polarization status. If a suitable sinusoidal bias field is
imposed on the ferroelectric material through the capacitor bias
electrodes, then, ideally, a square wave will occur at the circuit
output due to the bistable behavior of the system. The external
perturbation to the electrical polarization will be observed via a
change in the output signal.

The ferroelectric capacitors investigated in this paper were
realized at the Penn State University Laboratories. A common
silver electrode was evaporated onto a silicon substrate, the fer-
roelectric material was deposited over this (bottom) electrode,
and, finally, several top electrodes were “spotted” over the top
surface of the ferroelectric and bonded to the external connec-
tions. The hysteretic behavior of the sample material has been
confirmed (in the absence of a target signal) experimentally
[77], as shown in Fig. 23, where the Sawyer–Tower output
voltage is plotted against the input voltage that is proportional
to the bias E field. These experimental observations were used
[77] to identify the parameters of the analytical model given in
(46); in turn, the analytic model is plotted in the figure with a
thicker line.

Operating the EFS as a single-element device, via a reference
(i.e., excitation) applied signal Ve, that produces an excitation
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Fig. 24. Schematic view of the charge collection mechanism to enhance
sensitivity in ferroelectric EFSs.

E field Ee to induce switching between the stable polarization
states is however problematic due to the high coercive fields
that are typical in ferroelectric materials. This is not an issue
for magnetic materials; hence, the SCFG can be readily real-
ized without a very large onboard power consumption. Thus,
the idea of coupling an odd number of overdamped bistable
elements [each one having dynamics of the form (46)] in a ring,
with unidirectional coupling and cyclic boundary conditions,
and forcing the system into oscillation is particularly appealing
in this case because the “oscillations” do, in fact, correspond to
switching over the energy barriers of each elemental potential.
In what follows, we report on the effects of inserting a small dc
“target” E-field signal into the (coupled) element system, via
an appropriate charge collection/amplification mechanism that
perturbs the polarization status of the capacitors, as shown in
Fig. 24. The charge collection mechanism has been considered
in great detail in our recent work [77].

The idea is to use a three-electrode configuration: two for
polarizing the ferroelectric layer and a third one to convey the
perturbation due to the target field to the sensing region. The
latter electrode is wired to a “charge collector” consisting of
a conductive plate. The purpose of the “charge collector” is
to collect the charges induced by the target E field; in turn,
the collected charge is immediately transferred to the sensing
plate, thus perturbing the polarization of the “sensing region.”
This behavior has been confirmed via a finite-element method
analysis [78]; the changes induced in the polarization status of
this capacitor manifest themselves in alterations of the output
signal from the signal-conditioning circuit.

In analogy to our preceding treatment of coupled ferromag-
netic cores, one can explore the nonlinear dynamics of the
circuit obtained by unidirectionally coupling an odd number
of ferroelectric elements. The circuit implementation of this
system is shown in Fig. 25.

The coupled dynamics, for N = 3 elements, are written in
the following form [80]:

τeṖ1 = aP1 − bP1
3 + λc(VO3 − VO1)

τeṖ2 = aP2 − bP2
3 + λc(VO1 − VO2)

τeṖ3 = aP3 − bP3
3 + λc(VO2 − VO3) (51)

Fig. 25. Coupled ferroelectric capacitor circuit implemented with analog
electronics.

Fig. 26. Coupled ferroelectric capacitor system oscillation frequency versus
the coupled gain λ.

with λ being the coupling coefficient, and a, b, and c being
the potential function parameters that, together with the time
constant τe, can be determined as part of the material character-
ization process [81].

Simple calculations [80] yield the critical coupling λc

λc =
a

2
+

5
3

√
b

2a
cEx (52)

beyond which the system oscillates. The frequency of the
oscillations, as well as the “residence times” of each element
in the up and down stable polarization steady states, can be the-
oretically computed [80] and are found to be in good agreement
with experiments and simulations.

The experiments carried out with this coupled circuit yield
the expected oscillations in good agreement with theoretical
predictions [78]. In Fig. 26, the oscillation frequency is shown
as a function of the coupling gain. The existence of a limiting
minimum gain value (proportional to λc), below which the
system does not oscillate, is also evident in this figure.

Some other preliminary experimental characterizations have
been performed by placing the measurement system between
two large parallel conducting plates, used to generate a known
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Fig. 27. (a) Simulated results for the output voltage frequency as a function of
the charge accumulated on the capacitor plate. (b) Experimental observations
of the output voltages; the 2π/3 phase shift among the output voltages can be
observed. (c) Experimental observations of the changes in the output voltage
frequency as a function of the external target E field. The frequency behavior in
(a) and (c) is qualitatively similar to the behavior of the analogous quantity in
the CCFG (see, e.g., Fig. 17) and has been discussed rigorously in [80].

target E field. The experimentally observed change in the
position of the main peak in the power spectrum of the output
signal is shown in Fig. 27(c), and a good qualitative agreement
is obtained with the simulation results shown in Fig. 27(a). The
three output voltage waveforms are shown in Fig. 27(b).

V. DISCUSSION AND CONCLUSION

In this paper, we have presented an alternative to quantifying
the output of a nonlinear dynamic system via the PSD. The
residence-times-based technique is relatively simple to imple-
ment in practical scenarios; all that are required are for the
detection/processing electronics to keep track of the threshold
crossing events and maintain a running average, i.e., the arith-
metic mean, of the residence times in each stable state. Then,
the mean RTD 〈ΔT 〉 provides a measure of the unknown target

signal that created the asymmetry and, therefore, a nonzero
〈ΔT 〉. While the target signal in this paper is taken to be
dc, it is clear that a modification of the residence-times-based
readout scheme could be effected for more complex signals;
the CCFG lends itself particularly well to this scenario [82].
The choice of the bias signal waveform is important to the
issue of the overall resolution defined roughly as the ability
to discriminate the means of the residence-times densities in
the presence of a small asymmetrizing target signal. In this
context, it has been demonstrated [83] that the triangular bias
signal yields better performance due to its (local) linearity at
the points where the signal intersects one of the thresholds. The
bias signal amplitude does not need to be extremely large [13];
this point has been addressed in some detail with the pertinent
observation that a bias signal amplitude slightly larger than the
deterministic switching threshold (roughly, the energy barrier
height) suffices, except for special operating conditions (e.g., a
large noise floor).

Clearly, in such a situation, it would be preferable to adjust
the system parameters [e.g., the constant c in the potential
energy function (2)] so that the energy barrier is lowered when
weak target signals are to be detected in a noise floor. Absent
such a control, however, adjusting the bias amplitude effectively
lowers (or raises) the energy barrier. With a large background
noise floor, the density functions tend to merge, leading to
inaccuracies in the computed RTD, unless a large number N
of observations can be made. Increasing the bias amplitude Ĥe

enables one to better resolve the density functions, even as it
leads to a greater power requirement. Hence, one must also
consider the tradeoff between resolution, sensitivity, and power
when designing a sensor aimed at a particular class of target
signals. Noise effects become more important as the bias signal
amplitude approaches the threshold; the RTD is no longer sym-
metric (about its mean value), it develops tails, and its mean and
mode separate. In [83], we employed a stochastic perturbation
theory approach to determine the upper bound on the achievable
accuracy, via a family of estimation procedures that can be
simply implemented and are asymptotically optimal in the
vanishing noise limit. Based on these calculations, the SCFG
appears to be the optimal magnetometer for some applications
involving low-cost compact magnetometers out of the entire
class of pulse position modulated fluxgate magnetometers [8],
[27], [28].

For the SCFG, the bias frequency does not figure promi-
nently into the crossing statistics when we work in the nondy-
namical limit (i.e., the limit wherein the device time constant
is the smallest timescale in the dynamics); however, in the
general case, the frequency must be carefully selected. In
some ferromagnetic cores employed, for instance, in the simple
magnetometer used in our experiments, the (non-Gaussian)
Barkhausen noise floor depends on the bias frequency through
its effect on the slip dynamics of the domain walls; usually,
there exists a (material-dependent) optimal frequency at which
these effects are negligible [84]. Moreover, for the case of a
soft ferromagnetic core, the width of the hysteresis loop, which
determines the energy dissipated per cycle, can depend on the
frequency and amplitude of the bias signal. Keeping the bias
signal amplitude and frequency as low as possible can lead to
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significantly reduced onboard power; in a real device, this can
be an important consideration. However, clearly, the tradeoff
between onboard power and the observation window update
time Tob (which determines the accuracy of the experimental
estimate of the RTD) eventually dictates how the sensor is
operated.

The SCFG has been completed and patented. It boasts a
field (i.e., unshielded) resolution of 0.5–1.0 nT and currently
consumes about 150 mW of power; the latter number is ex-
pected to be significantly reduced in the near future, with
the insertion of ultralow-power electronic components that are
currently being designed. The sensor is configured to measure
the dc component of the ambient magnetic field and null it
out (i.e., normalize itself to the ambient field) at start-up; this
process, which can be repeated on cue, takes approximately
10 s. The size and weight of the device are predicated by
the length (typically 6 cm) of the wound core and the power
supply. If the onboard power is to be provided by batteries,
then the device will be much larger. A current biaxial ver-
sion of the magnetometer, with an external power source, has
10 × 10 × 1 cm dimensions and weighs about 0.5 kg (the
sensor is “podded” in epoxy for robustness, at the cost of
a small increase in weight). The magnetometer employs an
(approximately) single-domain microwire core [69], [84] which
has been characterized by us [43]. The observation time is 0.1 s.
This means that, in processing the output, we average the RTD
data using a temporal window of 30-s width; the window is
updated every 0.1 s. The bias frequency is 300 Hz, leading to
an acceptable number of data points in the 30-s window, and
the bias amplitude is taken to be approximately 1.25 times the
energy barrier height.

We have also developed a laboratory version of the CCFG
with the AO configuration. This sensor yields a dynamic be-
havior that faithfully follows all the theoretical predictions.
The laboratory (i.e., shielded) resolution of this sensor is
200 pT; however, its power consumption is currently quite high.
In principle, the resolution can be improved (i.e., the numerical
value decreases) by incorporating a larger number of cores;
this is readily apparent when we realize that the denominator
of (37) scales linearly as N [this is also seen in the theoret-
ical approximation (45)]. However, increasing the number of
cores comes at the cost of increased engineering complexity
and additional onboard power (for the coupling circuitry). In
addition, the effects of increasing N on the magnetic noise
floor are still under investigation, although the results shown in
Fig. 20 provide grounds for optimism that increasing N will not
degrade the response as long as we operate within well-defined
regimes of optimal response (e.g., near the onset of oscillations,
as suggested in Fig. 20). Here, however, an important caveat
emptor must be repeated. When the system is tuned very close
to the onset of oscillations, the background noise can have
a significant effect, particularly if it is large enough so that
its variance approaches the energy barrier height. This is the
weak coupling regime wherein the input to each element from
the element it is coupled to is deterministic but very small
compared to the noise floor. In this regime, an experimental
time series of the response displays a noise component that
decreases as the coupling becomes larger. Accordingly, while

the system may exhibit its best (theoretical) response in the low-
frequency regime, a practical system may need to be operated
somewhat farther away from the critical point; this option is
not available in the SCFG, where a large noise floor is usually
offset by increasing the bias signal amplitude at the cost of a
larger onboard power requirement. Clearly, this makes the case
for using every available means to a priori lower the system
noise floor.

Currently, the CCFG draws greater power than its SCFG
counterpart. This is largely due to the coupling circuitry and the
need to drive N cores instead of one (in the SCFG). However,
this is balanced by a significantly enhanced performance, quan-
tified by the resolution, as well as the experimentally observed
lower (compared to the SCFG) noise floor. In this context,
it must be noted (also in connection with the CCFG) that,
even though a bias signal is not explicitly inserted into the
coupled dynamics, there is still a power supply on board the
sensor to power electronic components (op-amps, etc). Thus,
the emergent oscillations do not violate any fundamental laws.
Future plans call for the realization of these circuits in low-
power CMOS, which should lead to a reduction in the power
budget for both sensors. In both sensors (CCFG and SCFG),
following the nulling procedure, the sensor detects very small
static magnetic fields (which can be far below the terrestrial
magnetic field) in motion.

We also point out that, in recent laboratory realizations of the
CCFG, the parameter mismatch issues have been reduced to a
minimum. The cores are near identical (cut from the same sam-
ple of single-domain magnetic wire), and the coupling circuitry
can also be set up so that the coupling coefficients λ are almost
the same throughout the arrangement. Hence, while there are
likely to be lingering mismatches in the parameter values, they
can be substantially minimized. Of greater concern then are
the sources of noise arising from the readout electronics, the
magnetic noise in the cores themselves, and fluctuations that
are superimposed on the target signal. The effects of fluctu-
ations have been addressed [76] in a very preliminary way,
using a somewhat simplistic model of fluctuations in only one
parameter (the target signal) and assuming moreover that the
fluctuations occur on the timescale of the observation time. This
yields a theoretical expression for the resolution that faithfully
reproduces qualitatively the behavior observed in experiments.
We also point to our earlier work [75], [85] in which we
described the effects of the fluctuations without the aforemen-
tioned timescale restriction and also described some rich noise-
mediated spatiotemporal behavior in large coupled rings. This
leaves us with another potential source of noise that can easily
arise in practice, namely, temperature fluctuations that affect the
nonlinearity parameter c, particularly when the same device is
operated in greatly different environments. The parameter c is
proportional to the ratio Tc/T , Tc being the Curie temperature.
Temperature fluctuations will therefore introduce complicated
state-dependent noise terms in the coupled dynamics. In turn,
the parameters λc, as well as the positions of the fixed points
of the core potential functions (for zero coupling), will also
fluctuate.

The EFS follows qualitatively similar physics as the mag-
netometer; however, the structural difference between the
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potential energy functions (2) and (47) should be noted; clearly,
the underlying physics determines the structure of the potential
energy in each case. Unlike the magnetometer, however, it can
be impractical to operate a single-element version of the EFS
because of the very high coercivity associated with ferroelectric
materials; this would necessitate a bias signal of very large
amplitude and, hence, a significantly larger (compared to the
SCFG) power supply. Accordingly, pending the development
of a ferroelectric material with lower coercivity, it seems more
natural to operate a coupled-element version of the EFS, as
presented in Section IV. A detailed laboratory characterization
of the single-element EFS, together with the parallel plate
mechanism used for charge collection, has been given in [77].
In this work, a reference signal of 10 V at 100 Hz yielded
very good sensitivity (as characterized by the slope of the
polarization versus applied E-field characteristic) with a noise
floor of 0.4 (V/m)/Hz1/2.

While the coupled-element EFS has already been realized in
the laboratory, we call attention to a very recent [86] bistable
microelectronic circuit for sensing extremely low electric field.
This circuit comprises three coupled elements; however, the
structure of the nonlinearity is very different from (51), with
both the coupling and the nonlinearity realized via hyperbolic
tangent functions that are reminiscent of the “soft” potential (2)
that characterizes the magnetic system. The coupling is again
taken to be unidirectional, and the dynamics are qualitatively
similar to (38) and (51). This microelectronic circuit realization
is an obvious extension (and exploitation) of the coupled system
dynamics that underpin the coupled-core magnetometer and
the coupled-element EFS presented in the current work. The
circuit yields effectively an extremely sensitive detector of
very low E current that can be realized on a chip; the entire
laboratory layout, including the readout electronics, currently
occupies a 4 cm × 4 cm circuit board. Thus, the bistable
microelectronic circuit provides a striking demonstration of the
utility of nonlinear dynamical systems which, when properly
understood, could provide new and exciting sensing paradigms.

It is important to realize that our coupling scheme is quite
general; it can readily be applied to a vast array of dynamical
systems which follow the basic “particle-in-potential” para-
digm of the form ẋ = −∇xU(x), with U being any bi- or
multistable potential and x being the appropriate state variable.
The ability to control the oscillation frequency (our system
can be made to oscillate at frequencies ranging from a few
hertz to several kilohertz) dramatically broadens the range of
applications that can benefit from this scheme. In a recent work
[82], we have demonstrated that the CCFG can be used to detect
time-periodic target magnetic fields by exploiting the very rich
nonlinear mixing behavior from the interaction of the target
frequency with the internal oscillation frequency.

As a final note, it is worth reiterating that the idea of threshold
crossing events leading to a quantification of external signals
is deeply rooted in the computational neuroscience repertoire
wherein one analyzes the response of a single neuron, or even
a small network, to a stimulus by examining the statistics of
the point process generated by successive threshold crossings or
“firings.” Thus, our proposed mode of operation actually leads
to an implementation of these sensors as “neural-like” devices.
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