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a b s t r a c t

This paper reports numerical and experimental investigation on a (bulk and etch silicon on insulator)
BESOI MEMS device. The implemented contactless actuation principle, exploits Lorentz forces exerted
on a conductive-non magnetic surface of the sensor. These forces derive from the interaction between
ccepted 5 April 2010
vailable online 31 May 2010

eywords:
ontactless MEMS
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the eddy-currents and the radial magnetic field, both generated by a sinusoidally driven external induc-
tor. Both excitation and readout strategies are performed remotely via a magnetic strategy. The sensor
proposed here has been first analytically and numerically studied by using CoventorWareTM 2008, then
the device prototype has been fabricated and a preliminary experimental campaign has been performed
to characterize the system in terms of variation of its resonance frequency against changes in the sensor
ESOI technology
umerical and experimental investigation

mass.

. Introduction

Resonant sensors that can be remotely interrogated offer the
ossibility to develop interesting applications, for example, in
he monitoring of hermetic areas or protected environments.

oreover, adverse, hazardous and inaccessible places are often
ncompatible not only with the “wired” solution but also with the
resence of active electronics. A possible solution is represented
y a contactless readout strategy that can be adopted to measure
ifferent physical quantities of interest (viscosity, temperature,
ressure, etc.) from a passive sensor located in a risky and unsafe
nvironment. The typical approach to sense a physical quantity
s represented by a measurement node which houses both sen-
ors and conditioning circuit. Generally, an electrical connection
etween the sensing element and the readout circuit is required,
hich is based on cables or field buses. However, it is often interest-

ng to monitor physical or chemical quantities in specific operating
onditions which require the circuitry to be separated from the
ensing element. Despite their intrinsic robustness, one of the main
rawbacks of cabled solutions is their unsuitability in enclosed,

naccessible and sealed areas. For this reason, wireless systems
nd communication protocols have been proposed as one possi-
le solution. Alternatively novel “uncabled” measurement systems

ave been realized where the active sensing element is spatially

ndependent from the external signal conditioner. In this new sce-
ario dedicated strategies for the power supply of the active sensing
lements are required to be adopted. At present, available power
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supply approaches can be based on on-board generators, such as
batteries, on energy scavenging solutions or on the energy transfer
from the external circuit.

This paper addresses the latter approach, namely the energy
transfer from the external circuit. Additionally, the work inves-
tigates the possibility of contactless exciting and detecting
mechanical resonances in micromachined structures by means
of an electromagnetic principle. In this context, the adoption of
the resonant principle seems particularly promising because of its
intrinsic robustness and independence from the particular sensing
technique adopted. The working principle proposed here requires
the resonator only to be electrically conductive, avoiding on-board
circuitry or any specific magnetic property.

The proposed methodology represents a novel approach suit-
able for passive microresonators realization, in fact only standard
MEMS materials (i.e. metal layer for the conductive sensor plate,
and the others as structural materials) are employed, without sup-
plementary highly polluting substances or deposition of magnetic
alloys.

We therefore here suggest the use of a sensor element totally
passive, consisting of a resonant structure that can be excited and
interrogated without contact by using an external electromagnetic
field; this is promising for performing measurements of different
physical quantities [1–4] especially in environments not compati-
ble with the requirements of active electronics.

Several examples of passive contactless resonators, where a

movable inertial mass, fabricated by using different materials such
as ferrofluids, amorphous FeSiB, silicon mass, etc. can be contactless
excited and detected employing magnetic, vibration-based or opti-
cal principles have been presented in the scientific literature [1–3].
In this paper, a MEMS microresonator composed by four crab-
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Fig. 1. Schematic diagram of the contactless principle applied to an inertial mass
suspended by four silicon beams in a crab-leg configuration. The sinusoidal signal
ωe is used to excite the inertial mass, whereas the bias at pulsation ωp generates
a magnetic field onto the conductive plate (yellow). The output at the pick-up coil
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The process flow can be summarized as follows:
s an amplitude modulated signal having a carrier at ωp . (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
he article.).

eg beams and a suspended mass has been designed. The device
as been fabricated at CNM, Barcelona, Spain by adopting a BESOI
bulk and etch silicon on insulator) micromachining technology.
he interrogation contactless working principle, previously studied
y the authors [5–7], consists of an actuation principle based on the
xploitation of Lorentz forces generated by the interaction between
time-varying magnetic field and the eddy-currents that this mag-
etic field induces onto a conducting surface. The detection strategy

s based on probing the magnetic field induced on the conductive
urface of the resonator. The induced magnetic field is modulated
y the vibrations of the resonator and it is sensed at a pick-up coil

n a differential configuration. Suitable frequency differences are
dopted between the actuation and the sensing sections.

The realized device has been numerically and experimentally
nvestigated by means of CoventorWareTM 2008. The simulator
llowed to study the static and dynamic behavior of the micro
evice and the eddy-currents distribution generated by the induc-
or. An analytical model dedicated for a crab-leg BESOI structure
as been developed and confirmed by a measurement campaign,
erformed in the MEMS device.

. Working principle: a brief overview

In this section, a brief overview of both the contactless actua-
ion principle and the remote readout strategy is presented; more
etails can be found in [7–9].

The contactless working principle consists of an actuation prin-
iple based on a Lorentz force source and a detection principle
ealized by a carrier signal and a pick-up coil in a differential con-
guration.

In Fig. 1 the schematic diagram of the contactless principle
pplied to a crab-leg microresonator is shown:

By forcing a periodic bias current at pulsation ωe in the solenoid
a periodic magnetic field is generated. The solenoid is placed
such to face the conductive surface of the suspended mass of the
resonator, the magnetic field induces therefore an eddy-current

density in the conductive plate. The interaction between the
eddy-currents and the radial component of the magnetic field
(Br) results into a Lorentz force per unit of volume that moves the
conductive mass in the z direction. The force along the z axis (Fz),
Fig. 2. Cross-sectional area of the bulk and etch silicon on insulator (BESOI) tech-
nology used.

can be expressed as follows [7]:

Fz = 0.5 · k(ωe)[Br · sin(�) + Br · sin(2ωet + �)] (1)

The force expression evinces a constant force component cor-
related to the conductor plate impedance phase (�), and a
component that evolves with a pulsation of 2ωe. The force is pro-
portional to the radial component of the magnetic field Br and
to the factor k(ωe) which depends on the electrical impedance of
the conductive surface and on the induced eddy-current density.
Adopting an excitation pulsation of ωe = ωr/2, where ωr rep-
resents the mechanical resonance pulsation of the device, the
system will oscillate at the resonance frequency.

• The detection principle is based on a periodic bias current at
pulsation ωp forced in the solenoid. The induced magnetic field
creates an eddy-current density in the conductive plate and gen-
erates a magnetic field Bs. The oscillations of the mass generate
an amplitude modulation on the carrier bias and the infor-
mation can be extracted using the two sensing coils with a
frequency domain readout strategy. In the absence of the con-
ductive passive element, only the carrier bias frequency appears;
on the contrary, in presence of the resonator two spectral compo-
nents will appear as consequence of the motion of the structure
(ωp ± ωr = ωp ±2 ωe). This working principle can be applied to dif-
ferent families of micromachined devices like cantilever beams,
bridges, suspended masses with springs, crab-leg structures, etc.
In the next section the numerical and experimental investiga-
tion of an inertial suspended mass, with four springs in a crab-leg
configuration is discussed. This structure offers greater robust-
ness respect to a simple cantilever beam and it is also possible
to integrate a consistent inertial mass; this represents an advan-
tage in terms of Lorentz force actuation because a big proof mass
implies a low resonance frequency and negligible skin effects.

3. Investigation on a BESOI crab-leg microresonator

The MEMS device investigated here is a suspended mass sup-
ported by four crab-leg beams, it has been realized by using a
BESOI process, available at the Centro Nacional de Microelectronica
(CNM) of Barcelona, Spain.

A silicon on insulator (SOI) wafer based on 15 �m c-Si layer
and 450 �m carrier substrate with 2 �m of buried oxide, has been
processed with a front and back-side DRIE etching technique. Func-
tional materials as metal and polysilicon have been added as shown
in Fig. 2. Furthermore, a doping c-silicon procedure based on POCl3
has been used to increase the electrical conductivity.
◦ Doping of c-Silicon, high concentration, about 1020 (POCl3),
◦ thermal grown of oxide on both sides, thickness = 100 nm, at tem-

perature of 1100 ◦C,
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deposition of polysilicon on both sides, thickness = 480 nm,
doping of polysilicon,
removing the PSG formed during the doping of the polysilicon,
photolithography of polysilicon, mask used: poly,
RIE etching for removing polysilicon on the front-side, thickness
to be removed = 480 nm,
especial deposition of contact (the oxide between polysilicon and
metal) on the front-side, thickness = 130 nm (no doped oxide),
thickness = 600 nm.
annealing of contact (for reflowing it and planarize the surface of
the wafer),
photolithography of contact, mask used: contact,
RIE etching of oxides: contact + thermal oxide, thickness to be
removed = 600 nm + 130 nm (SiO2) + 100 nm (thermal oxide),
deposition of metal (Al/Cu) on the front-side, thickness = 700 nm,
photolithography of metal on the front-side, mask used: metal,
RIE etching for removing metal on the front-side,
deposition of pad (SiO2 + Si3N4) on the front-side, thick-
ness = 500 nm,
removing polysilicon and SiO2 on the back-side,
deposition of metal (Al/–Cu) on the back-side, thick-
ness = 1000 nm,
photolithography of SiO2 on the front-side, mask used: pad.

A silicon suspended mass has been designed with four silicon
prings (100 �m width and a length of 800 + 1600 �m for the seg-
ent anchored to the central proof mass and the one anchored to

he substrate, respectively).
The physical behavior of the micromachined sensor has been

nvestigated by using CoventorWareTM 2008, and a finite element
ethod (FEM) analysis. Fig. 3a shows the layout of the investigated

evice, whereas Fig. 3b presents the 3D model mesh realized by
sing an adaptive second order tetrahedrons architecture.

The MemMech tool has been used to analyze the resonance fre-
uency along the z axis (forcing a sinusoidal bias, Fig. 3c) and also
he effect of the of the gravity (imposing a constant force value as
oundary condition, Fig. 4a).

From the simulation results a resonant frequency of about
00 Hz has been computed by using the Lanczos solution method.
ig. 4a shows the mass displacement along the easy axis in the
bsence of supplementary applied load to the plate surface of the
icroresonator: a maximum value of about 0.3 �m has been detect

round the center of the conductive plate.
The MemHenry toolbox of CoventorWareTM has been used to

nalyze the effect of the eddy-currents induced on the top surface
f the device. In order to do this, an external inductor has been
onsidered as variable magnetic source (Fig. 4b).

The device has been also analytically studied by using an ener-
etic approach which takes into the account not only the strain
nergy density along the beams [8] but also including the contri-
ution of torsion. Furthermore, the model must consider the effect
f the materials offered by the BESOI process: for this reason the
quivalent section method theory will be included in the analytical
tudy.

The free body analysis of a single crab-leg beam with an applied
orce along the z axis and by adopting the Castigliano’s theorem,
he displacement (ız) of the structure as a consequence of a load
orce (Fz) has been evaluated.

The Hooke’s law has been used to derive the elastic constant
long the z axis, needful to estimate the resonance frequency [10].

By adopting the heterogeneous beam theory, the spring con-

tant assumes the following form:

Z = 4FZ

ız
= 48A2(BLa + ALb)(ALa + BLb)

A2BL5
a + 4A3L4

aLb + AB2L4
aLb + 4A2BL3

aL2
b

+ 4A2BL2
aL3

b
+ 4A3LaL
Fig. 3. (a) Layout of the micromachined investigated device based on BESOI tech-
nology. (b) Tetrahedrons-based model mesh. (c) Harmonic response along the z axis
(normalized to its maximum value).

The equation takes into the account that the spring constant of the
flexure is four times the single beam spring constant. La and Lb rep-
resent the length of the two beam segments, for the longest leg and
for the other one respectively. A and B represent two terms func-
tion of the moment of inertia, considering a heterogeneous beam
composition and the torsion constant:

A = EmaxIn (3)

B = Emax

2(1 + vmax)
J (4)
4
b

+ AB2LaL4
b

+ A2BL5
b

(2)
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Fig. 4. (a) MemMech analysis: displacement color map in absence of applied load
to the plate surface of the microresonator. An exaggeration factor of 400 has been
applied just to show the deflection of the structure. (b) MemHenry analysis: eddy-
currents distributed onto the micromachined mass. A variable magnetic field having
a frequency of 226 Hz has been imposed through an inductor frontally disposed
respect the metal plate. This value represents the excitation frequency necessary to
move the passive element at the resonance.

Table 1
Summary of the electrical and geometrical inductor characteristics.
tors A 162 (2010) 329–335

Emax is the maximal value of the stack materials Young’s modu-
lus and �max is the maximal value of the stack materials Poisson’s
ratio. In represents the beam inertia’s moment evaluated through
the heterogeneous beam theory. J is torsion constant for a beam
having a rectangular cross section.

A resonance frequency of about 506 Hz has been computed con-
sidering the inertial mass (M) composed by the 450 �m of silicon,
the buried oxide, the 15 �m of crystal silicon, and the oxide layers
(Diff, Cont, Metal and Pad).

The springs are composed of 15 �m of silicon, and three oxides
(Diff, Cont and Pad). The mass of the micromachined device is
3e−6 kg and the spring constant kz, estimated through the hetero-
geneous beam theory, corresponds to about 30.6 kg/s2. By means
of Eq. (5) a first order estimation of the resonance frequency of the
structure can be derived.

fr = 1
2�

√
kz

M
(5)

The resonance agrees with the results obtained by using numeri-
cal analysis previously performed through CoventorWareTM 2008.
Furthermore, the result is in accordance with the simplified model
based on strain energy density along the beam, neglecting the tor-
sion contribution [8].

4. Experimental results

The experimental investigation has been performed using a
proper designed coil to excite and to sense the device oscillations.
In order to increase the signal-to-noise ration in the detection tech-
nique, a FeSiB amorphous ferromagnetic microwire [11], prepared
by the rotating water spinning method and having the nominal
diameter of 100 �m, has been selected as the core of the coil.

Two superimposed primary windings are used as excitation and
probing coils, while two lateral windings, in differential configu-
ration, represent the output pick-up coil. Table 1 summarize the
electrical and geometric characteristics of the inductor.

The excitation current corresponds to 19 mApp while the prob-
ing bias amplitude is 13 mApp. During the experimental campaign a
distance between the coil and the microresonator of about 200 �m
has been maintained.

The excitation signal has been applied to the coil by means of a
voltage–current converter amplifier, while a sinusoidal signal has
been applied to the probing coil. The output signal from the pick-
up coil has been analyzed by using two high pass filters and an
instrumentation amplifier.
Fig. 5 shows the experimental setup basically composed by a
microtranslator, used to move the inductive sensor and to tune its
distance as respect the MEMS die which has been fixed on the bot-
tom of the setup, and an acquisition system. A post-processing data
elaboration has been performed thorough MATLAB routine.
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Fig. 5. Schematic diagram of the measurement schem

Fig. 6. (a) Microscope picture of the BESOI crab-leg device realized. (b) Validation
of the contactless working principle: the central spike represents the contribution
at the resonance. An analysis around this value has been conducted by varying the
excitation bias frequency. A sinusoidal waveform has been maintained during the
experimental campaign.
e with details pictures of the individual parts.

Fig. 6a shows the realized BESOI device. A sinusoidal signal
having an amplitude of 900 mVpp and a probing bias of 6.5 Vpp

@ 1.087 MHz have been used. The excitation frequency fe around
fr/2 has been tuned by using a signal generator, and the output
signal has been observed around fr, that is the mechanical reso-
nance frequency of the structure. The contactless principle has been
validated and a resonant frequency of about 450 Hz with a qual-
ity factor of 1.4 has been experimentally estimated. Fig. 6b shows
the superposition of the frequency spectra of the magnetic read-
out signal obtained for different values of the excitation frequency
fe. It can be observed that the spectra have a resonance envelope
centred around the frequency fp–fr, that is around the modulated
mechanical resonance frequency. An application of the resonator
as a mass sensor has also been investigated. To this purpose differ-
ent quantities of paint have been added on the top surface of the
resonator.

The superposition of the frequency spectra of the magnetic read-
out signal for different values of the excitation frequency fe has
been repeated for increasing values of the mass loading. Fig. 7(a)
and (b) shows the spectra for the mass loading of respectively 220
and 440 �g. As it can be observed for each deposited sample a new
resonance envelope centered around to a new resonance condition
has been detected. From the experimental data, sensitivity of about
0.18 Hz/�g and a resolution of about 79 �g have been experimen-
tally detected. In order to best fit the experimental data with the
model (5), a multidimensional unconstrained nonlinear minimiza-
tion (Nelder–Mead [12]) has been performed. The model used for
the optimization process is the following:

fr = 1
2�

√
akz

M
+ b (6)
where a and b represent the parameters used for the minimiza-
tion process. Both the terms tend to compensate the discrepancy
between the experimental data and the model. As expected, a res-
onant frequency decrement has been detected as a consequence of
different quantities of deposited paint. Fig. 8 shows the evolution of
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Fig. 7. Analysis around the resonance frequency, different value has been detected
as consequence of the masses quantity deposited: (a) ∼220 �g of paint, (b) ∼440 �g
of paint.

Fig. 8. Experimental results and model performed with a minimization process vs.
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ferences and published in international journals and books.
ifferent quantities of deposited samples. The equation obtained assumes the fol-

owing expression: fr = (1/2�)(
√

(0.7016kz/M) − 18 Hz). M represents the mass
f the micromachined device and also the contribution of the deposited masses.

he resonance frequency as function of different deposited quan-
ities and compared with the model based on the unconstrained
onlinear minimization.

. Conclusions

In this work the possibility of contactless exciting and detect-
ng mechanical resonances in micromachined resonators has been
roved. The principle relies on no specific magnetic property of
he resonator except electrical conductivity. The proposed princi-
le exploits the Lorentz force arising from the interaction between
n inductively induced eddy-current density and an external time-
arying magnetic field. The vibrations of the resonator are detected

y exploiting a probing magnetic field which induces on the con-
uctive surface of the resonator an eddy-current density. The
agnetic field generated by the induced eddy-current density is
odulated by the vibrations of the resonator and it is sensed by an

dditional pick-up coil.
tors A 162 (2010) 329–335

A four beams crab-leg BESOI-based suspended mass has been
designed and fabricated to be used as microresonator. The con-
tactless working principle has been experimentally validated and
agreement between the analytical and numerical analysis, realized
through CoventorWareTM 2008, has been found. Furthermore, in
order to apply the proposed principle to the sensing of a physical
quantity, the device has been studied as contactless mass sensor.
An analysis of the resonance frequency variation as consequence
of the mass increment has been realized. For each deposited quan-
tity a new resonance frequency has been detected and a resonance
envelope around it has been verified. Finally a multidimensional
unconstrained nonlinear minimization (Nelder–Mead) has been
realized in order to best fit the experimental data with the model.
As a future step the optimization of the Q-factor is planned.

The proposed principle can be applied to measure a large vari-
ety of physical quantities, which can induce a predictable shift in
the oscillation frequency of the resonant structure, such as pres-
sure, temperature or mass loading. Possible applications can be
microbalance devices disposed in inaccessible area or biomedical
devices for the subcutaneously measurement of biologic enti-
ties.
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