N
N

N

HAL

open science

Agile Asynchronous Backtracking for Distributed
Constraint Satisfaction Problems

Christian Bessiere, El Houssine Bouyakhf, Younes Mechqrane, Mohamed

» To cite this version:

Christian Bessiere, El Houssine Bouyakhf, Younes Mechqrane, Mohamed Wahbi. Agile Asynchronous
Backtracking for Distributed Constraint Satisfaction Problems. RR-11017, 2011, pp.01-20.

00595688v2

Wahbi

HAL Id: lirmm-00595688
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00595688v2

Submitted on 25 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

lirmm-


https://hal-lirmm.ccsd.cnrs.fr/lirmm-00595688v2
https://hal.archives-ouvertes.fr

LABORATOIRE D'l NFORMATIQUE, DE ROBOTIQUE
ET DE MICROELECTRONIQUE DEMONTPELLIER

LIRMM, University Montpellier 2, CNRS

TECHNICAL REPORT

Agile Asynchronous Backtracking for
Distributed Constraint Satisfaction
Problems

Christian Bessierd  El Houssine Bouyakh?
Younes Mechgrané Mohamed Wahbi'-2

LLIRMM, University Montpellier 2, France
2LIMIARF/FSR, University Mohammed V Agdal, Morroco

May 2011 R.R.LIRMM RR-11017

161, Rue Ada - 34392 Montpellier Cedex 5 - France
Tél: +33 (0)4 67 41 85 85 - Fax: +33 (0)4 67 41 85 00



Abstract

Asynchronous Backtracking is the standard search proeefdurdistributed
constraint reasoning. It requires a total ordering on thentgy All polynomial
space algorithms proposed so far to improve AsynchronowuktBecking by re-
ordering agents during search only allow a limited amourreofdering. In this
paper, we propose Agile-ABT, a search procedure that istatdbange the order-
ing of agents more than previous approaches. This is donaiariginal notion
of termination value, a vector of stamps labelling the nedecs exchanged by
agents during search. In Agile-ABT, agents can reorder setres as much as
they want as long as the termination value decreases asat@hggogresses. Our
experiments show the good performance of Agile-ABT when parad to other
dynamic reordering techniques.

1 Introduction

Various application problems in distributed artificialetiigence are concerned with
finding a consistent combination of agent actions (e.gtribiged resource allocation
[6], sensor networksl])). Such problems can be formalized as Distributed Corgtrai
Satisfaction Problems (DisCSPs). DisCSPs are composegeots each owning its
local constraint network. Variables in different agents aonnected by constraints.
Agents must assign values to their variables so that alltcaings between agents are
satisfied. Several distributed algorithms for solving 866G have been developed,
among which Asynchronous Backtracking (ABT) is the centraé [10, 2]. ABT is
an asynchronous algorithm executed autonomously by easht &y the distributed
problem. Agents do not have to wait for decisions of othetsthey are subject to a
total (priority) order. Each agent tries to find an assignnsaiisfying the constraints
with what is currently known from higher priority agents. ¥Whan agent assigns a
value to its variable, the selected value is sent to loweanrjyiagents. When no value
is possible for a variable, the inconsistency is reporteligber agents in the form of
a nogood. ABT computes a solution (or detects that no sal@igsts) in a finite time.
The total order is static. Now, it is known from centralize8Rs that adapting the order
of variables dynamically during search drastically fastére search procedure.

Asynchronous Weak Commitment (AWC) dynamically reordegerdas during
search by moving the sender of a nogood higher in the orderttfeother agents in
the nogood9]. But AWC requires exponential space for storing nogo&ikghi et al.
(2007 tried to hybridize ABT with AWC. Abstract agents fulfill theordering oper-
ation to guarantee a finite number of asynchronous reomgleperations. In7], the
heuristic of the centralized dynamic backtracking was iepplo ABT. However, in
both studies, the improvement obtained on ABT was minor.

Zivan and Meiselq200§ proposed Dynamic Ordering for Asynchronous Back-
tracking (ABTDO). When an agent assigns value to its vaeaBBTDO can reorder
lower priority agents. A new kind of ordering heuristics ®BTDO is presented in
[13. Inthe best of those heuristics, the agent that generateg@od is placed between
the last and the second last agents in the nogood if its dosiggris smaller than that
of the agents it passes on the way up.



In this paper, we propose Agile-ABT, an asynchronous dyoamdering algorithm
that does not follow the standard restrictions in asynchusrpacktracking algorithms.
The order of agents appearibgforethe agent receiving a backtrack message can be
changed with a great freedom while ensuring polynomial sganplexity. Further-
more, that agent receiving the backtrack message, caletidbktrackingarget is
not necessarily the agent with the lowest priority withie tonflicting agents in the
current order. The principle of Agile-ABT is built on ternaition values exchanged by
agents during search. A termination value is a tuple of pesibtegers attached to an
order. Each positive integer in the tuple represents thearp current domain size
of the agent in that position in the order. Orders are chamyealgents without any
global control so that the termination value decreasesdgxaphically as the search
progresses. Since, a domain size can never be negativéndtion values cannot de-
crease indefinitely. An agent informs the others of a new robgesending them its
new order and its new termination value. When an agent cagspeuo contradictory
orders, it keeps the order associated with the smallesination value.

The rest of the paper is organized as follows. Sec#oacalls basic definitions.
Section3 describes the concepts needed to select new orders thatdedhe termina-
tion value. We give the details of our algorithm in Sectédband we prove it in Section
5. An extensive experimental evaluation is given in Sec@o8ection7 concludes the
paper.

2 Preliminaries

The Distributed Constraint Satisfaction Problem (DisC&& been formalized irLJ]
asatupld A, X, D,C), whereA is a set of agentsy is a set of variable§zy, . .., 2, },
where each variable; is controlled by one agentid. D = {Dq,..., D, } is a set of
domains, wherd); is a finite set of values to which variable may be assigned. The
initial domain size of a variable; is denoted byi?. C is a set of binary constraints
that specify the combinations of values allowed for the t@aables they involve. A
constraint;;, € C between two variables; andzxy, is a subset of the Cartesian product
cir © Di X Dk.

For simplicity purposes, we consider a restricted versibBDisCSP where each
agent controls exactly one variable. We use the terms agentariable interchange-
ably and we identify the agent ID with its variable index. Afjents maintain their own
counter, and increment it whenever they change their valhe. current value of the
countertagseach generated assignment.

Definition 1 An assignmentfor an agent4; € A is a tuple(x;, v;,t;), wherev; is

a value from the domain af; andt; is the tag value. When comparing two assign-
ments, the most up to date is the one with the highest;tagwo sets of assignments
{(Iil » Vigs til ), ey (Iik y Vi s tlk)} and {(Ijl » Ujy s tj1 ), ey (Ijq » Vjgs tjq)} are coher-
entif every common variable is assigned the same value in btdh se

A, is allowed to store a unique order denotedbhyAgents appearing beforé; in
o; are the higher agents (predecessors) denotegelby( A;) and conversely the lower
agents (successorS)cc(A;) are agents appearing aftéy.



Definition 2 TheAgentView of an agent4; is an array containing the most up to date
assignments aPred(A4;).

Agents can infer inconsistent sets of assignments, calbggbods A nogood can
be represented as an implication. There are clearly maferelift ways of representing
a given nogood as an implication. For examplfxi=v1) A- - - A (a=v)] is logically
equivalent td(za=vs) A -+ A (zx=vi)] — (21 # v1). When a nogood is represented
as an implication, the left hand sid§) and the right hand side k) are defined from
the position of—. A nogoodng is compatible with an orde; if all agents inlhs(ng)
appear beforehs(ng) in o;.

The current domain of; is the set of values € D; such thatz; # v does not
appear in any of the right hand sides of the nogoods stored;byach agent keeps
only one nogood per removed value. The size of the currentdoof A; is denoted

3 Introductory Material

Before presenting Agile-ABT, we need to introduce new nudiand to present some
key subfunctions.

3.1 Reordering details

There is one major issue to be solved for allowing agentsyaod@sonously propose
new orders: The agents must be able to coherently decidénvanéer to select. We
propose that the priority between the different orders sedeontermination values
Informally, if o, = [A44,...,A,] is the current order known by an age#t, then
the tuple of domain sizelg, ..., d,] is the termination value aof; on A;. To build
termination values, agents need to exchagsg#anations

Definition 3 An explanation ¢; is an expression of the forihs(e;) — d;, where
lhs(e;) is the conjunction of the left hand sides of all nogoods stdneA; as justifi-
cations of value removals, anfj is the number of values not pruned by nogoods in the
domain ofA;. d; is also denoted byhs(e;).

Each time an agent communicates its assignment to othetsa@pgrsending them
an ok? message), it inserts its explanation in thke? message for allowing other
agents to build their termination value.

The variables in the left hand side of an explanatigmust precede the variable
x; in the order because the assignments of these variablebbeaxaised to determine
the current domain of ;. An explanatiore; induces ordering constraints, callsafety
conditionsin [4].

Definition 4 A safety conditionis an assertionz;, < z;. Given an explanation;,
S(e;) is the set of safety conditions induceddyy whereS(e;)={(zr < z;) | zx €
lhs(ej)}.



An explanatiore; is compatible with an ordero if all variables inlhs(e;) appear
beforez; in o. Each agen#; stores a sef’; of explanations sent by other agents.
During searchF; is updated to remove explanations that are no longer valid.

Definition 5 An explanatiore; in E; is valid on agentA; if it is compatiblewith the
current ordero; andlhs(e;) is coherent with the AgentView 4f .

When E; contains an explanatioty associated withd;, A; uses this explanation
to justify the size of the current domain df;. Otherwise A; assumes that the size of
the current domain ofi; is equal tod?. The termination value depends on the order
and the set of explanations.

Definition 6 Let F; be the set of explanations stored Ay, o be an order on the agents
such that every explanation ifi; is compatible witho, ando(k) be such thatd,; is
thekth agentino. Thetermination value TV (E;, o) is the tupletv!, ... tv™], where
toF = rhs(eom)) if eory € Ei, otherwisefv® = dg(k).

In Agile-ABT, an order is always associated with a termioatvalue. When
comparing two orders thetrongestorder is that associated with the lexicographi-
cally smallesttermination value. In case of ties, we use the lexicographiler on
agents IDs, the smallest being the strongest. Considem&tarnice the two orders
01=[A1, Ag, A5, Ay, As] and 0o=[A1, Aa, Ay, A5, A3] where agents are ordered ac-
cording to their IDs from left to right. If the termination ke associated witlo,
is equal to the termination value associated witho, is stronger tham; because the
vector(1, 2, 4,5, 3] of IDs in o, is lexicographically smaller than the vecfar2, 5, 4, 3]
of IDs in o;.

3.2 The backtracking target

When all values of an agent; are ruled out by nogoods, these nogoods are resolved,
producing a new nogoodg. ng is the conjunction ofhs of all nogoods stored by
A;. If ng is empty, then the inconsistency is proved. Otherwise, digeoconflicting
agents must change its value. In standard ABT, the agenh#sathe lowest priority
must change its value. Agile-ABT overcomes this restrictiy allowing A; to select
with great freedom the target agettif who must change its value (i.e., the variable to
place in the right hand side afg). The only restriction to place a variahbig in the
right hand side of.g is to find an ordev’ such thatl'V (up_E, o’) is lexicographically
smaller than the termination value associated with theeotirorder ofA;. up_E is
obtained by updating; after placingey, in rhs(ng).

FunctionupdateExplanations takes as arguments the g8t, the nogoodng
and the variabler;, to place in therhs of ng. updateExplanations removes all
explanations that are no longer coherent after plagin@ the right hand side ofg.

It updates the explanation of agefif stored inA; and it returns a set of explanations
up_F.

This function does not create cycles in the set of safety itiomd S(up_FE) if
S(FE;) is acyclic. Indeed, all the explanations added or removeah 5 ( £;) to ob-
tain S(up_E) containz. Hence, ifS(up-E) contains cycles, all these cycles should



function updat eExpl anati ons( E;, ng, =)
up-E < Ej;;
setRhs(Nng,zx) ;
remove eacl; € up_E such thatry, € 1hs(e; ) ;
if (e, ¢up_E ) then
setLhs( eg,0) ;
setRhs( ek,dg) ;
add ey toup_F;
setLhs( e}, 1hs(e;) Ulhs(ng));
setRhs( e}, rhs(eg) —1);
replaceey, by e, ;
. return up_FE;

© ©® N o ogr DN R
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containz,. However, there does not exist any safety condition of thmfe, < z;

in S(up-E) because all of these explanations have been removed ir8linghus,
S(up-E) cannot be cyclic. As we will show in Sectiof the updates performed
by A; ensure thafS(E;) always remains acyclic. As a resufi(up_E) is acyclic as
well, and it can be represented by a directed acyclic gi@pk (N, U) such that
N = {x1,...,z,} is the set of nodes and is the set of directed edges. An edge
(7,0) e Uif (x; < 2;) € S(up_E). Thus, any topological sort @ is an order that
agrees with the safety conditions inducediy .

3.3 Decreasing termination values

Termination of Agile-ABT is based on the fact that the teration values associated
with orders selected by agents decrease as search pragréssspeed up the search,
Agile-ABT is written so that agents decrease terminatiolnes whenever they can.
When an agent resolves its nogoods, it checks whether itred@a fnew order of agents
such that the associated termination value is smaller tierof the current order. If so,
the agent will replace its current order and terminatiomgdly those just computed,
and will inform all other agents.

Assume that after resolving its nogoods, an aggntlecides to placey, in therhs
of the nogoodg) produced by the resolution and let_F =updateExplanations
(E;, ng, xr). The functioncomputeOrder takes as parameter the sgt F and returns
an orderup_o compatible with the partial ordering induced hy_E. Let G be the
acyclic directed graph associated with_E. The functioncomputeOrder works by
determining, at each iteratign the setRoots of vertices that have no predecessor.
As we aim at minimizing the termination value, functioomputeOrder selects the
vertexz; in Roots that has the smallest domain size. This vertex is placedeattth
position and removed fror®@. Finally, p is incremented and all outgoing edges from
x; are removed fronds.

Having proposed an algorithm that determines an order withllstermination
value for a given backtracking target,, one needs to know how to choose this
variable to obtain an order decreasing more the terminatadne. The function
chooseVariableOrder iterates through all variables, included in the nogood, com-
putes a new order and termination value withas the target (line82-24), and stores



function conput eOr der (up_FE)

18.

G = (N, U) is the acyclic graph associatedup_FE;
p < 1; ois an array of lengtn;
while G # 0 do

Roots < {z; € N | z; has no incoming edgés
o[p] + z; such thad; = min{dy | = € Roots} ;
remove z; from G;

pp+ 1

return o;

the target and the associated order if it is the strongestdodnd so far (line&5-29).
Finally, the information corresponding to the strongesleoiis returned.

function chooseVari abl eOr der ( E;, ng)
20. o «+o0;; TV' < TV;; E" < nil; 2’ + nil;
21. for eachzj € ngdo

22.
23.
24.

25.
26.

27.
28.
29.
30.

4

up_F <+ updateExplanations( E;, ng,zx) ;
up-o +—computelrder( up_F) ;
up TV <+ TV(up-E, up-o) ;
if (up-TVissmal | er thanTV’)then
'/ —xp;
o' + up_o;
TV + upTV;
E' + up_E;

return (z’,o’, TV’ ,E');

The Algorithm

Each agent keeps some amount of local information aboutltialsearch, namely
an AgentView, a NogoodStore, a set of explanatiafig,(a current orderd;) and a
termination value{V;). Agile-ABT allows the following types of messages (where
A; is the sender):

e 0k? message is sent hy; to lower agents to ask whether a chosen value is

acceptable. Besides the chosen value gk message contains an explanation
e; which communicates the current domain size4gf An ok? message also
contains the current ordey and the current termination valdé/; stored byA;.

ngd message is sent by; when all its values are ruled out by its NogoodStore.
This message contains a nogood, as well,andT'V;.

order message is sent to propose a new order. This message inthedasler
o; proposed by4d; accompanied by the termination valli&’;.

Agile-ABT (Figures1 and 2) is executed on every agent;. After initializa-

tion, each agent assigns a value and informs lower priogents of its decision
(CheckAgentView call, line 32) by sendingok? messages. Then, a loop considers
the reception of the possible message types. If no messdgevéding through the



procedure Agi | e- ABT( )
31 t; + 0; TV; + [00,00,...,00]; end < false;v; < empty;
32. CheckAgentView() ;

33. while (—end) do
34. msg < getMsg() ;

35. switch (msg.type) do

36. ok? : ProcessInfo(msg ;

37. order : ProcessOrder(msg ;
38. ngd : ResolveConflict(msg;
39. stp . end < true;

procedure Pr ocess| nf o( msg)
40. CheckOrder( msg.Order, msg.TV;
41. UpdateAgentView( msg.Assig) 1hs( msg.Exp) ;
42. if (msg.Exp is valifithen add( msg.Exp, E;
43. CheckAgentView() ;

procedure Pr ocessOr der ( msg)
44. CheckOrder( msg.Order,msg.TV;
45. CheckAgentView() ;

procedure Resol veConf | i ct ( msg)
46. CheckOrder( msg.Order,msg.TV;
47. UpdateAgentView( msg.Assig) 1hs( msg.Nogooy) ;

48. if (Coherent( msg.Nogood, AgentView z;=v;) A Compatible( msg.Nogoody;) ) then
49. add( msg.Nogood,NogoodStdrev; < empty;

50. CheckAgentView( ) ;

51. else if (rhs( msg.Nogooyp=v; ) then

52. sendMsg: ok?(v;, €, 04, TV;) to msg.Sender ;
procedure CheckOr der (o, T'V)

53. if (ois stronger tharv; ) then o; « 0; TV, + TV

54. remove nogoods and explanations incompatible wjth

procedure CheckAgent Vi ew()

55. if (—Consistent( v;,AgentViey) then
56. v; < ChooseValue() ;

57. if (v;) thensendMsg: ok?(v;, e;, 04, TV;) t0 Succ(A;);
58. else Backtrack() ;
59. else if (o; was modifiefl then
60. sendMsg: ok?(vi, e;, 04, TV;) to Succ(Ay);
procedure Updat eAgent Vi ewm( Assignments)

61. for eachvar € Assignmentslo
62. if (Assignments|var].t> AgentView [var].t) then
63. AgentView [var]«+ Assignments[var];

64. remove nogoods and explanations incoherent wigmtView;

Figure 1: The Agile-ABT algorithm (Part 1).



66.
67.

68.
69.

70.
71.
72.
73.

74.
75.

76.
77.
78.

procedure Backt r ack( )
ng <+ solve( NogoodStork ;
if (ng = empty) then end <+ true;sendMsg: stp(systen;
(zk,0', TV', E') +—chooseVariableOrder( E;, ng) ;
if (TV’issmaller thanTV;)then

TV« TV';0;+ 0 E; + E’;

setRhs(ng, Tk) ;

sendMsg: ngd(ng, 0;, TV;) to Ay ;

renove e, fromE; ;

br oadcast Msg: order(o;, TV;) ;
else

setRhs(ng, xk) ;

sendMsg: ngd(ng, 0;, TV;) to Ay, ;
UpdateAgentView (zj, <+ unknown);
CheckAgentView() ;

function ChooseVal ue()

. foreach (v € D; not eliminated by NogoodStojyedo
if (3z; € AgentView such that-Consistent(V, z;) ) then
add( z;=v; = x; # v, NogoodStork ;
. if (D; = 0) then return (empty);
else t; « ¢;+1 return (v); *ve D;*

Figure 2: The Agile-ABT algorithm (Part 2).

network, the state of quiescence is detected by a spedadlgerithm p], and a global
solution is announced. The solution is given by the curranables’ assignments.

When an agentl; receives a message (of any type), it checks if the orderdeciu
n the received message is stronger than its current ard@heckOrder call, lines

40, 44 and46). If it is the case A; replaces; andT'V; by those newly received (line
53). The nogoods and explanations that are no longer comepatitth o, are removed
to ensure that' ( E;) remains acyclic (lin&4).

If the message was avk? message, the AgentView of; is updated to include

the new assignmentSgdateAgentView call, line41). Beside the assignment of the
senderA; also takes newer assignments contained in the left hanabtte explana-
tion included in the receivedk? message to update its AgentView. Afterwards, the
nogoods and the explanations that are no longer coherdnfAggntView are removed
(UpdateAgentViewline 64). Then, if the explanation in the received message is valid,
A; updates the set of explanations by storing the newly redasxplanation. Next4;
calls the proceduréheckAgentView (line 43).

When receiving amrder messaged; processes the new ord@heckOrder) and

callsCheckAgentView (line 45).

When A; receives angd message, it callSheckOrder andUpdateAgentView

(lines46 and47). The nogood contained in the message is accepted if it isreah
with the AgentView and the assignment:of and compatible with the current order
of A;. Otherwise, the nogood is discarded ando&a® message is sent to the sender



as in ABT (lines51 and52). When the nogood is accepted, it is stored, acting as
justification for removing the current value df; (line 49). A new value consistent
with the AgentView is searchedfeckAgentView call, line50).

The procedur€heckAgentView checks if the current valug; is consistent with
the AgentView. Ifv; is consistentA; checks ifo, was modified (lines9). If so, A;
must send its assignment to lower priority agents throok/h messages. If; is not
consistent with its AgentView4; tries to find a consistent valu€{ooseValue call,
line 56). In this process, some values 4f may appear as inconsistent. In this case,
the nogoods justifying their removal are added to the No&boe (line81 of function
ChooseValue). If a new consistent value is found, an explanatipis built and the
new assignment is notified to the lower priority agentsdgfthroughok? messages
(line 57). Otherwise, every value of; is forbidden by the NogoodStore arid has to
backtrack Backtrack call, line 58).

In procedureBacktrack, A; resolves its nogoods, deriving a new nogoeg)(

If ng is empty, the problem has no solutiod, terminates execution after sending a
stp message (lin®6). Otherwise, one of the agents includednign must change its
value. The functiorcthooseVariableOrder selects the variable to be changed)(
and a new ordero() such that the new termination valid’’ is as small as possible.
If TV’ is smaller than that stored by;, the current order and the current termination
value are replaced by and7T'V’ and A; updates its explanations by that returned by
chooseVariableOrder (line 69). Then, angd message is sent to the agent owner

of zy, (line 71). Then,e; is removed fromE; since A, will probably change its expla-
nation after receiving the nogood (li7@). Afterwards,A; sends arrder message to
all other agents (lin€3). WhenT'V’ is not smaller than the current termination value,
A; cannot propose a new order and the variable to be changgds(the variable that
has the lowest priority according to the current ordeApflines75and76). Next, the
assignment of;, (the target of the backtrack) is removed from the AgentViédwlp
(line 77). Finally, the search is continued by calling the procedlireckAgentView
(line 78).

5 Correctness and complexity

In this section we demonstrate that Agile-ABT is sound, clatgpand terminates, and
that its space complexity is polynomially bounded.

Theorem 1 The spatial complexity of Agile-ABT is polynomial.

Proof. 1 The size of nogoods, explanations, termination values, @deérings, is
bounded byn, the total number of variables. Now, on each agent, AgileFABIly
stores one nogood per value, one explanation per agenteonmation value and one
ordering. Thus, the space complexity of Agile-ABT is@n(nd + n?> +n +n) =
O(nd + n?) on each agent. O



Theorem 2 The algorithm Agile-ABT is sound.

Proof. 2 Letus assume that the state of quiescence is reached. Tdrgsmgb) known

by all agents is the same because when an agent proposes adegyitsends it to all
other agents. Obviously,s the strongest order that has ever been calculated bysagent
Also, the state of quiescence implies that every pair of taimed agents satisfies the
constraint between them. To prove this, assume that thésessme constraints that
are not satisfied. This implies that there are at least twotagg and A, that do not
satisfy the constraint between them. L&gtbe the agent which has the highest priority
between the two agents accordingtd_etv; be the current value od; when the state

of quiescence is reached (i.e;,is the most up to date assignment4f) and letM

be the lasbk? message sent hy; before the state of quiescence is reached. Clearly,
M containswv;, otherwise,A; would have sent anoth@k? message when it chose
v;. Moreover, when M was sent; already knew the order, otherwiseA; would
have sent anoth@k? message when it received (or generated)l; sent M to all its
successors according aqincluding Ax). The only case wherd,, can forgetv; after
receiving it is the case wher#;, derives a nogood proving that is not feasible. In
this case A, should send a nogood messagelto If the nogood message is accepted
by A;, A; must send amk? message to its successors (and therefore M is not the
last one). Similarly, if the nogood message is discardgdhave to re-send anok?
message tol; (and therefore M is not the last one). So the state of quiesciemplies
that Ay knows botho andwv;. Thus, the state of quiescence implies that the current
value of Ay, is consistent with;, otherwiseA;, would send at least a message and our
quiescence assumption would be broken. O

Theorem 3 The algorithm Agile-ABT is complete.

Proof. 3 All nogoods are generated by logical inferences from exgstionstraints.
Therefore, an empty nogood cannot be inferred if a solutkst® O

In order to prove that Agile-ABT terminates, we first establiwo facts by proving
lemmasl and2.

Lemma 1 For any agent4;, while a solution is not found and the inconsistency of
the problem is not proved, the termination value storeddbylecreases after a finite
amount of time.

Proof. 4 Let TV; = [tv!,..., tv"] be the current termination value df;. Assume
that A; reaches a state where it cannot improve its terminatiorevdftanother agent
succeeds in generating a termination value smaller Thign lemmal holds sinceA;
will receive the new termination value. Now assume that &giBT reaches a state
o where no agent can generate a termination value smallerZfvan We show that
Agile-ABT will exit o after a finite amount of time. Lédtbe the time when Agile-
ABT reaches the state. After a finite timedt, the termination value of each agent
Ajeq,... ny Will be equal toT'V;, either becausd; has generated itself a termination
value equal td'V; or becaused; has received'V; in an order message. Letbe the
lexicographically smallest order among the current ordéedl agents at time + dt.

10



The termination value associated witlis equal tol'V;. While Agile-ABT is getting
stuck ino, no agent will be able to propose an order stronger thaecause no agent
is allowed to generate a new order with the same terminatduevas the one stored
(Figure2, line 68). Thus, after a finite tim@’¢, all agents will receive. They will
take it as their current order and Agile-ABT will behave asTABvhich is known to be
complete and to terminate.

We know thatd) ,, — tv' values have been removed once and for all from the

domain of the variable ) (i.e., dg(l) — tv! nogoods with emptyhs have been sent
to A,(1)). Otherwise, the generator ofcould not have putl, ;) in the first position.
Thus, the domain size af,;) cannot be greater tham! (doqry < tvl). After a finite
amount of time, if a solution is not found and the inconsisyeof the problem is not
proved, a nogood —with an emptys— will be sent toA, ;) which will cause it to
replace its assignment and to reduce its current domair(d{;ag = dy1) — 1). The
new assignment and the new current domain sizd of, will be sent to the« — 1)
lower priority agents. After receiving this message, wesane that any generator of a
new nogood (sayl,) will improve the termination value. Indeed, whdp resolves its
nogoods, it computes a new order such that its terminatitueva minimal. At worst,
Ay can propose a new order whetg;) keeps its position. Even in this case the new
termination valug'V;, = [df)(l), ...]is lexicographically smaller thafV; = [tv?,...]
becausel;, ;) = d,) — 1 < tv' — 1. After a finite amount of time, all agentsi(
included) will receivel'V}.. This will causeA; to update its termination value and to
exit the stater. This completes the proof. O

Lemma 2 LetTV = [tvl, ..., tv"] be the termination value associated with the cur-
rent order of any agent. We have’ > 0,Vj € 1..n

Proof. 5 Let A; be the agent that generat&d’. We first prove thatd; never stores an
explanation with a-hs smaller than 1. An explanatian, stored byA; was either sent

by A, or generated when callinghooseVar i abl eOr der . If ¢, was sent byAy,

we haverhs(er) > 1 because the size of the current domain of any agent is always
greater than or equal fio If ¢, was computed bghooseVar i abl eOr der , the only
case wherehs(ey ) is made smaller than the right hand side of the previous erpitan
stored forA; by A; is in line 9 of updateExplanations. This happens when is
selected to be the backtracking target (li22and29 of chooseVar i abl eOr der)

and in such a case, the explanati@ris removed just after sending the nogood message
to Ay (Figure2, line 72 of Backtrack). Hence,A; never stores an explanation with a
rhs equal to zero.

We now prove that it is impossible that; generatedl'V with tv/ < 0 for
somej. From the point of view of4;, tv/ is the size of the current domain
of Ay;. If A; does not store any explanation fdr, ;) at the time it computes
TV, A; assumes thatv/ is equal to dg(j) > 1. Otherwise,tv’ is equal to
rhs(eo(;)), Wheree,;) was either already stored by; or generated when calling
chooseVari abl eOr der. Now, we know that every explanatian stored byA;
hasrhs(er) > 1 and we know thathooseVari abl eOr der cannot generate an
explanatiore;, with rhs(e)) < rhs(er) — 1, wheree;, was the explanation stored by
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A; (line 9 of updateExplanations). Therefore, we are guaranteed tidt is such
thattv > 0,Vj € 1..n. O

Theorem 4 The algorithm Agile-ABT terminates.

Proof. 6 The termination value of any agent decreases lexicograjhend does not

stay infinitely unchanged (lemn. A termination valugtv!, ..., tv"] cannot de-
crease infinitely becausé € {1,...,n}, we havetv’ > 0 (lemma2). Hence the
theorem. O

6 Experimental Results

We compared Agile-ABT to ABT, ABTDO, and ABTDO with retroaa heuristics.
All experiments were performed on the DisChoco ZPglatform,?® in which agents
are simulated by Java threads that communicate only thrm&gsage passing. We
evaluate the performance of the algorithms by communicdtiad and computation
effort. Communication load is measured by the total numlienessages exchanged
among agents during algorithm executigfirtsg), including termination detection
(system messages). Computation effort is measured by gtatida of the number of
non-concurrent constraint checkiéi{ccc) [11] where we also count nogood checks to
be closer to the actual computational effort.

For ABT, we implemented the standard version where we useteaifor tagging
assignments. For ABTDOLP], we implemented the best version, using togood-
triggered heuristic where the receiver of a nogood moves the sendez to fvont of
all other lower priority agents (denoted by ABTDO-ng). FABBRDO with retroactive
heuristics L3], we implemented the best version, in which a nogood geoembves
itself to be in a higher position between the last and thersgtast agents in the gener-
ated nogood.However, it moves before an agent only if its current domsismaller
than the domain of that agent (denoted by ABTDO-Retro).

Uniform binary random DisCSPs

The algorithms are tested on uniform binary random DisCB&sare characterized by
(n, d, p1, p2), wheren is the number of agents/variablesthe number of values per
variable,p; the network connectivity defined as the ratio of existingaoynconstraints,
andp- the constraint tightness defined as the ratio of forbidddumevaairs. We solved
instances of two classes of problems: sparse prob{gth4.0, 0.2p-) and dense prob-
lems(20,10,0.7p,). We vary the tightnesg. from 0.1 to 0.9 by steps 0f0.1. For
each pair of fixed density and tightnegs ,(p2) we generated 25 instances, solved 4
times each. We report average over the 100 runs.

Ihttp://ww. | irmmfr/coconut/di schoco/

2 There are some discrepancies between the results repar{dd]iand our version. This could be
due to a bug that we fixed to ensure that ABTDO-ng and ABTDQdRattually terminate. You can see
AppendixA and AppendixBfor more details.
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Figure 3: Total#msg exchanged andgtncees performed on sparse problems (=
0.2).

Figure3 presents the results on the sparse instanges (0.2). In terms of compu-
tational effort - ncces) (left of Figure3), ABT is the less efficient algorithm. ABTDO-
ng improves ABT by a large scale and ABTDO-Retro is more efficthan ABTDO-
ng. These findings are similar to those reportedlig.[ Agile-ABT outperforms all
these algorithms, suggesting that on sparse problems,dhe sophisticated the algo-
rithm is, the better it is. Regarding the number of exchangedsages#msg) (right
of Figure3), the faster resolution may not translate in an overall comigation load
reduction. ABT requires less messages than ABTDO-ng andD¥B-Retro. On the
contrary, Agile-ABT is the algorithm that requires the skesil number of messages
despite its extra messages sent by agents to notify thesathamew ordering. This is
not only because Agile-ABT terminates faster than the odifggorithms (se€#ncccs).
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A second reason is that Agile-ABT is more parsimonious th&TBO algorithms in
proposing new orders. Termination values seem to focusgasaon those which will

pay off.
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Figure 4: Total##msg exchanged anédtncees performed on dense problems, (=
0.7).

Figure 4 presents the results on the dense instanges={ 0.7). Some differ-
ences appear compared to sparse problems. Conce#ninges (left of Figure 4),
ABTDO algorithms deteriorate compared to ABT. However, |lBgABT still outper-
forms all these algorithms. Regarding communication lgaahég) (right of Figured),
ABTDO-ng and ABTDO-Retro show the same bad performance sjgdarse problems.
Agile-ABT shows similar communication load as ABT. This @ioms its good behav-

ior observed on sparse problems.
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Distributed sensor-mobile problems

The distributed sensor-mobile probledj [s a benchmark based on a real distributed
problem. It consists af sensors that track mobiles. Each mobile must be tracked by
3 sensors. Each sensor can track at most one mobile. A gohatist satisfy visibility
and compatibility constraints. The visibility constraitgfines the set of sensors that are
visible to each mobile. The compatibility constraint defitiee compatibility among
sensors. We encode SensorDCSP in DisCSP as follows. Eaohrageesents one
mobile. There are three different variables per agent, onedch sensor that we need
to allocate to the corresponding mobile. The value domaieawh variable is the
set of sensors that can detect the corresponding mobile.infileeagent constraints
between the variables of one agent (mobile) specify thathhee sensors assigned
to the mobile must be distinct and pair-wise compatible. Tter-agent constraints
between the variables of different agents specify that argsensor can be selected
by at most one agent. In our implementation of the DisCSPr#lgos, this encoding

is translated to an equivalent formulation where we haveetivirtual agents for every
real agent, each virtual agent handling a single variabsleblEms are characterized by
(n, m, pe, py), Wheren is the number of sensors; is the number of mobiles;. is
the probability that two sensors are compatible and the probability that a sensor is
visible to a mobile. We present results for cl&25, 5, 0.4p, ) where we vary, from
0.1t0 0.9 by steps of).1 Again, for eachp, we generated 25 instances, solved 4 times
each one and averaged over the 100 runs. The results are shBigare5.

When comparing the speed-up of algorithms (left of FigGye Agile-ABT is
slightly dominated by ABT and ABTDO-ng in the intervil3 0.5], while outside of
this interval, Agile-ABT outperforms all the algorithmsoNetheless, the performance
of ABT and ABTDO-ng dramatically deteriorate in the intel@1 0.3]. Concerning
communication load (right of Figurg), as opposed to other dynamic ordering algo-
rithm, Agile-ABT is always better than or as good as standesd .

Discussion

From the experiments above we can conclude that Agile-ABpeartorms other algo-
rithms in terms of computation effort{ncccs) when solving random DisCSP prob-
lem. On structured problems (SensorDCSP), our resultsestidhat Agile-ABT is
more robust than other algorithms whose performance istasent® the type of prob-
lems solved. Concerning communication logén{sg), Agile-ABT is more robust
than other versions of ABT with dynamic agent ordering. Apaged to them, it is
always better than or as good as standard ABT on difficultlprob.

At first sight, Agile-ABT seems to need less messages thaer atigorithms but
these messages are longer than messages sent by othahalgoi©ne could object
that for Agile-ABT, counting the number of exchanged messaig biased. How-
ever, counting the number of exchanged messages would $edbdaly if#msg was
smaller than the number physicallyexchanged messages (going out from the network
card). Now, in our experiments, they are the same. The latemal Organization for
Standardization (ISO) has designed the Open Systems émteection (OSI) model
to standardize networking. TCP and UDP are the principatgpart Layer protocols

15



T T T T T T T
ol ¥ =my=i= ABT

i
L i\‘ »=%= ABTDO-ng
30 b ,I H ABTDO-Retra|
] [

@ YA -=-@--: Agile-ABT
S A

c -
§ \
\

1
2.0—,’
i
]
]
/]
1

\
1.0 "g\‘ \ ',Q‘ -1
i R s, \ ,” “‘
L RIS -
el Vg
0 L L L . . & ol
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Py
e+06
25 T T T T T T
=iug=im ABT
20 | =)= ABTDO-Ng -
ABTDO-Retro
> 15 ==@-=: Agile-ABT
£ %
10/ I _
LY
Y
! 1
05 H g kY _
! kY
s < ‘\&
[ “ .
:“‘\-’&-'.g. x‘ - ~ ~

OFI_‘M“ i 25 = 5
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pv

Figure 5: Totaltmsg exchanged angncces performed on sensor-mobile problems.

using OSI model. The internet protocols IPv4 (http://taets.org/html/rfc791) and
IPv6 (http://tools.ietf.org/html/rfc2460) specify theimmum datagram size that we
are guaranteed to send without fragmentation of a messagadi physical message).
This is 568 bytes for IPv4 and 1,272 bytes for IPv6 when usitigee TCP or UDP
(UDP is8 bytes less than TCP, see RFC-768 —http://tools.ietf.org/Hfc768).

Figure6 shows the size of the longest message sent by each algonitlouraan-
dom and sensor problems. It is clear that Agile-ABT requieegthy messages com-
pared to other algorithms. However, the longest messagdssalways less than 568
bytes (in the worst case it is less than 350, see Fig@ng). In our implementation
we do not proceed any message compression that would bet@osafihe number
of variables §) was very large. Still, if» was so large that even the compression pro-
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tocol in the OSI model is not sufficient to fit one Agile-ABT nsege in one physical
message, we believe that on such large problems, the exgiariend of the improve-
ment of Agile-ABT would compensate by far for the linear dwead due to message
splitting.

7 Conclusion

We have proposed Agile-ABT, an algorithm that is able to deathe ordering of
agents more agilely than all previous approaches. Thanksetoriginal concept of
termination value, Agile-ABT is able to choose a backtragkiarget that is not neces-
sarily the agent with the current lowest priority within tbenflicting agents. Further-
more, the ordering of agents appearing before the backirgtikrget can be changed.
These interesting features are unusual for an algorithin patynomial space com-
plexity. Our experiments confirm the significance of thesdufees.
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Appendices

A Appendix A: Why ABTDO is not correct

A.1 Preliminaries

We will show that ABTDO [LZ] is not correct. To this end, we first recall some features
of this algorithm that we will need to build a counterexample

e An agentA; can propose a new order each time it replaces its assigninehe
new order, only the positions of the agents that have lowieripr than A, can
be modified. However, these agents can not become higherithan

e A nogood is a tuple of inconsistent assignments. An agergps@ nogood if
it contains no obsolete assignment. When an agent receivew arder that is
more up to date than its current order, it removes the nogtihadsre no longer
valid according to the received order. A nogood messagéeaoamin addition of
the nogood itself, the identity of the agent that sent theoodg

e An agentA; can sometimesnistakenlyreceive a nogood that contains some
agents that have lower priority than itself. When this os¢dr; sends this no-
good to the agent that has the lowest priority accordingst@utrrent order. It
will be specified in this message that the sendet;is

For ordering variables in ABTD(¥ivan and Meiseléntroduced in 2] three dif-
ferent heuristics. Among them, the Nogood-Triggered isrtust efficient. In this
heuristic, an agemM; can change the order only after receiving a nogood elinmigats
current assignment. When this occu#ds,changes the order by placing the sender just
after itself. In this note, we focus on ABTDO combined witte tNogood-Triggered
heuristic (noted by ABTDO-ng).

A.2  Why the proof of ABTDO does not hold

To prove that ABTDO is correct, one needs to prove that it isslp complete and that
it terminates. The soundness of ABTDO is inherited from ABBTDO is complete
since an empty nogood can not be derived if a solution exigtgrove that ABTDO
terminatesZivan and Meiselsirst established two facts:

Lemma 3 The highest priority agent in the initial order remains thiglest priority
agent in all proposed orders.

Lemma 4 When the highest priority agent proposes a new order, it iemp to date
than all previous orders.

Given these fact<ivan and Meiselsise induction on the number of agents in the
DisCSP to prove that the algorithm terminates. For a singéngthis property is ver-
ified. Assume now that this property is satisfied for ény. n. So this property is
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satisfied forn — 1. Now, consider a DisCSP with agents whered; is the highest
priority agent. The position afl; will never be changed (lemn®. WhenA; instanti-
ates its value, it chooses a new order and sends it to all atfearts. Now consider the
DisCSP formed by the — 1 lower priority agents. The initial order of this DisCSP is
the order sent byl;. According toZivan and Meisel§2006, since the algorithm ter-
minates fom — 1 agentsA; will continue to receive nogoods until the inconsistency is
proved (the domain ofl; is exhausted, for example), or a solution is found. However,
to state that the DisCSP formed by the— 1) agents terminates, lemn3anust hold
for this DisCSP. In other words, whild; did not replace its assignment, the position
of the agent that has the highest priority in the DisCSP farimgthe (@ — 1) lower
priority agents can be changed only a finite number of timemdtheless, this is not
verified by ABTDO-ng as it was presented ib2] and the algorithm may fall into an
infinite loop.

Note: In the following counterexample, any agent that psgsa new order already
knows the most up-to-date order generated so far. Thereftren an agent proposes
a new order, this order is more up to date than all the ordersrgéed so far.

A.3 A counterexample

Let us consider a DisCSP instance wittagents4 = {A;, Ao, A3, A4, A5} where
D(z1) = D(x4) = D(x5) = {1,2} andD(z2) = D(z3) = {1, 2,3}. The constraints
of the instance are:

C12: (IlaIB‘) Q {(17 1)5 (172) (173)};
a3 (z2,w3) € {(3,3)};

C24 - (562’564) ¢ {(17 1)’ (27 1)};

€25 - (562’565) ¢ {(17 1)’ (27 1)};

C34 . (I35I4) Q {(172)5 (272)};

C35 - (Ig,I5) Q {(172)5 (272)}

Step 1.

01 = [Al,AQ,Ag,A4,A5] Wher8I1 =l,zo=1,23=1,24 =1 andZC5 =1.

All agents instantiate theirs variables to the first valuéigir domains and senok?
messages to their neighbours.

After receiving the assignmeiit; = 1), A3 generates the nogoody; : —(z; = 1)
and sends it tod;. Az removes(z; = 1) from its AgentView and instantiates its
variable tol. It sends its current value iok? (x3 = 1) messages to all its neighbours
including A,.

After receivingngi, A replaces its assignment and proposes a new ord&hereA;

is placed in the second positions = [A;, Az, As, A4, As]. A; sendso, to all other
agentsAs, As, A4 andAs. The current assignment dff; is z; = 2.

Step 2:

A and As have receiveds = [A1, As, As, Ay, As].
A, receives the new assignmentAf (z3 = 1).
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A4 has received the new assignmentafbut it has not yet receivegh. A4 generates
ngs : ~(x2 = 1 Axg = 1) and sends it tods. SinceA, has lower priority thams in
02, A3 sendsng, to As.

A, acceptsugs since it is coherent with its AgentViewd, replaces its current value
with 2 and proposes a new ordey where A is placed immediately afteds: o3 =
[A1, Ag, A3, Ay, A5).

The ordems is sent to all agents that has lower priority thénin o3 (A3, A4 andAs).
A, removesng, from its nogood-Store since it is no longer valid accordimgst

A, sends arok? (x5 = 1) message to all its neighbours includidg.

Step 3:

As hasreceived; = [A1, As, A3, Ay, As] and theok? (x2 = 1) message sent bys.
As has received the new assignmentaf

As has not yet receiveds. Until now, the order known byAs; is oo =
[A1, As, Ag, Ay, As).

As generates a new nogoags : —(zs = 1 A xo = 2) and sends it tol,.

When receivingugs, A2 sends it toAs since it has the lowest priority accordingds.
As acceptsigs since itis coherent with its AgentView. Becausewgf, A replaces its
current assignment withand proposes a new ordgrwhereAs is placed immediately
after As: o4 = [A1, A3, As, Ay, As]. The ordeny is sent to all agents that has lower
priority than Az in o4 (A2, A4 and A5). Now ngs is removed from the nogood-Store
of A3 since itis no longer valid according tq.

Asz sends arok? (x3 = 2) message to all its neighbours.

Step 4:

As hasreceived, = [A1, Az, As, Ay, As] and theok? (x3 = 2) message sent bys.
Ay has received the new assignmentaf

A4 has not yet received,. Until now, the order known byA, is o3 =
[A1, As, A3, Ay, As).

A, generates a new nogoaeg, :# (z3 = 2 A x5 = 2) and sends it tols.

When receivingugy, A3 sends it toAd, since A, the lowest priority according toy.

Ay acceptsugy since it is coherent with its AgentView. Becausengf;, A, replaces
its current assignment withand proposes a new ordey whereAs is placed imme-
diately afterAs: o5 = [A1, Ao, As, A4, As]. The ordemws is sent to all agents that has
lower priority thanAs in os,i.e As, Ay and As.

A, removesng, from its nogood-Store since it is no longer valid accordimgst

Ay sends arok? (xo = 1) message to all its neighbours.

Step 5

As has receiveds = [A1, As, A3, Ay, As] and theok? (zo2 = 1) message sent bys.
As has received the new assignment4af

As has not yet receivegl. Until now, the order known byls is o4.

As generates a new nogoags : —(zs = 2 A xzo = 1) and sends it tol,.
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When receivingugs, A2 sends it toAs since As the lowest priority according tos.

As acceptsigs since itis coherent with its AgentView. Becausewgf, A replaces its
current assignment withand proposes a new ordgrwhereAs is placed immediately
after As: og = [A1, As, Aa, Ay, As]. The orders is sent to all agents that has lower
priority thanAs in og (As, A4 and As).

A3z removesgs from its nogood-Store since it is no longer valid accordmggt

Asz sends arok? (x3 = 1) message to all its neighbours.

Hence, we come back to the order(os = 02) without performing any progress since
all nogoods have been removed. Thus, ABTDO-ng may not text@in

A.4 How to ensure that ABTDO actually terminate

The concern with ABTDO-ng is that an agehitthat replaces its assignment sepé®
messages before sendiogler messages. As a result, another agénthat has not
yet received th@rder message, can use the assignment contained ioktPenessage
to generate a nogood and therefore to send this nogood tertimg agent. To remedy
this, in our implementation, in addition to the value takgntie agent’s variable, an
ok? message also contains the order.
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B Appendix B: Retroactive Dynamic Ordering for
Asynchronous Backtracking algorithm may not ter-
minate

B.1 Preliminaries

Zivan and Meisel§2006 proposed Dynamic Ordering for Asynchronous Backtrack-
ing (ABTDO). In this algorithm, when an agent assigns a vatuiés variable, it can
reorder lower priority agents. Each agent in ABTDO holds aent order which is
an ordered list of pairs. Every pair includes the ID of onehaf agents and a counter.
The counters attached to each agent ID in the order list fotime-stamp. Initially,
all time-stamp counters are zero and all agents start witséime order. Each agent
that proposes a new order increments its counter by one #tbsaero counters of all
lower priority agents (the counters of higher priority atgeare not modified). When
comparing two orders, the most up-to-date is the one withetkieographicallylarger
time-stamp. In other words, the most up-to-date order isotiee for which the first
different counter is larger.

A new kind of ordering heuristics for ABTDO is presented 8. These heuris-
tics, called retroactive heuristics, enable the genemafttine nogood to be moved to
a higher position than that of the target of the backtrack[1[8}, ties which could
not have been generated in standard ABTDO, are broken usinggents indexes. In
other words, when two contradictory orders have the same-stamp, the most up-
to-date order is the one for which the index of the first dédfaragent is smaller. The
degree of flexibility of these heuristics is dependent onsike of the nogood storage
capacity, which is predefined. Agents are limited to storgamals smaller or equal to
a predefined siz&. The space complexity of the agents is thus exponenti&l.in

However, the best heuristic proposed 1I3][does not require this exponential stor-
age of nogoods. In this heuristic called ABTDO-Retro-Mimbagents that generate
a nogood are placed in the new order between the last anddbrdskast agents in the
generated nogood. However, agents are moved to a high¢iopasily if their domain
is smaller than that of the agents they pass on the way up rn@ites the generator of
the nogood is placed right after backtracking target.

B.2 ABTDO-Retro-MinDom may not terminate: a counterexam-
ple

We will now show that ABTDO-Retro-MinDom may not terminafo this end, con-
sider a DisCSP o5 agents{ A1, As, As, A4, As}. We assume that, initially, all agents
store the same order = [A;, A5, Ay, As, A3] with s; = [0,0,0,0,0]. We assume
that:D(xg) = D(l‘3) = D($4) = {6, 7} andD(xl) = D($5) = {17 2,3,4, 5}

The constraints are:

C12 - (xlv'r?) € {(176>v (177)};
C13 ¢ (x17x3) Q {(276)5 (277)}'
C14 - (x17x4) ¢ {(176)5 (177)};
Coyq (.%'2,.%‘4) Q/ {(676), (7, 7)}
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C35 (.%'1,.%‘5) Q/ {(6,4), (6,3), (7,5)}

In the following we give a possible execution of ABTDO-ReiinDom.

to:

tq:

to:

t3:

ty:

tg:

ts:

t > 1g:

All agents assigns their variables to the first values inrtlemains and send
ok? messages to their neighbours.

Ay receives the firsbk? (z; = 1) message sent by; and generates a nogood
ngy : —(x1 = 1). Then, it proposes a new order = [A4, A1, As, A, As] with

s2 = [1,0,0,0,0]. Afterwards, it assigns the valieto its variable and sends
ok? (x4 = 6) message to all its neighbours (includidg).

As receivesos = [Ay, A1, A5, As, As] and delete®; sinceos is more up-to-
date;

Aj receives the nogood sent bly, it replaces its assignment Byand sends an
ok? (r1 = 2) message to all its neighbours.

A, has not yet received, and the new assignment df;. A, generates the
same nogood usgi, ngs : —(x; = 1 and proposes a new ordey =
[AQ, Al, A5, A4, Ag] with s3 = [1, 0,0,0, O],

Afterwards, it assigns the valééo its variable and sends? (x2 = 6) message
to all its neighbours (includingl,).

A4 receives the new assignment of; (.e. x4 = 6) and o3 =
[As, Ay, A5, Ay, A3]. Afterwards, it discards, sinceos is more up-to-date;
Then, A, tries to satisfyco, becauseds has a higher priority according tg.
Hence,A, replaces its current assignment (2= 6) by x4 = 7 and sends an
ok? (x4 = 7) message to all its neighbours (includifg).

After receiving the new assignment df (i.e x; = 2) and before receivings =
[As, A1, A5, Ay, As], A3 generates a nogootys : —(xz; = 2) and proposes a
new order, = [A4, Az, Ay, As, AQ] with s, = [1, 1,0,0, 0];

The ordetoy is more up-to-date thawy.

Since in ABTDO, an agent sends the new order only to loweriyiagents,A;
will not sendo, to A4 because it is a higher priority agent.

A, receivesoy but it has not yet received the new assignmentigf Then, it
tries to satisfyeo, becaused, has a higher priority according to its current order
o4. Hence,A; replaces its current assignment (@£= 6) by 25> = 7 and sends
anok? (xo = 7) message to all its neighbours (includidg).

ABTDO-Retro-MinDom will not terminate ifA; and A, always change their
values simultaneously.
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Figure 7: The schema of exchangiogler messages by ABTDO-Retro

B.3 How to ensure that ABTDO-Retro-MinDom actually termi-
nate

To ensure that ABTDO-Retro-MinDom actually terminate, vavéto simply make

sure that after a finite time, all agents that share a constagiree on the order. A
simple way to this is to send the order in the? messagesok? messages are sent to
all neighbours). Of course, an agent that proposes a new sideld also send order
messages to lower priority agents that not share a consivamit.
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